
Abstract.In this study, we present the generalized hyperbolic Edouard numbers a novel class of numer-

ical sequences that broaden traditional recurrence relations by embedding them within a new mathematical

framework.We provide a detailed exploration of several significant special cases, including the hyperbolic

Edouard numbers and the hyperbolic Edouard-Lucas numbers, each demonstrating fascinating combinator-

ial patterns and noteworthy algebraic properties.

Explicit formulations for these sequences are established, including Binet-type expressions, generating

functions, and summation identities, all of which provide analytical insight into their structural features and

behavioral dynamics. Additionally, we investigate matrix representations linked to these sequences, offering

a sophisticated algebraic framework that supports deeper theoretical advancements and opens avenues for

practical applications.
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Keywords. Edouard numbers, Edouard-Lucas numbers, Hyperbolic Edouard numbers, Hyperbolic

Edouard-Lucas numbers.

1. Introduction

In mathematical and geometric contexts, a hypercomplex system denotes a generalized framework that

extends the foundational principles of complex numbers to encompass higher-dimensional algebraic struc-

tures. These systems exhibit intricate algebraic architectures and are actively investigated for their broad

applications across physics and engineering disciplines. In the following section, we offer a succinct overview

of the principal application domains of hypercomplex number systems within the fields of physics and engi-

neering.

Unlike complex numbers, hypercomplex systems offer a more advanced algebraic framework for model-

ing transformations and capturing symmetries in higher dimensional spaces.As observed by Kantor in [20],
1
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2 EMINE ESRA AYRILMA, YÜKSEL SOYKAN

hypercomplex systems may be interpreted as natural extensions of the real number line, furnishing algebraic

structures specifically designed to facilitate analysis in multidimensional contexts. The primary categories

of hypercomplex number systems include complex numbers, hyperbolic numbers, and dual numbers, each

distinguished by its unique algebraic properties and geometric interpretations. Complex numbers, charac-

terized by the combination of a real and an imaginary component, form the foundational basis from which

more intricate hypercomplex systems are developed. Hyperbolic numbers build upon the complex number

framework and are employed in diverse mathematical models, particularly those involving Lorentz trans-

formations and spacetime geometries. Dual numbers, distinguished by the presence of a dual unit whose

square is zero, are instrumental in various algebraic constructions, including automatic differentiation and

kinematic analysis.

The following sections offer more detailed insights into the mathematical properties and application

areas of these hypercomplex systems.

• Complex numbers are constructed by extending the real number system through the introduction

of an imaginary unit, denoted as ”i”, which satisfies the identity i2 = −1. A complex number is

typically expressed in the form z = a + bi, where a and b are real numbers, and i represents the

imaginary unit.

• Hyperbolic numbers also referred to as double numbers or split complex numbers extend the real

number system by introducing a new unit element j, which satisfies the identity j2 = 1 [30]. These

numbers are distinct from real and complex numbers due to their unique algebraic properties. A

hyperbolic number is defined as:

H = {h = a+ jb : a, b ∈ R, j2 = 1, j 6= ±1}.

where a and b are real numbers and j is the hyperbolic unit. This structure enables the modeling of

systems with split-signature metrics and has notable applications in areas such as special relativity

and signal processing.

• Dual numbers [14] expand the real number system through the incorporation of a new element

ε, which satisfies the identity ε2 = 0. This infinitesimal unit distinguishes dual numbers from

other hypercomplex systems and makes them especially valuable in modeling instantaneous rates

of change. A dual number is defined as:

D = {d = a+ εb : a, b ∈ R, ε2 = 0, ε 6= 0}.

where a and b are real numbers, and ε is the nilpotent unit. Dual numbers are commonly used in

applications such as automatic differentiation, kinematics, and perturbation analysis, due to their

ability to elegantly encode infinitesimal variations.
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• Among the non-commutative examples of hypercomplex number systems are quaternions [17].

Quaternions generalize complex numbers by incorporating three distinct imaginary units, typi-

cally denoted as i,j, and k. A quaternion has the form as a0+ ia1+ ja2+ka3, where a0, a1, a2, a3 ∈

R.These multiplication rules result in a non-commutative structure, meaning the order of multipli-

cation affects the result.The set of quaternion numbers is formally defined as:

HQ = {q = a0 + ia1 + ja2 + ka3 : a0, a1, a2, a3 ∈ R, i2 = j2 = k2 = ijk = −1},

• Additional hypercomplex systems include octonions and sedenions, which are discussed in [19] and

[25]. The algebras C (complex numbers), HQ (quaternions), O (octonions), and S (sedenions) are

all constructed as real algebras derived from the real numbers R using a recursive procedure known

as the Cayley—Dickson Process. This technique successively doubles the dimension of each algebra

and continues beyond sedenions to produce what are collectively referred to as the 2n-ions.The

following table highlights selected publications from the literature that investigate the properties

and applications of these extended number systems.

For more information on hypercomplex algebra, see [22,16,24]

Table 1. Papers that have been published in the literature raleted to 2n-ions.

Authors and Title of the paper↓ Papers↓

Biss, D.K., Dugger, D., Isaksen, D.C., Large annihilators in Cayley-Dickson algebras [4]

Hamilton, W.R., Elements of Quaternions [17]

Imaeda, K., Sedenions: algebra and analysis [18]

Moreno, G., The zero divisors of the Cayley-Dickson algebras over the real numbers [23]

Göcen, M., Soykan, Y., Horadam 2k-Ions [15]

Soykan,Y., Tribonacci and Tribonacci-Lucas Sedenions [25]

On higher order Fibonacci hyper complex numbers [21]
A dual hyperbolic number is a type of hypercomplex number, specifically a member of the hyperbolic

number system. A dual hyperbolic number is defined as follows

q = (a0 + ja1) + ε(a2 + ja3) = a0 + ja1 + εa2 + εja3

where a0, a1, a2, a3 ∈ R .

HD, the set of all dual hyperbolic numbers, are generally denoted by

HD = {a0 + ja1 + εa2 + εja3 : a0, a1, a2, a3 ∈ R, j2 = 1, j 6= ±1, ε2 = 0, ε 6= 0}.

The {1, j, ε, εj} is linearly independent, and the algebra HD is generated by their span, i.e. HD =

sp{1, j, ε, εj}

Therefore, {1, j, ε, εj} forms a basis for the dual hyperbolic algebra HD. For more detail, see [1].
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The next properties are holds for the base elements {1, j, ε, εj} of dual hyperbolic numbers (commutative

multiplications):

1.ε = ε, 1.j = j, ε2 = ε.ε = (jε)2 = 0, j2 = j.j = 1

ε.j = j.ε, ε.(εj) = (εj).ε = 0, j(εj) = (εj)j = ε

where ε denotes the pure dual unit (ε2 = 0, ε 6= 0), j denotes the hyperbolic unit (j2 = 1), and εj denotes

the dual hyperbolic unit ((jε)2 = 0).

We claim that p and q be two dual hyperbolic numbers that q = a0 + ja1 + εa2 + jεa3 and p =

b0 + jb1 + εb2 + jεb3 and then we can write the product of p and q as

qp = a0b0 + a1b1 + j(a0b1 + a1b0) + ε(a0b2 + a2b0 + a1b3 + a3b1) + jε(a0b3 + a1b2 + a2b1 + b0a3)

and we can write the sum dual hyperbolic numbers p and q as componentwise.

The dual hyperbolic numbers form a commutative ring, real vector space and an algebra. HD is not

field since every dual hyperbolic numbers doesn’t have an inverse. For more detail about dual hyperbolic

numbers, see [1].

It’s known that many author studied the generalized (r, s, t) sequence. One of these sequences is gener-

alized Edouard numbers. Soykan, [26] defined generalized Edouard numbers. Before we present our original

study , we recall some proporities related to generalized Edouard numbers such as reccurance relations,

Binet’s formula, generating function .

A generalized Edouard sequence , with the initial values W0,W1,W2 not all being zero, {Wn}n≥0 =

{Wn(W0,W1,W2)}n≥0 is defined by the third-order recurrence relations

Wn = 7Wn−1 − 7Wn−2 +Wn−3; W0,W1,W2 (n ≥ 3) (1.1)

Moreover, we define generalized Edouard sequence given to negative subscripts as follows,

W−n = 7W−(n−1) − 7W−(n−2) +W−(n−3)

for n = 1, 2, 3, .... Thus, recurrence (1.1) is true for all integer n.

In the Table 2 we give the first some generalized Edouardnumbers with positive subscript and negative

subscript

Table 2. A few generalized Edouard numbers
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n Wn W−n

0 W0 W0

1 W1 7W0 − 7W1 +W2

2 W2 42W0 − 48W1 + 7W2

3 W0 − 7W1 + 7W2 246W0 − 287W1 + 42W2

4 7W0 − 48W1 + 42W2 1435W0 − 1680W1 + 246W2

5 42W0 − 287W1 + 246W2 8365W0 − 9799W1 + 1435W2

6 246W0 − 1680W1 + 1435W2 48756W0 − 57120W1 + 8365W2

If we obtain,respectively, W0 = 0,W1 = 1,W2 = 7 then{Wn} = {En} is called the Edouard sequence,

W0 = 3,W1 = 7,W2 = 35 then {Wn} = {Kn} is called the Edouard-Lucas sequence. Alternatively, Edouard

sequence {En}n≥0, Edouard-Lucas sequence {Kn}n≥0 are given by the third-order recurrence relations as

En = 7En−1 − 7En−2 + En−3, E0 = 0, E1 = 1, E2 = 7, (1.2)

Kn = 7Kn−1 − 7Kn−2 +Kn−3, K0 = 3,K1 = 7,K2 = 35, (1.3)

The sequences given above can be extended to negative subscripts by defining, respectively,

E−n = 7E−(n−1) − 7E−(n−2) + E−(n−3),

K−n = 7K−(n−1) − 7K−(n−2) +K−(n−3),

for n = 1, 2, 3, ... . As a consequence, recurrences (1.2)-(1.3) hold for all integer n.

We can list some important properties of generalized Edouard numbers that are needed.

Binet formula of generalized Edouard sequence can be calculated using its characteristic equation written

as

x3 − 7x2 + 7x− 1 =
(
x2 − 6x+ 1

)
(x− 1) = 0.

The roots of the characteristic equation are

α = 3 + 2
√
2,

β = 3− 2
√
2,

γ = 1,

By using these roots and the recurrence relation, Binet formula are written below

Wn =
z1α

n

(α− β)(α− γ) +
z2β

n

(β − α)(β − γ) +
z3γ

n

(γ − α)(γ − β)

=
z1α

n

(α− β)(α− γ) +
z2β

n

(β − α)(β − γ) −
z3
4
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where

z1 = W2 − (β + 1)W1 + βW0,

z2 = W2 − (α+ 1)W1 + αW0,

z3 = W2 − 6W1 +W0.

and

A1 =
W2 − (β + 1)W1 + βW0

(α− β)(α− γ) , (1.4)

A2 =
W2 − (α+ 1)W1 + αW0

(β − α)(β − γ) ,

A3 =
W2 − 6W1 +W0

(γ − α)(γ − β) .

Then we present Binet formula of Edouard sequences and Edouard-Lucas sequences, respectively, given

below

En =
αn+1

(α− β)(α− 1) +
βn+1

(β − α)(β − 1) −
1

4
,

Kn = αn + βn + 1.

After then we can write the generating function of generalized Edouard numbers,

∞∑
n=0

Wnx
n =

W0 + (W1 − 7W0)x+ (W2 − 7W1 + 7W0)x
2

1− 7x+ 7x2 − x3 . (1.5)

Next, we give the exponential generating function of
∞∑
n=0

Wn
xn

n! of the sequence Wn.

Lemma 1. [3, Lemma 1.4]. Suppose that fGWn
(x) =

∞∑
n=0

Wn
xn

n! is the exponential generating function

of the generalized Edouard sequence {Wn}. Then

∞∑
n=0

Wn
xn

n!
=
(W2 − (β + 1)W1 + βW0)

(α− β)(α− 1) eαx +
(W2 − (α+ 1)W1 + αW0)

(β − α)(β − 1) eβx − (W2 − 6W1 +W0)

4
ex.

The previous Lemma gives the following results as particular examples.

Corollary 2. Exponential generating function of Edouard and Edouard-Lucas numbers are

a):

∞∑
n=0

En
xn

n!
=

∞∑
n=0

(
αn+1

(α− β)(α− 1) +
βn+1

(β − α)(β − 1) −
1

4
)
xn

n!
=

αeαx

(α− β)(α− 1) +
βeβx

(β − α)(β − 1) −
1

4
ex.

b):
∞∑
n=0

Kn
xn

n!
=

∞∑
n=0

(αn + βn + 1)
xn

n!
= eαx + eβx + ex.
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For more details, see [26].

We now present an overview of specific numerical systems, focusing particularly on the hypercomplex

framework, which encompasses complex numbers, hyperbolic numbers, and dual numbers. It is worth noting

that hyperbolic numbers will serve as a central component of our investigation, providing essential analytical

tools throughout the development of our theoretical framework. Moreover, hyperbolic functions and numbers

find widespread application across numerous engineering disciplines, including electrical engineering (e.g.,

transmission line modeling), control systems (e.g., dynamic system behavior), and signal processing (e.g.,

advanced filter design). They also play a significant role in various domains of engineering physics, such

as special relativity, wave propagation, fluid dynamics, optics, and thermal conduction. It is important to

recognize that, despite the intriguing mathematical characteristics of hyperbolic numbers, their practical

utility is inherently problem-dependent and contingent upon the extent to which they offer computational

or analytical advantages over alternative numerical systems within a given context.

We begin by examining hypercomplex number systems, which serve as extensions of the real number

line. For a more comprehensive discussion, refer to [20]. In addition, several commutative special cases of

hypercomplex number systems such as complex numbers, hyperbolic numbers, and dual numbers are widely

utilized across diverse branches of mathematics and physics. We now proceed to present these number

systems in a sequential manner, as outlined in the following sections.

• Complex numbers simplest form of hypercomplex numbers. Complex numbers defined as z = a+ib,

where a and b real numbers and i imaginary unit that satisfy i2 = −1. In addition that a and b

named, respectively, Re(z) and Im(z) Consequently, the definition of complex numbers given by,

C = {z = a+ ib : a, b ∈ R, i2 = −1}.

• Hyperbolic (double, split-complex) numbers, for more detail see [30], Split-complex numbers, com-

monly recognized as hyperbolic numbers, defined as h = a + jb where a and b real numbers and

j hyperbolic unit that satisfy j2 = 1. In addition that a and b named, respectively, Re(h) and

Hyp(h). Thus, the definition of hyperbolic numbers given by,

H = {h = a+ jb : a, b ∈ R, j2 = 1, j 6= ±1},

• Dual numbers, see [14], defined as d = a + εb where a and b real numbers and ε dual unit that

satisfy ε2 = 0. Furthermore, a and b called, respectively, Re(d) and Du(d). Thus, defination of dual

numbers given by,

D = {d = a+ εb : a, b ∈ R, ε2 = 0, ε 6= 0}.

• A dual hyperbolic number, specifically within the hyperbolic number system, constitutes a distinct

type of hypercomplex number. A dual hyperbolic number is defined by,

q = (a0 + ja1) + ε(a2 + ja3) = a0 + ja1 + εa2 + εja3
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where a0, a1, a2, a3 ∈ R and the set of all dual hyperbolic numbers are defined by

HD = {a0 + ja1 + εa2 + εja3 : a0, a1, a2, a3 ∈ R, j2 = 1, j 6= ±1, ε2 = 0, ε 6= 0}.

The {1, j, ε, εj} is linear independent and HD = sp{1, j, ε, εj} so that {1, j, ε, εj} is a basis of HD. For

more detail see, [1]

The next properties are true for the base elements {1, j, ε, εj} (commutative multiplications):

1.ε = ε, 1.j = j, ε2 = ε.ε = (jε)2 = 0, j2 = j.j = 1

ε.j = j.ε, ε.(εj) = (εj).ε = 0, j(εj) = (εj)j = ε

where ε satisfy the pure dual unit (ε2 = 0, ε 6= 0), j satisfy the hyperbolic unit (j2 = 1), and εj satisfy the

dual hyperbolic unit ((jε)2 = 0).

In addition that the other number sytems are quarternions, octonions and sedenions given below, re-

spectively,

• Quaternion numbers, non-commutative examples of hypercomplex number systems, are a four-

dimensional extension of complex numbers. They are expressed as a0 + ia1 + ja2 + ka3, where

a0, a1, a2, a3 ∈ R, and i, j, and k are the quaternion units that satisfy specific multiplication rules.

For more detail see [17]. Quaternion numbers are defined by

HQ = {q = a0 + ia1 + ja2 + ka3 : a0, a1, a2, a3 ∈ R, i2 = j2 = k2 = ijk = −1},

• Octonions is a set, every element of the set linear combinations of unit octonions {ei : i =

0, 1.2, ..., 7}, doneted as O. Octonions are defined by,

O = {
7∑
i=0

aiei : ai ∈ R, e0ei = eie0 = ei, eiej = −δije0 + εijkek }

where ee = 1, δij is Kroneker delta (equal to 1 if and only if i = j), εijk is anti-symetric tensor. For

more detaıl see [19, 34]

• Sedenions is a set, every element of the set linear combinations of unit sedenions {ei : i =

0, 1.2, ..., 15}, denoted by S. It can be seen from here that ever sedenion can be written as

15∑
i=0

aiei

where ai is real number. For more detail see, [25, 34].

Next we give some proporties on two hyperbolic numbers, h1 = a+ jb and h2 = c+ jd, as
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this is similarly discussed above. just refer



A STUDY ON HYPERBOLIC GENERALIZED EDOUARD NUMBERS 9

h1 + h2 = (a+ b) + j(c+ d),

h1.h2 = (ac+ bd) + j(ad+ bc),

h1 = a− jb
h1
h2

=
(ac− bd) + j(cb− ad)

c2 − d2 ,

h1 = h2 if only if a = c and b = d,

〈h1, h2〉 = (ac+ bd) + j(bc+ ad),

‖h1‖ =
√
|a2 − b2|, called norm of h1,

if
∣∣a2 − b2∣∣ > 0, h1 is named spacelike vector,

if
∣∣a2 − b2∣∣ < 0, h1 is named timelike vector,

if
∣∣a2 − b2∣∣ = 0, h1 is named null(light-like) vector.

Note that{R2, H, 〈, 〉} is called Lorentz plane and denoted as R21. There is an isomorphism relationship

between the Lorentz plane and hyperbolic numbers. For more detail, see [34].

Hence the algebras C (complex numbers), HQ (quaternions), O (octonions) and S (sedenions) are real

algebras attained from the real numbers R by a doubling procedure known as the Cayley-Dickson Process.

This doubling process can be extended beyond the sedenions to form what are known as the 2n-ions (see for

example [4, 17, 18, 23, 15].

Some authors have conducted studies about the dual, hyperbolic, dual hyperbolic and other special

numbers. Now we give some information published papers in litarature.

• Cockle [9] explored hyperbolic numbers with complex coeffi cients, contributing to the early devel-

opment of hypercomplex algebra.

• Eren and Soykan [13] studied the generalized Generalized Woodall Numbers.

• Cheng and Thompson [8] introduced dual numbers with complex coeffi cients, expanding the alge-

braic versatility of dual number systems for applications in polynomial equations and transformation

theory.

• Akar at al [1] introduced the concept of dual hyperbolic numbers, combining characteristics of dual

and hyperbolic systems into a unified algebraic structure.

Next, we present some information on hyperbolic numbers presented in literature.

• Aydın [2] presented hyperbolic Fibonacci numbers given by

F̃n = Fn + hFn+1,

where Fibonacci numbers are given by Fn+2 = Fn+1 + Fn, with the initial conditation F0 = 0, F1 = 1.
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• Soykan and Taşdemir [28] studied hyperbolic generalized Jacobsthal numbers given by

Ṽn = Vn + hVn+1

where generalized Jacobsthal numbers are Vn+2 = Vn+1+2Vn with the initial conditation V0 = a, V1 = b.

• Taş [33] studied hyperbolic Jacobsthal-Lucas sequence written by

HJn = Jn + hJn+1

where Jacobsthal-Lucas numbers given by Jn+2 = Jn+1 + 2Jn with the inintial conditation J0 = 2,

J1 = 1.

• Dikmen and Altınsoy, [11] studied On Third Order Hyperbolic Jacobsthal Numbers given by

Ĵ (3)n = J (3)n + hJ
(3)
n+1,

ĵ(3)n = j(3)n + hj
(3)
n+1

where Jacobsthal numbers, respectively, given by J (3)n = J
(3)
n−1 + J

(3)
n−2 + 2J

(3)
n−3, J

(3)
0 = 0, J

(3)
1 = 1,

J
(3)
2 = 1, j

(3)
n = j

(3)
n−1 + j

(3)
n−2 + 2j

(3)
n−3, j

(3)
0 = 2, j

(3)
1 = 1, j

(3)
2 = 5.

Following this, we provide details on dual hyperbolic sequences as they are presented in literature.

• Soykan at al [27] presented dual hyperbolic generalized Pell numbers given by

V̂n = Vn + jVn+1 + εVn+2 + jεVn+3

where generalized Pell numbers, with the initial values V0, V1 not all being zero, are given by Vn =

2Vn−1 + Vn−2, V0 = a, V1 = b (n ≥ 2).

• Cihan at al [7] studied dual hyperbolic Fibonacci and Lucas numbers given by, respectively,

DHFn = Fn + jFn+1 + εFn+2 + jεFn+3,

DHLn = Ln + jLn+1 + εLn+2 + jεLn+3

where Fibonacci and Lucas numbers, respectively, given by Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1,

Ln = Ln−1 + Ln−2, L0 = 2, L1 = 1.

• Soykan at al [28] studied dual hyperbolic generalized Jacopsthal numbers given by

Ĵn = Jn + jJn+1 + εJn+2 + jεJn+3

where Jn = Jn−1 + 2Jn−2, J0 = a, J1 = b.

• Bród at al [6] studied dual hyperbolic generalized balancing numbers as
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A STUDY ON HYPERBOLIC GENERALIZED EDOUARD NUMBERS 11

DHBn = Bn + jBn+1 + εBn+2 + jεBn+3

where Bn = 6Bn−1 −Bn−2, B0 = 0, B1 = 1.

• Yılmaz and Soykan [36] introduced dual hyperbolic generalized Guglielmo numbers are

T̂0 = T0 + jT1 + εT2 + jεT3

where Tn = 3Tn−1 − 3Tn−2 + Tn−3, T0 = 0, T1 = 1, T2 = 3.

Next section, we define the hyperbolic generalized Edouard numbers and some special properties, gen-

erating function and Binet’s formula , of these numbers.

2. Hyperbolic Generalized Edouard Numbers and their Generating Functions and Binet’s

Formulas

In this section, we define hyperbolic generalized Edouard numbers then using this definition, we present

generating functions and Binet’s formula of hyperbolic generalized Edouard numbers.

We now examine hyperbolic generalized Edouard numbers within the algebra H. The nth such number

is defined as

HWn =Wn + jWn+1 (2.1)

with the initial values HW0, HW1, HW2. (2.1)The hyperbolic Edouard numbers ,which is defined above,

can be written to negative subscripts by defining,

HW−n =W−n + jW−n+1 (2.2)

so identity (2.1) holds for all integers n.

Now, we define some special cases of hyperbolic generalized Edouard numbers. The nth hyperbolic

Edouard numbers, the nth hyperbolic Edouard-Lucas numbers, respectively, are given as the nth hyperbolic

Edouard numbers is given HEn = En + jEn+1, with the initial values

HE0 = E0 + jE1,

HE1 = E1 + jE2,

HE2 = E2 + jE3,

the nth hyperbolic Edouard-Lucas numbers is given HKn = Kn + jKn+1 with the initial values

HK0 = K0 + jK1,

HK1 = K1 + jK2,

HK2 = K2 + jK3,
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12 EMINE ESRA AYRILMA, YÜKSEL SOYKAN

Note that,for hyperbolic Edouard numbers (by using Wn = En, E0 = 0, E1 = 1, E2 = 7) we get

HE0 = j

HE1 = 1 + 7j

HE2 = 7 + 42j,

for hyperbolic Edouard-Lucas numbers (bu using Wn = Kn, K0 = 3, K1 = 7, K2 = 35) we obtain

HK0 = 3 + 7j,

HK1 = 7 + 35j,

HK2 = 35 + 199j.

So, using (2.1), we can write the following identity for non negative integers n,

HWn = 7HWn−1 − 7HWn−2 +HWn−3. (2.3)

and the sequence {HWn}n≥0 can be given as

HW−n = 7HW−(n−1) − 7HW−(n−2) +HW−(n−3),

for n = 1, 2, 3, ... by using (2.2).As a result, recurrence (2.3) holds for all integer n.

Table 3 presents the initial values of the hyperbolic generalized Edouard numbers HWn, showcasing

terms with both positive and negative subscripts for a comprehensive view of the sequence’s symmetric

structure.

Table 3. A few hyperbolic generalized Edouard numbers

n HWn HW−n

0 HW0 HW0

1 HW1 7HW0 − 7HW1 +HW2

2 HW2 42HW0 − 48HW1 + 7HW2

3 HW0 − 7HW1 + 7HW2 246HW0 − 287HW1 + 42HW2

4 7HW0 − 48HW1 + 42HW2 1435HW0 − 1680HW1 + 246HW2

5 42HW0 − 287HW1 + 246HW2 8365HW0 − 9799HW1 + 1435HW2

6 246HW0 − 1680HW1 + 1435HW2 48756HW0 − 57120HW1 + 8365HW2

Note that

HW0 = W0 + jW1,

HW1 = W1 + jW2,

HW2 = W2 + jW3.

A few hyperbolic Edouard numbers, hyperbolic Edouard-Lucas numbers with positive subscript and negative

subscript are given in the following Table 3, Table 4.

UNDER PEER REVIEW
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Table 4. hyperbolic Edouard numbers Table 5. hyperbolic Edouard-Lucas numbers

n HEn HE−n

0 j

1 1 + 7j 0

2 7 + 42j 1

3 42 + 246j 7 + j

4 246 + 1435j 42 + 7j

5 1435 + 8365j 246 + 42j

n HKn HK−n

0 3 + 7j

1 7 + 35j 7 + 3j

2 35 + 199j 35 + 7j

3 199 + 1155j 199 + 35j

4 1155 + 6727j 1155 + 199j

5 6727 + 39203j 6727 + 1155j

Now, we will give some expressions that we will use in the rest of the paper and then we define Binet’s

formula for the hyperbolic generalized Edouard numbers.

α̃ = 1 + jα, (2.4)

β̃ = 1 + jβ, (2.5)

γ̃ = 1 + j. (2.6)

Note that using above equalities we can write the following identities:

α̃2 = 1 + 2αj,

β̃
2
= 1 + 2βj,

γ̃2 = 1 + 2j,

α̃β̃ = 1 + j(α+ β),

α̃γ̃ = 1 + j(α+ γ),

γ̃β̃ = 1 + j(γ + β).

Theorem 3. (Binet’s Formula) For any integer n, the nth hyperbolic generalized Edouard number is

HWn = α̃A1α
n + β̃A2β

n + γ̃A3. (2.7)

where α̃, β̃, γ̃ are given as (2.4),(2.5),(2.6).

Proof. Using Binet’s formula of the generalized Edouard numbers given below

Wn = A1α
n +A2β

n +A3

where A1, A2, A3 are given (1.4) we get

HWn = Wn + jWn+1,

= A1α
n +A2β

n +A3 + (A1α
n+1 +A2β

n+1 +A3)j

= α̃A1α
n + β̃A2β

n + γ̃A3.
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This proves (2.7). �
In particular, for any integer n, the Binet’s Formula of nth hyperbolic Edouard number, Edouard-Lucas

numbers, respectively, provided by

HEn =
α̃αn+1

(α− β)(α− 1) +
β̃βn+1

(β − α)(β − 1) −
γ̃

4
, (2.8)

HKn = α̃αn + β̃βn + γ̃, (2.9)

In the following Theorem, we now derive the generating function for the sequence of hyperbolic gen-

eralized Edouard numbers, providing a compact analytical representation of their structure and recursive

behavior.

Theorem 4. The generating function for the hyperbolic generalized Edouard numbers is

fHW (x) =
HW0 + (HW1 − 7HW0)x+ (HW2 − 7HW1 + 7HW0)x

2

(1− 7x+ 3x2 − x3) . (2.10)

Proof. We assume that fHW (x) is the generating function of the hyperbolic generalized Edouard numbers

and then we can write

fHW (x) =

∞∑
n=0

HWxn

Then, in light of the definition of the hyperbolic generalized Edouard numbers, and substracting 7xg(x) and

−7x2g(x) from x3g(x), we get

(1− 7x+ 7x2 − x3)fHW (x) =

∞∑
n=0

HWxn − 7x
∞∑
n=0

HWxn + 7x2
∞∑
n=0

HWxn − x3
∞∑
n=0

HWxn,

=

∞∑
n=0

HWxn − 7
∞∑
n=0

HWxn+1 + 7

∞∑
n=0

HWxn+2 −
∞∑
n=0

HWxn+3,

=

∞∑
n=0

HWxn − 7
∞∑
n=1

HWxn + 7

∞∑
n=2

HWxn −
∞∑
n=3

HWxn,

= (HW0 +HW1x+HW2x
2)− 7(HWx+HW1x

2) + 7HW0x
2

+

∞∑
n=3

(HWn − 7HWn−1 + 7HWn−2 −HWn−3)x
n,

= HW0 +HW1x+HW2x
2 − 7HW0x− 7HW1x

2 + 7HW0x
2,

= HW0 + (HW1 − 7HW0)x+ (HW2 − 7HW1 + 7HW0)x
2.

Note that , using the recurrence relation Ŵn = 7Ŵn−1 − 7Ŵn−2 + Ŵn−3 and rearranging above equation,

the (2.10) has been obtained. �
Now we can write the generating functions of the hyperbolic Edouard, Edouard-Lucas numbers as

fHEn(x) =
j + x

(1− 7x+ 7x2 − x3) ,

fHKn
(x) =

7j + 3 + (−14j − 14)x+ (3j + 7)x2
(1− 7x+ 7x2 − x3) . �

UNDER PEER REVIEW
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Next, we give the exponential generating function of
∞∑
n=0

HWn
xn

n! of the sequence HWn.

Lemma 5. Suppose that fHWn
(x) =

∞∑
n=0

HWn
xn

n! is the exponential generating function of the hyperbolic

generalized Edouard sequence {HWn}.

Then
∞∑
n=0

HWn
xn

n! is given by

∞∑
n=0

HWn
xn

n!
=

∞∑
n=0

HWn
xn

n!
+ j

∞∑
n=0

HWn+1
xn

n!

=
(W2 − (β + 1)W1 + βW0)

(α− β)(α− 1) eαx +
(W2 − (α+ 1)W1 + αW0)

(β − α)(β − 1) eβx − (W2 − 6W1 +W0)

4
ex

+j(
(W2 − (β + 1)W1 + βW0)α

(α− β)(α− 1) eαx +
(W2 − (α+ 1)W1 + αW0)β

(β − α)(β − 1) eβx − (W2 − 6W1 +W0)

4
ex).

Proof: Note that we have
∞∑
n=0

HWn
xn

n!
=

∞∑
n=0

(HWn + εHWn+1)
xn

n!
.

Then using the Binet’s formula of hiperbolic generalized Edouard numbers or exponential generating function

of the generalized Edouard sequence we get the required identy.

The previous Lemma gives the following results as particular examples.

Corollary 6. Exponential generating function of hyperbolic Edouard and hiperbolic Edouard-Lucas

numbers are

a):
∞∑
n=0

HEn
xn

n!
=

αeαx

(α− β)(α− 1) +
βeβx

(β − α)(β − 1) −
1

4
ex + j(

α2eαx

(α− β)(α− 1) +
β2eβx

(β − α)(β − 1) −
1

4
ex).

b):
∞∑
n=0

HKn
xn

n!
= eαx + eβx + ex + j(αeαx + βeβx + ex).

3. Getting the Binet’s Formula from the generating function.

Next ,by using generating function fHW (x), we investigate Binet formula of {HWn}.

Theorem 7. (Binet formula of hyperbolic generalized Edouard numbers)

HWn = α̃A1α
n + β̃A2β

n + γ̃A3. (3.1)

Proof. Using the
∑∞
n=0HWxn we can write

∞∑
n=0

HWxn =
HW0 + (HW1 − 7HW0)x+ (HW2 − 7HW1 + 7HW0)x

2

(1− 7x+ 7x2 − x3) =
d1

(1− αx) +
d2

(1− βx) +
d3

(1− x) ,

(3.2)
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so that

∞∑
n=0

HWxn =
d1

(1− αx) +
d2

(1− βx) +
d3

(1− x) ,

=
d1(1− x)(1− βx) + d2 (1− αx) (1− x) + d3 (1− αx) (1− βx)

(x2 − 6x+ 1) (1− x) ,

thus, we obtain

HW0+(HW1−7HW0)x+(HW2−7HW1+7HW0)x
2 = d1+d2+d3+(−d2−αd2−βd1−αd3−βd3)x+(αd2+βd1+αβd3)x2.

By equation the coeffi cients of corresponding powers of x in the above equation, we get

HW0 = d1 + d2 + d3, (3.3)

HW1 − 7HW0 = −d2 − αd2 − βd1 − αd3 − βd3,

HW2 − 7HW1 + 7HW0 = αd2 + βd1 + αβd3.

If we solve (3.3) we obtain

d1 =
HW0α

2 + (HW1 − 7HW0)α+ (HW2 − 7HW1 + 7HW0)

(α− β)(α− γ) ,

d2 =
HW0β

2 + (HW1 − 7HW0)β + (HW2 − 7HW1 + 7HW0)

(β − α)(β − γ) ,

d3 =
HW0 + (HW1 − 7HW0) + (HW2 − 7HW1 + 7HW0)

(γ − α)(γ − β) ,

Thus (3.2) can be given as

∞∑
n=0

HWnx
n = d1

∞∑
n=0

αnxn + d2

∞∑
n=0

βnxn + d3

∞∑
n=0

xn,

=
∞∑
n=0

(d1α
n + d2β

n + d3)x
n,

=

∞∑
n=0

(
HW2 − (β + 1)HW1 + βHW0

(α− β)(α− γ) αn +
HW2 − (α+ 1)HW1 + αHW0

(β − α)(β − γ) βn +
HW2 − 6HW1 +HW0

(γ − α)(γ − β) )xn.

Hence, we get

HWn = α̃A1α
n + β̃A2β

n + γ̃A3. �

4. Some Identities

We now introduce distinctive identities pertaining to the sequence {HWn} of hyperbolic generalized

Edouard numbers. The forthcoming theorem introduces a Simpson type formula within this framework,

delineating the structural relationships between consecutive terms of the sequence.
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Theorem 8. (Simpson’s formula for hyperbolic generalized Edouard numbers) For all integers n we

have, ∣∣∣∣∣∣∣∣∣
HWn+2 HWn+1 HWn

HWn+1 HWn HWn−1

HWn HWn−1 HWn−2

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
HW2 HW1 HW0

HW1 HW0 HW−1

HW0 HW−1 HW−2

∣∣∣∣∣∣∣∣∣ . (4.1)

Proof. For the proof, we use mathematical induction on n ≥ 0. For n = 0 identity (4.1) is true. Now we

assume that (4.1) is true for n = k. Hence, the identity given below can be written∣∣∣∣∣∣∣∣∣
HWk+2 HWk+1 HWk

HWk+1 HWk HWk−1

HWk HWk−1 HWk−2

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
HW2 HW1 HW0

HW1 HW0 HW−1

HW0 HW−1 HW−2

∣∣∣∣∣∣∣∣∣ .
For n = k + 1, we obtain∣∣∣∣∣∣∣∣∣

HWk+3 HWk+2 HWk+1

HWk+2 HWk+1 HWk

HWk+1 HWk HWk−1

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
7HWk+2 − 7HWk+1 +HWk HWk+2 HWk+1

7HWk+1 − 7HWk +HWk−1 HWk+1 HWk

7HWk − 7HWk−1 +HWk−2 HWk HWk−1

∣∣∣∣∣∣∣∣∣
= 7

∣∣∣∣∣∣∣∣∣
HWk+2 HWk+2 HWk+1

HWk+1 HWk+1 HWk

HWk HWk HWk−1

∣∣∣∣∣∣∣∣∣− 7
∣∣∣∣∣∣∣∣∣
HWk+1 HWk+2 HWk+1

HWk HWk+1 HWk

HWk−1 HWk HWk−1

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣
HWk HWk+2 HWk+1

HWk−1 HWk+1 HWk

HWk−2 HWk HWk−1

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
HWk+2 HWk+1 HWk

HWk+1 HWk HWk−1

HWk HWk−1 HWk−2

∣∣∣∣∣∣∣∣∣ .
For the case n < 0 the proof has been seen similarly. Thus, the proof is completed. �
From Theorem 4.1 we get following corollary.

Corollary 9.

(a):

∣∣∣∣∣∣∣∣∣
HEn+2 HEn+1 HEn

HEn+1 HEn HEn−1

HEn HEn−1 HEn−2

∣∣∣∣∣∣∣∣∣ = −8(j + 1).

(b):

∣∣∣∣∣∣∣∣∣
HKn+2 HKn+1 HKn

HKn+1 HKn HKn−1

HKn HKn−1 HKn−2

∣∣∣∣∣∣∣∣∣ = 4096(j + 1).
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Theorem 10. Let n and m be integers, En is Edouard numbers, the following identity is true:

HWm+n = Em−1HWn+2 + (Em−3 − 7Em−2)HWn+1 + Em−2HWn. (4.2)

Proof. For n,m > 0 the identity (10) can be proved by mathematical induction on m. If m = 0 we get

HWn = E−1HWn+2 + (E−3 − 7E−2)HWn+1 + E−2HWn

which is true by seeing that E−1 = 0, E−2 = 1, E−3 = 3. We assume that the identity given holds for m = k.

For m = k + 1, we get

HW(k+1)+n = 7HWn+k − 7HWn+k−1 +HWn+k−2

= 7(Ek−1HWn+2 + (Ek−3 − 7Ek−2)HWn+1 + Ek−2HWn)

−7(Tk−2HWn+2 + (Ek−4 − 7Ek−3)HWn+1 + Ek−3HWn)

+(Ek−3HWn+2 + (Ek−5 − 7Ek−4)HWn+1 + Ek−4HWn)

= (7Ek−1 − 7Ek−2 + Ek−3)HWn+2 + ((7Ek−3 − 7Ek−4 + Ek−5)

−7(7Ek−2 − 7Ek−3 + Ek−4))HWn+1 + (7Ek−2 − 7Ek−3 + Ek−4)HWn

= EkHWn+2 + (Ek−2 − 7Ek−1)HWn+1 + Ek−1HWn

= E(k+1)−1HWn+2 + (E(k+1)−3 − 7E(k+1)−2)HWn+1 + E(k+1)−2HWn.

Consequently, by mathematical induction on m, this proves (10). For the other case, the proof can be done

similarly. �

5. Linear Sums

In this section, we give the summation formulas of the hyperbolic generalized Edouard numbers with

subscripts.

Proposition 11. For the generalized Edouard numbers, we have the following formulas:

(a):
∑n
k=0Wk =

1
4 (−(n+ 3)Wn + (n+ 2)(7Wn+1 −Wn+2)− (n+ 1)Wn+1 + 2W2 − 13W1 + 7W0).

(b):
∑n
k=0W2k =

1
32 (−(n+3)W2n+(n+2)(−7W2n+2+48W2n+1− 7W2n)− (n+1)W2n+2+15W2−

96W1 + 49W0).

(c):
∑n
k=0W2k+1 =

1
32 (−(n+ 3)W2n+1 + (n+ 2)(−W2n+2 + 42W2n+1 − 7W2n)− (n+ 1)(7W2n+2 −

7W2n+1 +W2n) + 9W2 − 56W1 + 15W0).

Proof. It is given in Soykan [32, Theorem 3.3]. �
Now, we will give the formulas of the sum of hyperbolic generalized Edouard numbers.

Theorem 12. For n ≥ 0, hyperbolic generalized Edouard numbers have the following formulas:

UNDER PEER REVIEW
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(a):
∑n
k=0HWk =

1
4 (−(n+3)HWn+(n+2)(7HWn+1−HWn+2)−(n+1)HWn+1+2HW2−13HW1+

7HW0).

(b):
∑n
k=0HW2k =

1
32 (−(n+3)HW2n+(n+2)(−7HW2n+2+48HW2n+1−7HW2n)−(n+1)HW2n+2+

15HW2 − 96HW1 + 49HW0).

(c):
∑n
k=0HW2k+1 =

1
32 (−(n + 3)HW2n+1 + (n + 2)(−HW2n+2 + 42HW2n+1 − 7HW2n) − (n +

1)(7HW2n+2 − 7HW2n+1 +HW2n) + 9HW2 − 56HW1 + 15HW0).

Proof.

(a): Note that using (2.1), we get
n∑
k=0

HWk =

n∑
k=0

Wk + j

n∑
k=0

Wk+1

and using Proposition 11 the proof completed.

(b): Note that using (2.1), we get
n∑
k=0

HW2k =

n∑
k=0

W2k + j

n∑
k=0

W2k+1

and using Proposition 11 the proof completed.

(c): Note that using (2.1), we get
n∑
k=0

HW2k+1 =

n∑
k=0

W2k+1 + j

n∑
k=0

W2k+2

and using Proposition 11 the proof completed. �
As a special case of the Theorem 12 (a), we present the following corollary.

Corollary 13.

(a):
∑n
k=0HEk =

1
4 (−(n+ 3)HEn + (n+ 2)(7HEn+1 −HEn+2)− (n+ 1)HEn+1 + 1).

(b):
∑n
k=0HKk =

1
4 (−(n+ 3)HKn + (n+ 2)(7HKn+1 −HKn+2)− (n+ 1)HKn+1 − 8j).

As a special case of the Theorem 12 (b), we present the following corollary.

Corollary 14.

(a):
∑n
k=0HE2k =

1
32 (−(n+3)HE2n+(n+2)(−7HE2n+2+48HE2n+1−7HE2n)−(n+1)HE2n+2+

15(7 + 42j)− 96(1 + 7j) + 49j).

(b):
∑n
k=0HK2k =

1
32 (−(n+3)HK2n+(n+2)(−7HK2n+2+48HK2n+1−7HK2n)−(n+1)HK2n+2+

15(35 + 199j)− 96(7 + 35j) + 49(3 + 7j)).

As a special case of the Theorem 12 (c), we present the following corollary.

Corollary 15.

(a):
∑n
k=0HE2k+1 =

1
32 (−(n + 3)HE2n+1 + (n + 2)(−HE2n+2 + 42HE2n+1 − 7HE2n) − (n +

1)(7HE2n+2 − 7HE2n+1 +HE2n) + j + 7).
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(b):
∑n
k=0HK2k+1 =

1
32 (−(n + 3)HK2n+1 + (n + 2)(−HK2n+2 + 42HK2n+1 − 7HK2n) − (n +

1)(7HK2n+2 − 7HK2n+1 +HK2n) +−64j − 32).

6. Matrices linked to Hyperbolic Generalized Edouard Numbers

In this section of our study, we present several algebraic identities pertaining to matrices associated with

hyperbolic Edouard numbers..By using the {En} which is defined by the third-order recurrence relation as

follows

En = 7En−1 − 7En−2 + En−3

with the initial conditions E0 = 0, E1 = 1, E2 = 7 we present the square matrix A of order 3 as

A =


7 −7 1

1 0 0

0 1 0


such that detA = 1. Then, we give the following Lemma.

Lemma 16. For all integers n the following identity is true


HWn+2

HWn+1

HWn

 =


7 −7 1

1 0 0

0 1 0


n

HW2

HW1

HW0

 . (6.1)

Proof. First, for the proof we assume that n ≥ 0. Lemma 16 can be given by mathematical induction

on n. If n = 0 we get 
HW2

HW1

HW0

 =


7 −7 1

1 0 0

0 1 0


0

HW2

HW1

HW0


which is true. We assume that the identity(6.1) given holds for n = k. Thus the following identity is true.


HWk+2

HWk+1

HWk

 =


7 −7 1

1 0 0

0 1 0


k

HW2

HW1

HW0

 .
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For n = k + 1, we get


7 −7 1

1 0 0

0 1 0


k+1

HW2

HW1

HW0

 =


7 −7 1

1 0 0

0 1 0



7 −7 1

1 0 0

0 1 0


k

HW2

HW1

HW0



=


7 −7 1

1 0 0

0 1 0




HWk+2

HWk+1

HWk



=


7HWk+2 − 7HWk+1 +HWk

HWk+2

HWk+1



=


HWk+3

HWk+2

HWk+1

 .

For the other case n < 0 the proof is easily attainable. Consequently, using mathematical induction on n,

the proof is completed.

Note that

An =


En+1 −7En + En−1 En

En −7En−1 + En−2 En−1

En−1 −7En−2 + En−3 En−2

 .

For the proof see [31].

Theorem 17. If we define the matrices NHW and SHW as follow

NHW =


HW2 HW1 HW0

HW1 HW0 HW−1

HW0 HW−1 HW−2

 ,

SHW =


HWn+2 HWn+1 HWn

HWn+1 HWn HWn−1

HWn HWn−1 HWn−2

 .

then the following identity is true:

AnNHW = SHW .
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Proof. For the proof, we can use the following identities

AnNHW =


En+1 −7En + En−1 En

En −7En−1 + En−2 En−1

En−1 −7En−2 + En−3 En−2




HW2 HW1 HW0

HW1 HW0 HW−1

HW0 HW−1 HW−2

 ,

=


a11 a12 a13

a21 a22 a23

a31 a32 a33


where

a11 = HW2En+1 +HW1 (En−1 − 7En) +HW0En,

a12 = HW1En+1 +HW0 (En−1 − 7En) +HW−1En,

a13 = HW0En+1 +HW−1 (En−1 − 7En) +HW−2En,

a21 = HW2En +HW1 (En−2 − 7En−1) +HW0En−1,

a22 = HW1En +HW0 (En−2 − 7En−1) +HW−1En−1,

a23 = HW0En +HW−1 (En−2 − 7En−1) +HW−2En−1,

a31 = HW2En−1 +HW1 (En−3 − 7En−2) +HW0En−2,

a32 = HW1En−1 +HW0 (En−3 − 7En−2) +HW−1En−2,

a33 = HW0En−1 +HW−1 (En−3 − 7En−2) +HW−2En−2.

Using the Theorem 10 the proof is done. �
From Theorem 17, we have the following corollary.

Corollary 18.

(a): Let the matrices NHE and SHE are defined as the following

NHT =


HE2 HE1 HE0

HE1 HE0 HE−1

HE0 HE−1 HE−2

 ,

SHT =


HEn+2 HEn+1 HEn

HEn+1 HEn HEn−1

HEn HEn−1 HEn−2

 ,

so that the identity given below is true for An, NHE, SHE

AnNHE = SHE ,
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(b): Let the matrices NHK and SHK are defined as the following

NHO =


HK2 HK1 HK0

HK1 HK0 HK−1

HK0 HK−1 HK−2

 ,

SHO =


HKn+2 HKn+1 HKn

HKn+1 HKn HKn−1

HKn HKn−1 HKn−2

 ,

so that the identity given below is true for An, NHK , SHK

AnNHK = SHK .
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