A Study On Dual Hyperbolic Generalized Pandita Numbers

Abstract. This paper introduces the framework of generalized dual hyperbolic Pandita numbers, con-
tributing a novel class of structured sequences to the expanding domain of number theory. Anchored in the
principles of dual and hyperbolic systems, these constructs pave the way for exploring algebraic symmetries
and recursive behaviors beyond classical formulations. Particular attention is devoted to notable special
cases, including the dual hyperbolic Pandita and dual hyperbolic Pandita-Lucas numbers, whose proper-
ties are meticulously examined. To deepen understanding and facilitate computation, we derive explicit
closed-form representations using Binet-type formulations, construct generating mechanisms through for-
mal power series, and establish summative expressions with broad applicability. Additionally, matrix-based
representations are developed to offer an algebraic lens through which structural dynamics can be modeled
and analyzed. These formulations not only enrich the theoretical foundations of discrete mathematics and
symbolic computation but also highlight promising applications in engineering disciplines—particularly in
the modeling of iterative systems, signal transformations, and the analysis of complex networks. The in-
sights presented herein lay groundwork for future exploration into hybrid sequence systems and their role in
interdisciplinary problem solving.
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1. Introduction

The hypercomplex numbers systems, [25], are extensions of real numbers. Some commutative examples

of hypercomplex number systems are complex numbers,

C={z=a+ib:a,beR,i*=—-1},
1
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hyperbolic (double, split-complex) numbers, [18],
H={h=a+jb:a,beR,j>=1,j#+1},

and dual numbers, [36],

D={d=a+¢cb:a,beR,e?>=0,¢e#0}.

Some non-commutative examples of hypercomplex number systems are quaternions, [70],
Hg = {q = ap + ia1 + jas + kaz : ag,a1,a2,a3 € R,i* = j* = k* = ijk = —1},

octonions [26] and sedenions [38] are part of a sequence of real algebras constructed through a recursive
method known as the Cayley—Dickson process. The algebras C (complex numbers), Hg (quaternions), O
(octonions) and S (sedenions) are all derived from the real numbers R via this doubling procedure. The
process can be extended beyond sedenions to generate higher-dimensional algebras known as 2"-ions (see for
example [15], [29], [17]).

Quaternions were introduced by the Irish mathematician W. R. Hamilton (1805-1865) as an extension
of the complex numbers [70]. Hyperbolic numbers with complex coefficients were first studied by J. Cockle
in 1848 [27]. Later, H. H. Cheng and S. Thompson [24] introduced dual numbers with complex coefficients,
which they termed complex dual numbers. Dual hyperbolic numbers were subsequently introduced by Akar,
Yiice, and Sahin [34].

A dual hyperbolic number is a hyper-complex number and is defined by
q = (ao + ja1) + (a2 + jas) = ag + jar + cas + €jag

where ag, a1, as and ag are real numbers.

The set of all dual hyperbolic numbers are denoted by
Hp = {ag + ja1 + cas + €jas : ag, a1, az2,a3 € R, j2=1,1#41,e2=0,e# 0}.
The base elements {1,j,e,e5} of dual hyperbolic numbers satisfy the following properties (commutative
multiplications):

le = glj=j e?=ce=(je)*=0, j2=jj=1

£j je, e(ef) = (e).e =0, j(ej) = (€)= ¢

where ¢ denotes the pure dual unit (¢2 = 0, # 0), j denotes the hyperbolic unit (52 = 1), and €j denotes
the dual hyperbolic unit ((je)? = 0).

The product of two dual hyperbolic numbers ¢ = ag + ja; + €as + jeas and p = by + jby + €by + jebs is
qp = agbo + a1by + j(aob1 + aibo) + €(aobz + azbo + a1bs + azby) + je(aobs + ai1bz + azby + boas)

and addition of dual hyperbolic numbers is defined as componentwise.
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The set of dual hyperbolic numbers constitutes a commutative ring, a real vector space, and an algebra.
However, H D does not form a field, as not every dual hyperbolic number possesses a multiplicative inverse.
For further details on the algebraic structure and properties of dual hyperbolic numbers, see [34].

We now recall the definition of generalized Pandita numbers.

A generalized Pandita sequence {W,},>0 = {W,,(Wo, W1, Wa, Ws)},,>0 is defined by the fourth-order

recurrence relations
(1'1) Wn = 2Wn—1 - Wn—Q + Wn—B - Wn—4

with the initial values Wy, W1, Wa, W3 not all being zero. The sequence {W,, },,>0 can be extended to negative

subscripts by defining

W_,= 2W—(n—l) - W—(n—2) + W—(n—3) - W—(n—4)

for n = 1,2,3,.... Therefore, recurrence (1.1) holds for all integer n. Soykan has conducted a study on this
particular sequence, for more details, see [40].

The first few generalized Pandita numbers with positive subscript and negative subscript are given in

the following Table 1.

Table 1. A few generalized Pandita numbers

n %% W_,
Wo Wo
1 Wi Wo — Wi +2Wy — W3
2 Wo Wi+ Wse — Wy
3 W3 Wo + Wy — Wa
4 Wy — Wy — Wy 4+ 2W5 2Wo —2W1 +2Wy — W3
5 Wi —2Wy — Wy + 3W3 3Wy — 2Ws
6 W1 —3Wo —2Ws5 + 5W3 3Wy —2Ws
7 2W1 — 5Wy — 4Wo + 8Ws 3Wy — 2W,
8 3Wy — 8Wy — 6Wy + 12W5 Wy — 3W71 + 6Wsy — 3Ws
9 AWy — 12Wy — 9Ws + 18Ws oWy —2Wy — Woe — Wy

10 6W; — 18Wy — 14Wy +27TWs  3Wo + Wi — 5W5 4 2Ws
11 9Wy = 2TWy — 21Wo 4+ 40W3  4Wy — 8W; + 8Wy — 3Ws
12 13W; — 40Wo — 31Wo + 59Ws  4Wq — 4Wo + 5Wo — 4W5
13 19W; — 59Wy — 46W5 + 87TW3 9wy — 12Ws + 4W3

If we set Wy =0,W; =1, Wy = 2, W3 = 3 then {W,,} is the well-known Pandita sequence and if we set
Wo =4, Wy = 2,Wy = 2, W3 = 5 then {W,} is the well-known Pandita-Lucas sequence. In other words,

Pandita sequence {P, },,>0 and Pandita-Lucas sequence {5, },,>¢ are defined by the second-order recurrence
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relations

(1.2) P,=2P, 1 — P, o+ P,_3— P,_4, Po=0,P=1,P,=2P;=3, n >4,
and

(1.3) Sn =25,-1—Sh—2+ Sp—3 — Sn—4, So=4,51=2,5 =2,53 =5, n > 4.

The sequences { P, },,>0 and {S,}n>0 can be extended to negative subscripts by defining
P =P (n 1) = P_(n_2) +2P_(n_3) — P_(n_y)

and
S_n=8_(n—1) = S—(n-2) +25_(n—3) — S_(n-4),

for n =1,2,3, ... respectively. Therefore, recurrences (1.2) and (1.3) hold for all integer n.

We can list some important properties of generalized Pandita numbers that are needed.

e Binet formula of generalized Pandita sequence can be calculated using its characteristic equation

which is given as
2t -2 42 —x+1l=(2% -2 - 1)(z—1)=0

The roots of characteristic equation are

1/3 1/3
_ol (2 /8Ly (29 /31
* = 375" Vios 54 Vios)
1/3 1/3
= 37%%( 5TV 10s8 “ A5 Vis)
1/3 1/3
=Ll e (2 By (29 /8L
T 3TY 108 “\ 54 108]
5 o= 1,
where
143
w= %[ = exp(27i/3).

Using these roots and the recurrence relation, Binet formula can be given as

za™ 23" 23"
W, =
30-2 33-2 3y_2

AlOzn + Agﬂn —|— A3’}/n —|— A4,
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where 21, 29 and z3 are given below
21 = (W3 —a(2—a)Ws+ (—a® +a+ 1)W; — W),

2z = (BW3—B2—B)Wa+ (—F°+ 8+ )W — W),

23 = (Ws—v2—1)Wa+ (=77 + 7+ YW1 = W),
zg = —Ws+ Wy + W,
and
z
(1.4) A=
2
Ay = 3572_2
zZ
Az = 3’77;7
As = 2.

Binet formula of Pandita and Pandita-Lucas sequences are

n+3 n+3 n+3
n 3aoéf2+3ﬁﬁf2+3:f2 -1
and
Sp=a" + " +9" + 1,
respectively.

e The generating function for generalized Pandita numbers is

iW o Wo + (Wi — 2Wo)x 4+ (Wo — 2W, + Wo)a? + (W3 — 2Wy + Wy — Wy)a®
o R 1—2zx+22 —a3 4+ ’

For more details about generalized Pandita numbers, see [40].

[&.°]
Next, we give the exponential generating function of » W, 2+ of the sequence W),.
n=0

o0
LEMMA 1. [28, Lemma 1.4].Suppose that fw, (z) = Zo W, Tr is the exponential generating function of
n=

the generalized Pandita sequence {W, }.

oo n
Then »  W,%: is given by

n=0
i W 2" (aWs —a2— o)W + (—a? +a+1)W; — WO)e‘”
"nl 3a—2
n=0
(BWs — B2 —B)Wa+ (=B + B+ 1)W1 — Wo) 4,
+ e
38 —2
L OWs =72 =)We + (92 +9 + YW1 = W) 0
3y—2

+(=W3 + Wa 4 Wo)e®.

The previous Lemma 1 gives the following results as particular examples.
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COROLLARY 2. Ezponential generating function of Pandita and Pandita-Lucas numbers

00 " 00 an+3 n+3 n+3 " a360¢m 3eﬂm 3€'yx
ay ¥R = S L T )T e+ T e
n=0 oS0 3a—2 36—-2  3y-—2 nl 3a—-2 36-2 3yv-—2

o0

b): 3 St =Y (" + BT "+ 1)L = e 4P 417 47

n=0 n=0

Next, we give some information on published papers related to hyperbplic and dual hyperbolic numbers
in literature.

e Cockle [27] presented the hyperbolic numbers with complex coefficients.

e Akar at al [34] introduced the dual hyperbolic numbers.

e Cheng and Thompson[24] studied dual numbers with complex coefficients.
Next, we give some information related to dual hyperbolic sequences presented in literature.

e Soykan at al [42] introduced dual hyperbolic generalized Pell numbers given by

‘/}n - Vn +jVn+1 + EVn—i—? +j5vn+3

where generalized Pell numbers are given by V,, =2V,,_1 4+ V,,_2, Vo = a, V1 = b (n > 2) with the initial
values Vp V1 not all being zero.

e Cihan at al [8] studied dual hyperbolic Fibonacci and Lucas numbers given by, respectively,
DHEF, = F, +an+1 +5Fn+2 +j5Fn+3a

DHLn = Ln +jLn+1 + ELnJrQ +j6Ln+3.

where Fibonacci and Lucas numbers, respectively, given by F,, = F,,_1 + F,,_2,Fo = 0,F}, = 1,L,, =
Lyp1+Lpo,Lo=211 =1

e Soykan at al [43] introduced dual hyperbolic generalized Jacopsthal numbers given by

T = Jn + jJns1 + ednio + jednis
where J, = J,_1+2J,_2,Jog =a,J1 =0b.

e Bréd at al [3] studied dual hyperbolic generalized Balancing numbers are

DHBn = Bn + jBn_A,_l =+ EBn+2 —+ jEBn-I—B
where B, = 6B, _1 — B,,_2,By =0,B; = 1.

e Yilmaz and Soykan [68] introduced dual hyperbolic generalized Guglielmo numbers are

Ty = To + jTi + €Tz + jeTs

where Tn = 3Tn—1 - 3Tn—2 + Tn_g,TO = O,Tl = l,TQ =3.
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e Dikmen [12] introduced dual hyperbolic generalised Leonardo numbers given by
lo = lo + jli + €l + jel

ln =21 —lp-3,lo =111 = 1,1 =3.

e Eren and Soykan [16] introduced dual hyperbolic generalized Woodall numbers given by

Ro = Ro+ jRi + cRs + jeRs

where R,, =5R,, 1 —8R, 2+ 4R, 3, Ro=—-1,R1 =1,R, = 7.
In this paper, we define the dual hyperbolic generalized Pandita numbers in the next section and give

some properties of them.

2. Dual Hyperbolic Generalized Pandita Numbers and their Generating Functions and

Binet’s Formulas

In this section, we define dual hyperbolic generalized Pandita numbers and present generating functions
and Binet formulas for them. We now define dual hyperbolic generalized Pandita numbers over Hy. The

nth dual hyperbolic generalized Pandita number is

(2.1) Wy =Wy + iWoit + eWpgo + jeWnis.

The sequence {Wn}nzo can be extended to negative subscripts by defining
Wy =W+ iWeng1 + eWeppo + jeW_pnss.

for n = 1,2, 3, ... respectively. Therefore, recurrence (2.2) holds for all integer n. Note that

Wo = Wo+ Wi +eWsy + jeWs

Wi = Wi+ iWa+eWs + jeWy = Wy + jWa + eWs + je(Wy — Wy — W + 2Ws)

Wo = Wot jWs+eWy+ jeWs = Wa + jWs + e(Wy — Wo — Wa + 2W3) + je(W1 — 2Wo — Wa + 3W3)
Ws = Wi+ jWy+eWs + jeWs = Ws + j(Wy — Wo — Wy + 2Ws) + e(Wy — 2Wy — Wy + 3Ws)

+j5(W1 — 3W0 — 2W2 S 5W3)

It can be easily shown that

o~

(22) Wn = 2/1/[77171 - /Wn72 + /anii — Wh_4

and

W_p, = I7V\—(n—l) - W\—(n—2) +2W_(n3) = W_(n—a)



8 FATIH ZAHID KALCA,YUKSEL SOYKAN

The first few dual hyperbolic generalized Pandita numbers with positive subscript and negative subscript
are given in the following Table 2.

Table 2. A few dual hyperbolic generalized Pandita numbers

n W, W,

0 Wo Wo

1 W Wo — Wy + 2W, — W
2 W, Wi + Wy — Wy

3 Ws Wo + Wy — W

4 Wy — Wy — Wa + 2Ws W — 2W; + 2Wo — W
5 Wi — 2Wo — Wa + 3Ws 3Wa — 2W;

6 Wy — 3Wy — 2Ws + 5W; 3W, — 2W,

7T 2Wy — 5Wo — AW, + 8TV 3W, — 2,

8  3W,—8Wy—6Wy+12W5 Wy — 3W; + 6W, — 3WWs
9 AW, — 12W, — OW, + 18W5  5Wy — 2W — Wa — Wy
10 6W, — 18Wy — 14Wo + 2705 3Wo + Wy — 5W + 2
11 OWy — 2TWo — 21W, + 40Ws AW, — 8W, + 8Wa — 3T
12 13W; — 40W — 31Wa + 59W5 AW, — W + 5Wa — 41,

13 19W, — 59W, — 46W, + 8T, OW, — 12W, + 4TW;

As special cases, the nth dual hyperbolic Pandita numbers and the nth dual hyperbolic Pandita-Lucas

numbers are given as

(2.3) Py = Py + jPyi1 +Pota +jePays
and
(2.4) Sp =Sy +jSni1 4 €Sni2 + jeSnis

respectively. The sequences {ﬁn}nZO and {gn}nzo can be extended to negative subscripts by defining
?—n = P—(n—l) - P—(n—2) + 2P—(n—3) - P—(n—4)

and
S n="5_(n-1) = S—(n-2) + 25_(n3) = S—(n—s)

for n = 1,2, 3, ... respectively. Therefore, recurrence (2.3) and (2.4) holds for all integer n
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For dual hyperbolic Pandita numbers (taking W,, = P,, Py =0,P, =1, P, =2, P; = 3,) we get

Py = j+2+3je,
P, = 2j+3c+45je+1,
P, = 3j+5c+8je+2,

and for dual hyperbolic Pandita-Lucas numbers (taking W,, = S,,, So =4,51 = 2,5, = 2,53 =5,) we get

So = 2j+2 +5je+4,
Si = 2j+45e+6je+2.
Sy = Bj+6c+Tje+2

A few dual hyperbolic Pandita numbers and dual hyperbolic Pandita-Lucas numbers with positive subscript

and negative subscript are given in the following Table 3 and Table 4.

Table 3. Dual hyperbolic Pandita numbers

Table 4. Dual hyperbolic Pandita-Lucas numbers

n P, P,

0 j+2¢+ 3j¢e J+ 2+ 3j¢e

1 2 +3e+5je+1 €+ 2j¢

2 3j+5e+8je+2 —je

3 5j+8+12je+3 -1

4 8j+12¢+18je+5 —j—1

5 1254+ 18+ 27je + 8 —j—¢€
S, S_n

n
0
1
2
3
4
)

2j +2¢+5je + 4

27 4 5 + 65 + 2

5j + 6 + Tje 4+ 2

6j +7e+11je +5

75 +1le + 165 + 6
115 4 16e + 22je + 7

2j +2e+5je + 4
—45 4+ 2e 4+ 2je +1
Jj+de+2je -1
e—j+4je+4
47 —e+je+3
—3j+4e—je—4
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Now, we will state Binet’s formula for the dual hyperbolic generalized Pandita numbers and in the rest

of the paper, we fix the following notations:

(2.5) a = 14 ja+ea®+jea’,
(2.6) B = 1+j8+eb*+jef.
(2.7) 7 = 14+jy+ey® +jed
(2.8) 0 = 1=14j+e+je,

Note that we have the following identities:

a’ = 1+a+20)+20% (a® +1)e+4a’je

F = 148128+ (26 +26%) + 48,

aB = 1+aB+(a+p8)j+ (2 +8%+2a8° +a®B) e+ (a+ B) (a® + %) je,

&’ = 1+a®+ 8+ +2(af+1)(a+B)j+2(a®+ B +a?’ +40p+1) (o® + %)
+4(a+B) (o + % + ap?) je,

6B = 1+8 4208+ (a+28+0aBY)j+ (82 +208+1) (0®+26%) e+ (a+ 28+ aB?) (o + 267) je,

5 = 1+ +a’+ a2 +4aB+2(af+1) (a+B)j+2(a+ B + 0B +daB + 1) (a? + B2)

+4(aB+1) (a+ B) (o + 57) je

THEOREM 3. (Binet’s Formula) For any integer n, the nth dual hyperbolic generalized Pandita number
18
(2.9) W, = A1a™a + A28"B + Asy"F + 1A,

where @, B, ﬁ,g are given as (2.5)-(2.8)

Proof. Using Binet’s formula
Wn = Ala" + Agﬁn + Ag’}/" + A4.
where Ay, A, A3, A4 are given in (1.4) we get

Wy, = Wo+ Wit +eWpnyo + jeWigis
= A1+ Aof" + Agy" 4 Ag + (AT + AT Ay 4 Ay)
Fe(A1a™2 4+ Ao 4 Ayt 4 Ag) + je(Ara T3 4 Ao BT Ayt - Ay)
= A1a"(1+ ja+ea® + jea®) + Ay (1 + 5B + B + jeB?)
+A37" (1 + 5y + v + jev®) + As(1 + j + € + je)

= Ala"a + AQB”B —+ A3"yn:}/\ + TA4
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This proves (2.9). O
As special cases, for any integer n, the Binet’s Formula of nth dual hyperbolic Pandita number is

N n+3- n+373 n+35 =N
"o TS LY 4

2.10 - _
(2.10) 30—2  38-2 3y-2

and the Binet’s Formula of nth dual hyperbolic Pandita-Lucas number is
(2.11) S, =aa™ + BA" +3y" + 1,
Next, we present generating function.

O~
THEOREM 4. Let fm (x) = Y, Wya" donate the generating function of dual hyperbolic generalized
" n=0
Pandita numbers is given as follows:

Wg + (Wl — QWO)SL' + (W\Q — 2W1 + Wo)mz + (W3 — QWQ + W\l — /WQ)SL‘B
1—2x+ 22— a3+ 24 '

an (x) = Z Wn:c” =
n=0

Proof. Using the definition of dual hyperbolic Pandita numbers, and substracting x f(z), 2?f(x) and
23 f(x) from f(z) we obtain (1 — 2z + 2% — 2® + 21) faw,, (z)

(1—2x+2%—23+ x4)fﬁ7n(x)
o0 o0 P oo o0 o0 P
= Z Wpa™ — 2x Z W,z™ + 22 Z Woaz™ — 23 Z Wz + z* Z W,z",
n=0 n=0 n=0 n=0 n=0
o0 o0 o o0 /\ o0
= Y Waa" —2) W™ 4y Wam =Y Wt 4 Y Wa
n=0 n=0 n=0 n=0 n=0

= Z Wnl‘n -2 Z W(n_1)$n + Z ﬁ/\(n_g):ﬁ" — Z /W(n_g,)l'n + Z W\(n_4)1}n,
n=0 n=1 n=2 n=3 n=4

= (Wo + /W\L’I? + /W\2332 + /W\3$3) — 2(/W\0{E + Wle + /WQ.TZg) + (Wo.TZ + WLTB) — W()JL‘B
+ Z(Wn - QWn—l - Wn—? - Wn—S + Wn—4)xna

n=4

= /Wo + (/Wl - Q/W\())ZL‘ + (WQ - 2/Wl + Wg)xz + (/Wg - Z/WQ + Wl - ﬁ/\o)zs.

And rearranging above equation, we get (4). O

The following results are immediate consequences of the preceding Theorem.

COROLLARY 5. For all integers n, we have following identities:

(j + be +4je) + (1 — e — je)x + (e + je)a? + (3je)a®
1—2z + 22 — 23 + 24 ’
(25 + 2e + 5je +4) + (6 — 2§ — 62 — 4je)z + (3j — 2 + 2)2% + (26 — 4j + 8je + 7)a3

a): >, Pan =

b): Y °° §7, "=
) Dono S 1—2z+22 —a3 4+t

Theorem (4) gives the following results as special cases,

(1—2$+l‘2—$3+l‘4)fﬁn($) :ﬁo—f—(ﬁl—Qﬁo)l‘—l—(ﬁg—2ﬁ1+ﬁ0)$2+(ﬁ3—2ﬁ2+ﬁ1 —ﬁ0)$3 =
(5 4 be +4je) + (1 — e — je)x + (e + je)x? + (3je) a3,
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(1-2z+ x? — 23 + $4)f§" (ZL') = §0 + (§1 — 2§0)CL‘ + (§2 — 2§1 + go)l'? + (§3 — 2§2 + §1 — §0)x3 =
(25 + 2e + 5je +4) + (e — 2§ — 63 — 4je)x + (35 — 2 + 2)x? + (2 — 4j+8ja+7) 3.

Next, we give the exponential dual hyperbolic generating function of Z W of the sequence Wn
n=0

LEMMA 6. Suppose that fW (z) = Z W w48 the exponential dual hyperbolic generating function of
the generalized Pandita sequence {Wy, }.

oo feaped n
Then »  W,%: is given by

n=0

o0 e n . R
3 an—, == A1 a + Ay B + A3e7*F + Ayel.
n.

n=0

where @, 3, 4,0 are given as (2.5)-(2.8)

Proof. Using Binet’s formula
Wn = Ala” + Azﬁn + Ag’yn + A4.

where A1, Ag, A, Ay are given in (1.4) we get

0o " -
- T
Zan = ZW*ﬂZWnH +sZWn+2 +352Wn+3
n=0 . n=0
. TL
= Z(Ala +Agﬁ +A3’y +A4)7+Jz AlO/H_l—‘rA 6n+1+A 7n+1+A4)7|
n=0 n=0

+€Z A1a71+2+A 6n+2+A 7n+2+A4)7+]EZ A1Qn+3+A 6n+3+A ,yn+3+A4)7'
n=0 n=0

= (A1 + AseP® 4 Age?® + Age”) + j(Arae™ + Ay B + Azve™ + Age®)

+e(Aja?e™™ + A 32657 4+ Asv?e® + Aye®) + je(AjaPe™® + A583eP7 4 AsyPe’® + Age®)
= A1 (14 ja+ 4ea? + jea®) + Ay’ (1 + j + +e6° + je )

+ Az (14 jy + +ev? + jey®) + Age™(1 + j + +e + je)
= Ae*a+ Ageﬁ“gﬁ + Aze’*qy + Aye™1

This proves (6). O

The previous Lemma 6 gives the following results as particular examples.

COROLLARY 7. Ezponential dual hyperbolic generating function of Pandita and Pandita-Lucas numbers

2 2B 0lewE BB ey g
Cat T 302 T38-2 " 3y—2
b): > An% = e27q + eP7B + 777 + €71.

3
I
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3. Obtaining Binet Formula From Generating Function

We next find Binet’s formula generalized dual hyperbolic Pandita number {/W,L} by the use of generating

function for Wn

THEOREM 8. Binet’s formula of generalized dual hyperbolic Pandita numbers

(3.1)
W qo” 728" 37" 16"
"TlaBla-@-0)  B-aB-NE-5  G-ab-H0-9 G-a6-H6-1)
where
Q= /W()Oé3+ (W172W0>a2+ (W0*2W1+/W\)Q7W\0+W1 72/W2+W3,
@ = W+ (Wl - 2/1470) B+ (Wo — oW, + Wz) B —Wo + Wy — 2W, + W,
s = Wel+ (W1 - 2/V[70> v? + (WO —2W1 + WQ) v = Wo + Wy — 2W, + W,
Qs = ’WU(;;% + (Wl — QW()) (52 + (Wg — 2Wl + Wg) o — /W() + Wl — 2W2 + Wg,.
Proof. Let

Then for some «, 3,7 and ¢ we write

h(z) = (1 — az)(1 — Bz)(1 — vx)(1 — dx).

(3.2) pt— 2?4 2? - 224+ 1=(1—-ax)(l - Bz)(1 —vz)(1 - 6x).

Hence é, %, % and % are the roots of h(z). This gives a, 8,7 and § as the roots of

1 1 2 1 1
W)= 5=~ S+ +1=0.

This implies 2* — 23 + 22 — 22 + 1 = 0. Now, by it follows that

> (Wl —W\()—2W2+W3>1’3+ (Wo—le +Wz)x2+ (Wl —217[/\()>£L'+I7V\()

Z W,z"™ = .
(1 —aa)(1— Ba)(1 —2)(1 — oz)

n=0

Then we write

Wy — Wo — 2Wa + Wy ) 2% + (Wo — 2W, + Wa ) 22 + (W — 2Wo ) = + W
(33} _ By + By
o (1 —az)(1 - Bz)(1 —~x)(1 - z) (1—az) (1-p32)
By B,

+ 1

(1—~z)  (1-06x)
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So
(Wl — Wy — 2W, + /W3) 3+ (WO — oW, + /W2) z? + (W1 — 2/V[70) z+ W
= Bi(l-pz)(1—~vz)(1—0x)+ Ba(1l — az)(l —yz)(1 — dx)

+B3(1 — az)(1l — Bz)(1 — 0z) + Bs(1 — az)(1 — fz)(1 — yz).

If we consider z = é, we get /Wo + ﬁ (/Wo — 2W1 + ﬁ/\g) — % (W\o — Wl + Qﬁ/\g — Wg) —i—é (W\l — 2/1/170) =
=B (38-1) (57 -1) (39-1).
This gives
= 1 /= —~ = 1 /= = =~ = 1 /= =
By = o*(Wot =5 (Wo—2W1 + Wa) + = (Wi — 5Wo — 4Ws + Wy ) + — (W1 = 2 ))
@ a e’

W()Oés + (Wl — QW()) a? + (Wg - 2W1 —‘ng) o — W() +W1 — 2W2 + /V[73
(a = B) (= 7)(a = 6) '

Similarly, we obtain

Wb+ (W — 207 67 + (W — 20, + 1a) 3 — W+ Wi — 207 + 7

B: = B-a)B-70B-0) ’

. /V[7073+(W1—2/V[70) 72+(W0—2W1 +/W72>7—W0+/V[71—2/VI72+/V[73
o (vy—a)(y = B)(v - 9) ’

i Wo® + (s = 2W0) 6+ (Wo — 20 + W2 ) 6 — Wy + Wy — 20, + W
4 - .

(0—a)(6=5)(6—)

Thus (3.3) can be written as

Z Woa™ = Bi(1 —az) ™t + By(1 — )t + B3(1 —vyx) ' + By(1 — 62) L.

n=0
This gives

Z ﬁ/\nm" =B Z a"z" + By Z B8"z" + B3 Z ~"ax™ 4+ By Z ox™ = Z(Bloz” + ByB" + Bsy" + B4d"™)a".
n=0 n=0

n=0 n=0 n=0 n=0

Therefore, comparing coefficients on both sides of the above equality, we obtain
W, = Bia™ + B2 + Bsy" + B4d".

The following identity establishes a relationship between the dual hyperbolic Pandita numbers and the

Pandita—Lucas numbers.

COROLLARY 9. For all integers m,n the following identities holds:

o~

Wern - m72Wn+3 + (Pm74 - Pm73 - Pm75)/m7n+2 + (mej - Pm74)/w7n+1 - Wanfd
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Proof. First we assume that m,n > 0.The Theorem (9) can be proved by mathematical induction on m.

If m =0 we get
/W\n - P—QWn-i-?) + (P—4 - P—3 - P—S)Wn-i-Z + (P—B - P—4)Wn+1 - /W\TLP—3'

which is true since P = 0,P = —1,P_4 = —1, P_5 = 0. Assume that the equality holds for m < k. For
m=k+ 1, we get
Wititn = 2Wosk = Watke1 + Wain—2 — Wogk_3,
2Py aWnis + (Pms — Pos — Pr_5)Woso + (Pms — Pr_a)Wyy1 — WPy _3)
~(Pm—3Wass + (Pn—s — Po—a — Pr—6)Wat2 + (Pr—a — Prn—5)Woi1 — W Pra)
(P aWois + (P — Pu5 — Po2)Waia + (Prs — Pm_6)Wni1 — WnPo_s)
~(Pu—5Wass + (Pr—7 = Pr—6 — Pru—s)Waria + (Pm—6 — Pr-1)Wni1 — Wi Prg).
Consequently, by mathematical induction on m, this proves Theorem 9.
The other cases of m,n can be proved smilarly for all integers m,n. O

Taking Wn = ﬁn or Wn = An in above Theorem, respectively, we get:

COROLLARY 10.

Am—&-n = Pm—2ﬁn+3 + (Pm—4 - Pm—S - Pm—5)ﬁn+2 + (Pm—3 - Pm—4)ﬁn+1 - ﬁan—?n
§m+n - Pm72§n+3 + (Pm74 - me?) - Pm75>§n+2 + (Pm73 - Pm74)§n+1 - §an73-

4. Simson’s Formulas

In this section, we present Simson’s formula for the dual hyperbolic generalized Pandita numbers . This

is a special case of [39, Theorem 4.1].

THEOREM 11. (Simpson’s formula for dual hyperbolic generalized Pandita numbers) For all integers n

we have,
/W\n +3 Wn +2 Wn +1 /Wn /W\3 /W2 Wl /W\O
Woso Wopr Wo W, W, W, W, W._ e
s +2 A—O—l o o 1 _ AQ Al AO o 1 _ (W3 _ 2W2 n VV())(W3 _ 2W1 i
Wot1 Wp Wi Wi Wi Wo Wi W_,
/V[?n /Wn—l /W’I’L—2 /Wn—?) WO /W—l W—Q W—?)

Wo) (W3 — W3
FWE — WE — WoWs — 2W, Wy + Wi Wy + WoWs + 2Wo Wo — WoW)).
Proof. Using Theorem 3 it can be proved by using induction use [39, Theorem 4.1]
From the Theorem 11 we get the following Corollary.

COROLLARY 12. For all integers n, the Simson’s formulas of dual hyperbolic Pandita numbers and dual

hyperbolic Pandita Lucas numbers are given as respectively



16 FATIH ZAHID KALCA,YUKSEL SOYKAN

ﬁn+3 ﬁn+2 ﬁnJrl An
P.is P P, P,
a): | TR T Tl 17 1165 + 115e + 260je.
Pn+1 Pn Pnfl Pn72
ﬁn Anfl An72 An73
§n+3 §n+2 §n+1 An
Sniz Sus1r Su S.
b): | DR T P Pl 459 46555 + 11256 — 1267e.
Sn+1 Sn Snfl Sn72
S’\n S1\n—1 An—2 An—3

5. Linear Sums

In this section, we give the summation formulas of the dual hyperbolic generalized Pandita numbers

with positive and negatif subscripts.

Now, we present the summation formulas of the generalized Pandita numbers.
THEOREM 13. For the generalized Pandita numbers, we have the following formulas:

(a): D Wir=—-(n+3)Wyis+(n+4)Whi2+ (n+4)W,, + 3W3 — 4Wy — 3W,,.
k=0
(b): z Wor = %(—3(n+2)W2n+2—|—(3n—|—8)W2n+1 +2W2n+(3n+7)Wgn_1 +7W3—8W2—W1—6W0).
k=0
(€): X Wary1 = 5(—(Bn+4)Wap 2+ (3n+8)Wap i1+ Wap +3(n+2)Way, 1 +6Ws —8Wo+ Wy —TWj).
k=0
Proof. For the proof, see Soykan [41, Theorem 3.12]. O

THEOREM 14. For the dual hyperbolic Pandita numbers, we have the following formulas:

(a): Z Wk = *(n + 3)Wn+3 + (TL + 4)/Wn+2 + (n + 4)ﬁ/\n + 3W3 — 4/W2 — 3/V[70
k=0

noo_

(b): Y Wap = 1(=3(n+2)Wap o+ (314 8)Wap s 1 +2Wap + (304 7) Way—1 + TWs —8Wo — W1 — 61Wp).
k=0

(€): > Wari1 = H(—=(B3n+4)Wanpo+ (3048 Way i1+ Wap +3(n+2) Way— 1 +6Ws —8Wa +- Wy —T1Wp).
k=0

Proof. Use Theorem 13 and the definition of Wn. O

As a special case of the theorem 14, we present the following Corollary.

COROLLARY 15. For n > 0, dual hyperbolic Pandita numbers have the following properties:

~ ~ ~

(a): 3 Po=—(n+3)Puys+ (n+4)Pis+ (n+4)P, + 1 — 5je — 2.
k=0
no_. ~ ~ ~ ~
(b): Z P2k- = %(—3(77/ + 2)P2n+2 + (Sn + 8)P2n+1 + 2P2n + (3TL + 7)P2n71 + 3] +ée— 3]€ + 4)
k=0
(C): Z ﬁ2k+1 = %(—(?m + 4)}32n+2 + (37’L + 8)132”+1 + ﬁgn + 3(n + 2)ﬁ2n71 +j—3¢—8je+ 3)
k=0

COROLLARY 16. For n > 0, dual hyperbolic Pandita Lucas numbers have the following properties.
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(a): Y Sk =—(n+3)Suis+ (n+4)Su12 + (n+4)S, — 8j — 9 — 10je — 5.
k=0

(b): > Sa = 2(=3(n+2)Sans2 + (31 + 8)Sant1 + 252, + (3n + 7)S2n1 + —12j — 16 — 15je — 7).
k=0

(©): 3 Sopt1 = L(~(3n+4)Soni2+ (3n+8)Sapi1 + Son +3(n+2)Say_1 + —165 — 15e — 19je — 12).
k=0
Next, we give the ordinary generating functions of some special cases of dual hyperbolic generalized

Pandita numbers.

THEOREM 17. The ordinary generating functions of the sequences WQH, Wgn+1 are given as follows:

. . n_/WQ(.’L'3+3.CE2—.’I,‘)—|—W0(2.’1?2+2{L‘—1)—Wl($2—$3)—W3($3+2$2)
(a)' Zn:O WQ"x - . - _x4 _ IES + fL'2 _’/_\Qx -1 - ’
o = _ Wy (x3+23:2) — Wi (503+x2+:c) — Wi (1:3—2:c+1) + Wo (2x3+x2)
(b): 3o Wanpaz® = —at — a3 422420 -1 '

Proof. Similary, the proof can be constructed as in [4, Theorem 4].

From the last Theorem, we have the following Corollary which gives sum formula of dual hyperbolic
Pandita numbers (Take W, = P, whit Py = j + 2 +3je,P, = 2j +3c+5je+ 1, Py = 3j + 5e + 8je + 2, P =
5j + 8+ 12je + 3 )

COROLLARY 18. For n > 0 dual hyperbolic Pandita numbers have the following properties.
() T Py — (j + 5e +4je) + (1 — e — je)z + (e + je)a? + (3je)a?
n=0" s 1—2z+a22— a3+ ’
(b): S By ora” = (2j +2e + 5je +4) + (e — 2§ — 62 — 4je)x + (3j — 2 + 2)2% + (26 — 4j + 8je + 7)a3
n=02n+1 1-2z+a22 — 23 + 24

6. Matrices related with Dual Hyperbolic Generalized Pandita Numbers

In this sectiion, using dual hyperbolic Pandita numbers, we give some matrices related to dual hyperbolic

Pandita numbers.

We define the square matrix A of order 4 as

2 -1 1 -1
1 0 0 0
A =
0O 1 0 O
0O 0 1 0
uch that detA = 1. Note that
Pn+1 _Pn+Pn—1_Pn—2 Pn_Pn—l _Pn

Pn _Pn—l +Pn—2_Pn—3 Pn—l _Pn—2 —4in-1
Pnfl —Fp2+ Pn73 - Pn74 Pn72 - Pn73 —1In-2
Pn72 —lfp-3+ Pn74 - Pn75 Pn73 - Pn74 —4n-3

Ar =

for the proof see [44].

Then we give the following lemma.
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LEMMA 19. For n > 0 the following identitiy is true:

o~ o~

Wots 2 -1 1 -1 Ws
Wagz | |1 0 0 0 Wo
Wi | |0 1 0 o Wi
W, 0 0 1 0 Wo

Wi 2 -1 1 -1 Ws
Wo | |1 0 0 0 W,
wo | o 1 0 o W
W, 0 0 1 0 Wo

Wi 2 -1 1 -1 Wi
Wee | |1 0 0 0 W,
Wer | |0 1 0 o0 W
W, 0 0 1 0 Wo
Forn =k + 1, we get
k+1 ,
2 -1 1 -1 Ws 2 -1 1 -1 2 -1
1 0 0 0 W | 1 0 0 0 1 0
0 1 0 0 we | o 1 o0 o 0 1
0 0 1 0 Wo 0 0 1 0 0 0
2 1 1 -1 Wiis
10 0 0 Wito
“lo 1 0 o0 Wit
0 0 1 0 Wi
Wk+4
| s
| W
W1

Consequently, by mathematical induction on n, the proof completed. [

- o O =
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We define

(6.1) N— = :

Now, we have the following theorem with Ny and Ey;

THEOREM 20. Using Ny and Ey; , we get

A"Ny = Eg.
Proof. Note that we get
Pn+1 *Pn“i’Pn—l*Pn—Q Pn*Pn—l *Pn WS /WQ
ANN— - P, =Py 1+Pyoo—Pos Po1—Poo —Ppa Wy Wi
W - — —
Py —Poo+Po3—PFPuoy Poo—P,3 —Po Wi Wy
P2 —Po3+Pi4—PFPis Po3—P,_y —P,3 Wo W,

a1l a2 a1z G4
21 Q22 (23 a24
a31p agz2 G33 Aas34

G41 Q42 Q43 G44

where

19



20

a11

ai2

a13

G14

azi

a22

azs

a24

a3

a32

a33

a34

a41

42

a43

44
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Wi (P, — Pyy) = Wa (P, — Py1 + Po_2) — WoPy + WaPoy1 = Wy,

Wo (Pn— Pp_1) — W\l (Py — Ppo1+ Py_2) — Pnﬁ/\—l + /WQPn—l-l = W\m-z,

Wy (Py—Po 1) = Wo(Py— Pu14 Pa_g) = PaW_ g+ Wi Payy = Woia,

W_ (P = Pa—1) = Wi (P — Pact + Pa2) = PuaWo_g + WoPupy = W,

W3 P, — Wa (Py1 — Pua + Pug) + W (Pyey — Py—g) — WoPpo1 = Wy,
WP, —W_ 1P,y = Wy (Py_i — Pog+ Pu3) + W (Pu_1 — Py_s) = Wy,
W1 (Pao1 = Po2) = WoPy_1 + WiPy — Wy (Paet — Pyo + Po_z) = Wi,
W_g(Pay— Py o) =W 3Py 1 +WoPy—W_y (Py1— Py o+ P,_3) = W1,
Wi (Py—g = Pog) = Wa (Pu—s — Pa—g + Pu—a) = WoPo—z + WaPy1 = Wy,
Wo (Pp—2 — Py—3) — W, (Ph—2— Pn_3+ Pp_y) — WPy + WoPy_y =W,,
W_1 (P — Pus) = W_aPy_o — Wo (Py— — Pu_s + Py_a) + Wi Py = Wy,
W_, (Pp—2 — Py—3) — W_3Pn_g— W_4 (Ph—2 — Pp_3+ Py_4) + WoPn_1 = Wn—z,
Wi (Pa—s — Pu—a) = Wa (Pa—g — Po_a + Pus) — WoPo_s + W3 Py = W,

Wo (Pu—g = Pua) = Wi (Pa—g — Po—a + Pus) = W1 Py + WoPr_g = Wy_1,
W_1 (P — Pu—a) = W_3Py_g — Wo (Pa—s — Pua + Pus) + WiPy_o = Wy,

W, (Pr—3 — Pp_4) — W 3Py s —W_4 (Ppe3— Pp_a+ Po_5)+ WoPn_o = W,_s.

Using the theorem (9) the proof is done. O
By taking Wn :ﬁn with ﬁo,ﬁl,ﬁg,ﬁg, in (6.1) and (6.2)

/Wn :Sn with §0,§1,§2,§3 in (61) and (62)
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respectively, we get:

5] +8c+12je +3 35 +5e+8je+2 25+ 3e+5je+1 j+ 2+ 3j¢
N 37 +5e+8je+2 2j+3+5je+1 7+ 2+ 3je €+ 2je
P = ’
2j +3e+5je +1 J+ 2e + 3j¢e €+ 2j¢ —je
j + 2+ 3je £+ 2je —Jje -1
ﬁnJrS ﬁn+2 ﬁnJrl ﬁn
E- — ﬁn-{-2 ﬁn-‘,—l ﬁn ﬁn—l
r ﬁnJrl ﬁn ﬁnfl ]31172 ’
ﬁn ﬁnfl An72 An73
6j +7e+1lje+5 55+ 6+ Tje+2 27+ 5e+6je+2 2j+4+2+5je+4
N 5] +6c+Tje+2 25+ 5e+6je+2 2j+2e+5je+4 4j+2e+2je+1
5 = )
2] 4+5e+6je+2 274+2e+5je+4 —4j+2e+4+2je+1 jH+4e+2je—1
2j+2e+5je+4 —4j4+2e+2je+1 jH+4e+2je—-1 e—J+4je+4
S1\n+3 §n+2 §n+1 §n
E§ _ §n+2 s7n+1 Agn ?nfl
Sn+1 Sn Sn—l Sn—2

Sn Sn—l n—2 n—3

From Theorem [20], we can write the following corollary.
COROLLARY 21. The following identities are hold:

a): Aana = Eﬁ.
b): A"Ng = Eg.

7. Conclusions

Recurrence relations define sequences where each term depends on previous ones. These sequences
such as Fibonacci, Pell, Jacobsthal, Tribonacci, Padovan, Narayana’s Cows, Leonardo, Tetranacci, and
Pentanacci arise across fields including engineering, biology, mathematics, and physics. Below, we present

their definitions with initial conditions using A,, notation and outline their real-world relevance.

e Fibonacci Sequence:
F, = 71—1+Fn—27 FO:()a =1

e Pell Sequence:

P,=2P, 1+ P, 2 P=0 P=1
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e Jacobsthal Sequence:
Jn=Jn-1+2Jp—2, Jo=0, A1 =1
e Tribonacci Sequence:
T, =Th1+Tho+Th3, To=0 Ti=1 To=1
¢ Padovan Sequence:
P,=P, 2o+P, 3 P=P=P=1
e Narayana’s Cows Sequence:
N, =Np_1+Np_3, No=N;=Ny=1
e Leonardo Sequence:
Ly=Ly 1+ Lpo+1, Ly=1 L;=1
e Tetranacci Sequence:
My=M, 1+ My o+ M, 3+ M, 4, My=M =My=0, Mz=1
e Pentanacci Sequence:
P,=P,1+P,o+P,3+P,u+PFP,5, Po=P=FP,=P3=0, P=1

These sequences demonstrate how mathematical recursions extend into the fabric of our world whether
designing structures, analyzing algorithms, modeling nature, or probing the quantum realm. Their recursive
beauty continues to inspire both theoretical and practical exploration.

Next, we explore several real-world applications of recurrence relations across disciplines.

e Engineering
— Fibonacci: Models recursive filters in control systems and signal processing.
— Padovan and Perrin: Guide architectural proportions using the plastic number.
— Jacobsthal: Applied in digital circuits for counting and encoding.
e Science
— Tribonacci and Tetranacci: Simulate biological systems with delayed reproduction.
— Leonardo: Reflect branching in plants and trees.
— Fibonacci and Narayana’s Cows: Describe phyllotaxis and seed arrangement in botany.
e Mathematics
— Recurrence Relations: Analyze algorithms like mergesort and quicksort.
— Pell: Solve Diophantine equations and approximate square roots with continued fractions.
— Jacobsthal and Padovan: Used in tiling and combinatorics problems.

e Physics
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— Fibonacci and Tribonacci: Appear in wave interference and quantum systems.
— Pentanacci: Used in recursive models of particle interactions and fractals.

— Padovan: Linked to equilibrium modeling via the plastic constant.

In this study, we extend the classical framework to fourth-order recurrence systems by introducing the
dual hyperbolic Pandita numbers, along with two distinguished subclasses. For these novel sequences, we
derive Binet-type formulas, ordinary and exponential generating functions, and generalized Simson-type
identities. Our analysis also encompasses closed-form summation formulas, algebraic properties, recurrence
behaviors, and matrix-based representations.

Recognizing the theoretical depth and real-world utility of recurrence-based sequences, we first revisit the
applications of second-order sequences to establish context. We then position our fourth-order generalizations
as a natural progression within this broader mathematical landscape—offering new insights and powerful

tools for modeling, analysis, and optimization in both pure and applied settings.

e For the applications of Gaussian Fibonacci and Gaussian Lucas numbers to Pauli Fibonacci and
Pauli Lucas quaternions, see [1].

e For the application of Pell Numbers to the solutions of three-dimensional difference equation sys-
tems, see [5].

e For the application of Jacobsthal numbers to special matrices, see [69].

e For the application of generalized k-order Fibonacci numbers to hybrid quaternions, see [19].

e For the applications of Fibonacci and Lucas numbers to Split Complex Bi-Periodic numbers, see
[66].

e For the applications of generalized bivariate Fibonacci and Lucas polynomials to matrix polynomi-
als, see [65].

e For the applications of generalized Fibonacci numbers to binomial sums, see [64].

e For the application of generalized Jacobsthal numbers to hyperbolic numbers, see [47].

e For the application of generalized Fibonacci numbers to dual hyperbolic numbers, see [46].

e For the application of Laplace transform and various matrix operations to the characteristic poly-
nomial of the Fibonacci numbers, see [10].

e For the application of Generalized Fibonacci Matrices to Cryptography, see [37].

e For the application of higher order Jacobsthal numbers to quaternions, see [35].

e For the application of Fibonacci and Lucas Identities to Toeplitz-Hessenberg matrices, see [20].

e For the applications of Fibonacci numbers to lacunary statistical convergence, see [4].

e For the applications of Fibonacci numbers to lacunary statistical convergence in intuitionistic fuzzy
normed linear spaces, see [31].

e For the applications of Fibonacci numbers to ideal convergence on intuitionistic fuzzy normed linear

spaces, see [32].
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For the applications of k-Fibonacci and k—Lucas numbers to spinors, see [30].

For the application of dual-generalized complex Fibonacci and Lucas numbers to Quaternions, see
[62].

For the application of special cases of Horadam numbers to Neutrosophic analysis see [22].

For the application of Hyperbolic Fibonacci numbers to Quaternions, see [9].

For the application of Pell numbers to Gaussian Hyperbolic numbers, see [23].

In the following, we explore several applications of third-order recurrence sequences across various math-

ematical and applied contexts.

For the applications of third order Jacobsthal numbers and Tribonacci numbers to quaternions, see
[7] and [6], respectively.

For the application of Tribonacci numbers to special matrices, see [67].

For the applications of Padovan numbers and Tribonacci numbers to coding theory, see [61] and
[2], respectively.

For the application of Pell-Padovan numbers to groups, see [11].

For the application of adjusted Jacobsthal-Padovan numbers to the exact solutions of some differ-
ence equations, see [21].

For the application of Gaussian Tribonacci numbers to various graphs, see [60].

For the application of third-order Jacobsthal numbers to hyperbolic numbers, see [13].For the
application of Narayan numbers to finite groups see [33].

For the application of generalized third-order Jacobsthal sequence to binomial transform, see [59].
For the application of generalized Generalized Padovan numbers to Binomial Transform, see [58].
For the application of generalized Tribonacci numbers to Gaussian numbers, see [57].

For the application of generalized Tribonacci numbers to Sedenions, see [56].

For the application of Tribonacci and Tribonacci-Lucas numbers to matrices, see [54].

For the application of generalized Tribonacci numbers to circulant matrix, see [55].

For the application of Tribonacci and Tribonacci-Lucas numbers to hybrinomials, see [63].

For the application of hyperbolic Leonardo and hyperbolic Francois numbers to quaternions, see

[14].

In the following lists, we outline several applications of fourth-order recurrence sequences across theo-

retical and applied domains.

For the application of Tetranacci and Tetranacci-Lucas numbers to quaternions, see [50].
For the application of generalized Tetranacci numbers to Gaussian numbers, see [51].
For the application of Tetranacci and Tetranacci-Lucas numbers to matrices, see [52].

For the application of generalized Tetranacci numbers to binomial transform, see [53].

We now explore several applications of fifth-order sequences.
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e For the application of Pentanacci numbers to matrices, see [45].
e For the application of generalized Pentanacci numbers to quaternions, see [49].

e For the application of generalized Pentanacci numbers to binomial transform, see [48].
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