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Abstract
The main objective of this research is to examine the application of cost tables in flexible production systems within intelligent and resilient supply chains. This approach aims to meet customer needs and build loyalty through production flexibility. Flexible systems are designed to handle a wide variety of customer demands and rapid changes in requirements, driven by evolving product designs and preferences. This variability has increased the need for early cost prediction, raising issues of cost accuracy and product suitability. The Japanese concept of multivariate cost tables emerged to address this need, particularly in industrial settings. These models account for dynamic product technology changes to satisfy diverse demands from both customers and competitors. Considering flexible, resilient, and intelligent supply chains expands the model’s variables to adapt to continuous customer changes, necessitating cooperative mechanisms—such as collations and game theory applications—rather than purely competitive approaches. The model supports flexible manufacturing, delivery, and after-sale
 service within a closed-loop supply chain. Examples validate the model’s credibility and adaptability to other issues. Flexibility reflects competitive interactions among supply chain partners, where external influences and intersecting utilities prompt bargaining and conflict. Search theory is proposed to resolve extended debates and disruptions, aiming to enhance customer value.
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Introduction and Research Objective
Flexible production systems are designed to handle changes in consumer desires and meet their needs in real time. This requires cost accounting and project management to respond to ongoing changes, estimate costs before design, and determine appropriate pricing to retain customers (Shim et al., 1992). These systems must predict costs for products with new specifications and adapt behavior to evolving consumer patterns. As a result, maintaining multiple cost estimates or databases—referred to as cost tables or reports—has become essential.

Widely used in Japanese firms (Chenge, 2024), cost tables have outperformed traditional Western methods, which calculate costs post-production. This advantage enabled Japanese firms to implement advanced concepts like target costing, value engineering, and flexible production, ultimately allowing real-time pricing based on customer-defined specifications (Infani et al., 2023). As noted by Chenge (2024), cost tables integrate accountants into the design process from the early planning stages.

The research seeks to establish cost databases to optimize resource use in flexible production by leveraging up-to-date cost data. This supports "Design to Cost," where cost estimation precedes design, helping reduce costs and adapt to consumer demand shifts (Hasan et al., 2023). After estimating costs, design experiments are conducted to align with consumer needs within set cost limits. Ultimately, the goal is to develop a model that guides optimal decision-making amid continuous changes in consumer preferences, while promoting cost reduction and ongoing improvement.

Credibility and Limitations of the Research
This research highlights the significance of adopting a cost database approach long used in Japanese firms but largely overlooked in Western and developing Arab projects. In light of global trade agreements like GATT
 and the need for continuous development, adopting proven methods becomes essential. The cost database method enables advance cost estimation, helping shape cost policies, classifications, and predictions based on product features (Kaplan et al., 1998). This approach supports flexible production and the ability to meet evolving consumer demands, requiring not only production flexibility but also cost flexibility.

Immediate cost determination, in response to product changes, allows firms to adjust cost figures quickly and reflect shifts in the cost element mix due to product redesigns (Pumiviset & Muttanachal, 2024). The key benefit of cost databases lies in their internal structure, which maps relationships between specific costs and product characteristics, enabling decision-makers to access real-time cost data before product design begins. This capability supports quick and objective responses to customer requests, especially regarding additional orders, as emphasized by El-Gibaly (2024). While the research does not cover database design and organizational data flow, it focuses on how the cost database concept supports the goals of flexible production systems.

Research Plan
The study is organized into four key sections: (1) requirements for applying flexible production systems and intelligent supply chains; (2) considerations for applying the cost database approach; (3) formation of the proposed model for formulating interconnected relationships using cost data to support flexible production; and (4) a summary with recommendations.

1. Requirements for Applying Flexible Production Systems
Flexible production systems allow for the manufacture of multiple products on the same production and assembly lines. They rely on computer systems to schedule production and retrieve necessary design models or sub-components when production requirements shift (Ali et al., 2017). This capability stems from full integration with computers—known as Computer Integrated Manufacturing—where every part of the factory is connected (Bahrami & Saeed, 2024).

These systems reduce reliance on direct human intervention. Changes in production requirements are managed electronically through computers and robotics, which can automatically modify components, spare parts, or machine settings to produce customized products (Bodendorf et al., 2021). However, such adaptability requires pre-established cost data to inform customers of costs in advance. Therefore, using a cost database is essential, storing a range of estimated costs to suit various production forms or specifications (Fatima et al., 2021; Gadimi, 2023).

Flexible production systems incorporate computer-aided design (CAD), computer-aided manufacturing (CAM), and CNC machines. This allows production to shift from large inventories toward customer-driven orders and small batch production, minimizing setup time and breakdown costs (Lui et al., 2023). Flexibility supports the development of small, responsive production projects located near markets, facilitating just-in-time delivery (Nagafi et al., 2024).

The flexible production system combines elements from high-production systems (continuous flow) with digital control found in intermittent systems. It includes numerically controlled machines, automated inspection and assembly stations, and robots—all connected via automated material handling systems and monitored by a central computer (Syan et al., 1991; Tukamuhabwa, 2017; Trapero et al., 2023).

Key Characteristics of Flexible Production Firms
1. Integration of multiple computer-based production units.

2. Production in small to medium-sized customer orders (Yili et al., 2023).

3. Use of digital control machines, material handling systems, and internal communication systems to coordinate production operations.

4. Homogeneity in internal parts to facilitate quick reconfiguration.

5. Factory layout optimized for automated movement of materials and machine parts.

6. Efficient internal communications to support rapid information flow.

7. Implementation of zero-defect policies.

8. Minimal inventory in line with just-in-time practices.

9. Integrated production cells that allow for immediate design changes upon order receipt.

10. Automated delivery systems for materials and parts.

11. Use of automatic storage, retrieval, and inspection (Bennett et al., 1987; Isik et al., 2023).

12. Adoption of “Design to Cost” strategies, where cost is determined first and design follows. This approach requires determining the cost number in advance and aligning it with the functional characteristics desired by the client (Saenz, 2017).

In this approach, the client receives the relevant cost as soon as they specify the product’s features—retrieved from the database. This enhances managerial flexibility and enables clients to reconsider choices based on cost. It supports the use of cost databases in flexible production, especially within the context of design-to-cost strategies. Therefore, just as production methods must be flexible; cost estimation must also accommodate changes in customer preferences. This involves modifying pre-design cost estimates in response to evolving demands and ensuring the database categorizes cost data according to specific product characteristics (Akillioglu et al., 2015; Saenz et al., 2017; Khan, 2024).

2. Considerations for Applying the Japanese Cost Database Approach (Cost Tables)
2.1 The role of the cost database approach in achieving considerations of continuous improvement
The concept of using cost databases as an effective tool emerged prominently in Japanese companies, supporting detailed cost data at all stages—design, planning, estimation, and performance evaluation. Within this framework, the cost accountant became an integral member of the product design team, especially when applying design-to-cost concepts and cost-reduction methods across the product’s life cycle. Their role, based on analytical cost data, is essential in estimating target costs before design formulation. This dual-purpose approach ensures that (1) the design stays within predetermined cost limits, and (2) the product maintains its required technical quality and consumer-focused specifications.

A cost database is essentially a structured file of summarized cost data used for quick, accurate estimates (Isik et al., 2023). However, beyond basic estimation, its value lies in flexibility—it enables immediate and adaptable estimations based on dynamic production and market conditions. This capability supports feasibility analysis for launching new products, helping to define optimal product forms that balance low cost and high quality.

Furthermore, cost databases assist in broader decision-making: identifying suitable production techniques, pricing, and even assessing demand elasticity. They also inform capital investment policies, which directly impact current and future product costs. These databases are typically categorized by product life cycle stage: (1) design, (2) post-design/production, (3) raw material procurement, and (4) distribution—each interconnected.

In the marketing domain, the marketing database predicts cost elements across various sales branches or channels, identifies most profitable products, and suggests optimal marketing strategies tailored to project conditions.

In summary, the integration and interaction between these database components allow for achieving the primary objective of cost database systems: supporting efficient, responsive, and cost-effective product design and delivery.

2.2 Approaches of preparing the Japanese cost database
2.2.1 Bottom-Up Approach
This approach is particularly effective in stable production environments where new designs or product developments are introduced. It is characterized by a wealth of available information—on both current costs and development alternatives—which requires proper organization to support accurate cost estimations for future enhancements.

The bottom-up method (hierarchical cost form) begins with collecting primary production elements, then moves upward through design and ends with the management cost database. This starts by estimating initial costs, followed by costs related to conversion, management, and marketing, which is logical when updating existing products in response to evolving customer needs and flexibility demands.

Sub-databases or cost files can be structured as follows:

· Direct Materials Database
This file includes detailed data on quantities and prices of materials. Quantity data should reflect errors in measurement, allowances for loss, start-up test waste, and specification violations. This analysis suits flexible production systems that operate on low-volume orders and frequent change. Additionally, the database should cover price-sensitive elements such as shipping, insurance, internal procurement expenses (e.g., contract writing, purchase orders, handling, inspections, and storage). These elements, previously considered indirect, are now traceable and directly chargeable, thus reducing indirect costs and simplifying cost procedures in modern firms (El-Gibaly, 2024b).

· Conversion Cost Database
This includes data on direct labor and machine usage costs. For consumption-related costs, the database contains rates for energy use (e.g., electricity, contracts). Wages should now encompass both direct and indirect labor, reflecting their modern distribution. Appropriate cost drivers must be used to calculate energy-related allocation rates.

· Research, Development, and Design Cost Database
This database stores data for initial designs, testing, and validation of new products. Though it draws from existing product data—simplifying preparation—relationships must be established between the old and new products. It is crucial for achieving design-to-cost goals, requiring various cost estimates aligned with customer preferences.

· Administrative Costs Database
Covers all remaining indirect cost elements not included in previous databases. Allocation rates should now reflect modern cost drivers rather than traditional ones like direct labor hours. New bases include the frequency of material handling, purchase order issuance, etc., based on the activity and cost item nature.

The classification and structuring of cost databases in this manner helps companies manage the complexity and variability of flexible production systems. Each cost file not only supports real-time decisions but also enables continuous improvements in the cost estimation process.

A major advantage of this bottom-up approach is its alignment with actual production flows, starting from the material input stage and moving up to the design and managerial decisions. This logical sequencing reflects the real operational dynamics of firms aiming to enhance production without incurring excessive or uncontrolled costs.

The direct materials database, in particular, becomes a central tool for analyzing the sensitivity of raw material variables and for forecasting the impact of deviations—such as yield losses or test batch waste—on cost structures. This aligns with the unpredictable, low-volume nature of flexible production, where such deviations are more common.

Moreover, the emphasis on internal cost elements—like material handling and inspection—represents a shift toward more accurate cost tracing, transforming previously “hidden” indirect costs into transparent and controllable expenses. This facilitates modern cost accounting practices that better suit advanced manufacturing systems (El-Gibaly, 2024b).

In terms of conversion costs, integrating machine usage data, energy consumption, and indirect labor costs reflects the reality that direct labor is no longer the primary cost driver. The system must accommodate a variety of activity-based cost drivers, ensuring more precise allocations.

When it comes to design and R&D cost databases, their strategic importance lies in allowing businesses to create cost-feasible product concepts before production even begins. By using archived cost information from existing products, the system enables comparative evaluations, allowing designers to tweak specifications until the cost-performance balance is optimized.

Finally, the administrative costs database ensures that firms account for all residual overhead in a methodical way. Unlike older systems that depended on arbitrary allocations, the modern approach bases allocation on the actual drivers of overhead activities, such as transaction volume or order frequency.

Through this structured and interconnected database framework, organizations can integrate cost considerations across all stages of the product life cycle—from design to delivery—enabling more responsive and cost-efficient operations. This harmonization of data across sub-databases supports better decision-making and strengthens the overall effectiveness of the cost system.

2.2.2 Top - Down Approach

In the case of new products—where prior experience is lacking and collaborative effort is needed to estimate costs—the top-down approach is commonly used in preparing the cost database. This method begins with collecting the proposed design characteristics and engaging in discussions with those responsible for cost estimation and potential modifications. The outcome supports estimating the expected costs of these new products. Given the novelty of such products, the cost database is typically organized either by product type or based on functional characteristics.

2.2.3 Preparing databases based on the physical units of production and their quality Physical Products
When designing a cost database based on products, it's essential to define specific characteristics or standards for classifying products. This classification supports determining the expected cost according to each product type or characteristic, enabling efficient access to cost data relevant to consumer preferences that change frequently. Product cost is determined by aggregating the costs of its inherent characteristics and components, often through iterative trials aimed at aligning the design within a target cost.

Such databases can also help identify non-essential features, making it easier to revise cost estimates when customer preferences shift. Changes in demand typically lead to rearranging or modifying product components, which is manageable through a structured database that stores cost elements based on characteristics. This structure allows random and fast access to cost data, ensuring quick updates and new cost estimates for modified orders.

2.2.4 Preparing databases according to functional characteristics 
Accordingly, cost database preparation aims to establish a link between a product’s functional characteristics and its actual cost. This method supports functional flexibility, allowing for easy identification of cost changes resulting from modifications in product components or qualities. Such flexibility facilitates incremental cost analysis for new products based on either theoretical or actual values of functional characteristics.

When theoretical values are used, they rely on measurable, stable relationships between a product’s characteristics and its cost, which can be mathematically modeled. However, when such stability is lacking, actual values are preferred. In this case, products must be classified based on functional traits, components, and production processes (Song et al., 2024). Analytical methods like simple or multiple regression and variance analysis are commonly used to model these relationships and enhance cost estimate accuracy.

The benefits of preparing cost databases based on functional characteristics include:

1. Ease of sensitivity analysis to understand cost responsiveness to characteristic changes—critical for product development and flexibility.

2. Efficient estimation of design and planning costs, aiding in selecting optimal designs that meet customer needs at minimal cost, enabling faster contract finalization.

3. Enhanced usability of cost estimates by all project stakeholders for goal alignment.

4. Easy updates of databases, especially under intelligent/resilient supply chains (Xintao et al., 2022; Yan et al., 2023; Yili et al., 2023).

5. Integration with CAD systems, which streamlines design and product development aligned with customer needs and supports flexible production systems.

6. Simplified change management within intelligent supply chains. Real-time digital access empowers all success partners to act quickly, promoting adaptability to consumer demand shifts and sustaining customer loyalty—a central objective of modern business models.

This approach answers a critical question in flexible production: How sensitive is product cost to sudden changes in required specifications or characteristics? It also assesses whether such changes remain within the cost limits initially set for the design—emphasizing the importance of functional cost modeling in dynamic production environments.
3. A proposed model for designing cost databases, to meet the needs of flexible production firms, and intelligent/ resilient supply chain
3.1 The most important assumptions of the model
In this section, we derive the key assumptions underpinning the proposed cost model, aligned with the nature of flexible production systems, where variability in quality and product characteristics is continuous. The goal is to develop a model that facilitates rapid, decision-supportive data access suitable for dynamic operating environments. It is based on anticipating and preparing cost estimates for expected production mixes, enabling cost and price determination to match potential changes in demand, order specifications, and product attributes. As flexible production necessitates continuous redesigns, the model must support cost adaptability and ongoing improvement (Abdian et al., 2022; El-Gibaly, 2022; Rena, 2024).

Key Assumptions for Model Formulation:

1. Alternative Operations & Machines: Each process may be executed by different machines or through alternate operations—critical to ensuring flexibility.

2. Non-Simultaneous Order Processing: Orders are assumed to arrive at different times to simplify the model and reduce data bottlenecks. While not entirely realistic, this assumption eases formulation and may be relaxed in future versions.

3. Availability of Production Parts: It’s assumed that all production components are available on time, supported by intelligent and resilient supply chains. These systems, equipped with digital responsiveness, enable real-time tracking of demand shifts, timely access to production factors, and support stable operations. However, this assumption is optimistic, especially regarding raw materials, where firms often avoid high inventory. It is more realistic for technical parts and control systems rather than core raw materials.

4. Process Times are Known: The duration for executing each production step is precisely known.

5. Machine Allocation: There is one (or a defined group) of machines for each process type. This can be adapted for multifunctional machines.

6. Machine Exclusivity: A machine performs only one process at a time, though exceptions may apply to versatile machines.

7. Process Completion Requirement: A specific process must be completed once started—highlighting a shift in planning from unit-level to order-level scheduling (e.g., using "work orders").

8. Zero Transfer Time between Machines: Movement time between operations is assumed to be negligible. Systems like JIT and Agile production support this by minimizing idle or non-production time and emphasizing functional production cells, where machines are arranged contiguously to enhance operational flow.

These assumptions, while occasionally optimistic, help build a theoretical model that reflects the desired responsiveness and integration in flexible production contexts. The section concludes with a reference to the upcoming mathematical formulation, where symbols and technical terms will be introduced.

i: refers to the machines used, where i = 1,2, ....., m

j: refers to the parts and components of the product, where j = 1,2, ....., n

p: refers to the operations or operation plan for using j where p = 1, 2, ..... Pj

K: refers to the operations of each of (j , p ), where K = 1, 2, ....., K( j , p )

  where :  
1 if part j is produced using plan  p  

           Zjp =                                                                                                           

                                          O otherwise                                       
Yik (j, p): is a dummy variable indicating the possibility of executing operation K on machine i, where:                 
    1 if operation K for ( j , p ) combinations is performed on machine i 

         Yik (j , p ) =                                                                                                                                                               O otherwise                                                                                              
ptik: is the operating time required to execute operation K on machine i

aik: is a dummy variable indicating the possibility of machine i executing operation K where:
                                1 if machine i can perform operation K           


aik =                                                                                                          

                                    0 otherwise                                                                                  
bk (j,p) is a dummy variable that indicates the extent of the need to implement process K and the extent of its necessity to implement the mixture (j, p), where:
                                    1 if operation K to be performed for the (j , p ) combination

bk ( j , p ) =                                                                                                                                 

                                   0 otherwise                
Xik (r, p') il (s, p''): is a dummy variable indicating the possibility of executing operation K for the operating mixture (r, p') on machine i, which precedes operation l to produce the operating mixture (s, p'') on machine i, where:
                                                  1 if operation K for (r, p') combination on 
                                                        machine i precedes operation l for (s, p'')       
                                                        combination on machine i

Xik ( r , p') il ( s , p'') = 

                                        0 otherwise
                     r = s

fik ( j , p ) : is the time required to create the operational mixture ( j , p ) for the operation K on the machine i .

fh (k+1) ( j , p ) : is the time required to complete the operation ( k + 1) for the operational mixture ( j , p ) on the machine i .

R: is the longest time to complete the last operation of the operational command or what can be called the Critical Path.
M: is a large positive value.
The model is framed as a cost-reduction function that determines the optimal lowest cost aligning with consumer expectations, a critical consideration in flexible production systems to support customer-focused decision-making, as follows:
Mini. R   

Subject to:

fh(k+1) (j , p ) - ptk(k + 1) + M(1-ah(k+1) yh (k + 1)) ( j , p ) > fik ( j , p );       
(1) 

fik ( r , p') - fi (s , p'') + MXik (r , p') il ( i , p'') > ptik (r , p') Yik (r , p');           (2)

fil (s , p'') - fik ( r , p') + M ( 1 - Xik (r , p')il (s , p'') > ptil (s , p'') Yil (s , p''));  (3) 

fil (j , p ) > ptil ( j , p ) Yil ( j , p );                                                                            (4)

S  Zjp = 1;                                                                                                                   (5)

S  aik Yik ( j , p ) = bk ( j , p ) Zjp;                                                                           (6)

fik ( j , p ) < R                                                                                                             (7)

The model emphasizes that achieving continuous improvement in flexible production projects involves reducing the time required for the longest operation in a production order. This leads to savings in operating costs and supports prompt delivery. The model also captures the dynamic overlap between varying production conditions driven by changing consumer needs. As a result, the cost information drawn from the database is both immediate and aligned with the project's consumer-focused goals, reflecting the minimum cost desired by the customer. Although reducing delivery time is easier in standardized production, it becomes more complex in flexible systems where constant change prevails. Therefore, while time reduction is a key strategy for cutting costs, achieving comprehensive cost reduction—especially in technologically advanced settings—requires addressing additional, harder-to-measure factors (El-Gibaly, 2022). The model incorporates dummy variables, such as Zjp, which equals 1 when part j is produced under plan p, and 0 otherwise.

The dummy variable Yik (j, p) takes the value 1 if operation K of production mix (j, p) is executed on machine i; otherwise, 0.
The dummy variable aik equals 1 if machine i is used for operation K; otherwise, 0.
The dummy variable bk(j, p) takes the value 1 if operation K is executable for mix (j, p); otherwise, 0.
The dummy variable Xik(r, p′) il(s, p″) takes the value 1 if operation K of mix (r, p′) on machine i precedes operation l of mix (s, p″) on the same machine; otherwise, 0.

The use of multiple dummy variables ensures modeling flexibility and responsiveness to changing consumer preferences and operational configurations. This reflects the model's adaptive, dynamic nature, supporting real-time cost data access and immediate decision-making.

Referring to the Binary Integer Programming Model and its constraints, we observe:

1. The first constraint ensures that operation (k+1) on machine i for part j of mix (j, p) start only after operation K completes, enforcing the execution sequence.
2. The second constraint prohibits simultaneous execution of multiple processes on the same machine, reinforcing sequential processing and independent task performance. This calls for structured and classified cost data aligned with process sequences to allow quick, random data access.
3. The third constraint ensures that completion time exceeds or equals operation time, preventing overlap and allowing orderly task progression. This also necessitates arranging cost data based on access probability and process timing.
4. The fourth constraint ensures machines not used for a task have zero operation and completion time. This avoids model application errors and supports reallocation of unused machines, enhancing operational and cost efficiency.
5. Constraint 5 dictates that each operation must be executed on exactly one of the available machines, maintaining machine-task specificity.
6. Constraint 6 ensures the final operation ends within a critical time R, which represents the maximum allowed duration and is crucial to reducing total cost.

Logendran et al. (1997), El-Gibaly (2022), and Gazori (2022) applied the Tabu Search method for solving similar optimization problems. This method facilitates sequential solution development, experimentation, and evaluation, making it ideal for flexible and dynamic production environments like the one proposed.

The model supports continuous testing and data analysis across different production scenarios, aiming to find the most cost-effective solutions under varying consumer demands. It aligns with the goals of flexibility, real-time cost optimization, and competitive advantage through timely, informed decision-making.

3.2 Model Solving Procedures
· The discussed problem includes two processing levels:

· First, each production part can follow multiple operating plans.

· Second, each operation in a selected plan may be performed by alternative machines.

· Tabu Search aids in resolving both levels.

· External search helps select the most suitable operating plan.

· The internal search supports selecting the best machine for executing the chosen plan. Both search processes operate within the problem’s constraints, avoiding any deviation.

· Best solutions emerge from combining the selected plan with optimal machines, offering valuable insights on cost under changing consumer needs.
· The solution process follows a cyclical search pattern:

· Starts with external search for an operating plan.

· Followed by internal search for suitable machines.

· Iterates between external and internal searches (representing a form of game between both of them) , enhancing the solution gradually.

· Continues until external-internal integration leads to a global optimum.

· A stopping  point (of the game) is essential to identify the best possible solution.

· The number of operations, machines, and parts affects search length.

· To avoid excessive or unproductive searches, a stopping criterion is proposed:
when repeated internal moves yield no improved solution.

· The model includes continuous evaluation of solution quality during each cycle.

· However, emerging variables may necessitate further exploration, showcasing the model's flexibility and adaptability to the research problem.

· The threshold for unproductive moves is linked to:

· The number of parts,

· Proposed operations,

· Available machine alternatives.

· The larger the problem, the greater the likelihood of redundant moves, requiring a formula to limit non-improving iterations.

Rajamani et al (1990), El-Gibaly,(2022),  Abedian et al (2022), Rena (2024), have presented the number of  iterations without improvement as:

 = int { ((Oij ) * M * N / S                          Pj   reduct. fact.
Where:

n: Total number of parts.

Pj: Total number of operating plans.

Oij: Total number of operations to be performed on part i according to operating plan j.

M: Types of machines available for use in the operating operations in each operating plan of a specific production order.

According to the model, the reduction factor was assumed to be 4, though in some cases, it ranged between 2 to 3, depending on the stability of application conditions (Logendran et al., 1997; Polyviou, 2020).

As for the external search movements aimed at selecting the best operating plan, they are determined based on the number of alternative plans minus 1, where 1 refers to the initial plan selected. This is expressed using the following relationship:
(Logendran et al., 1997; Rena, 2024).
The maximum number of possible iterations = [  S  ( Pj - 1 )  / 2 ]

In addition to the above, to stop further external searching, the number of iterations that did not lead to improving the solution is used as a suitable means and guiding tool to stop further searching, and as was previously followed in the internal search, this is determined according to the following relationship:

Int { Σ  Pj * K  / reduction factor  *n }
Where n is the total number of machines and is inversely proportional to the number of non-improving changes in the solution.

· Based on this, the following numerical assumptions are made to clarify the model application:

· Assume a number of production machines (M) and production plans (n), where each plan j has a production capacity Cj.
· The demand for the products of machine (i), or the production plan, is treated as an independent random variable, normally distributed with mean 0 and variance 64.
· There are four machines and three production plans implemented on them.

As shown in Figure (1), the mean and standard deviation of demand for the four machines are specified (El-Gialy, 2022).
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                     Figure (1): The mean and the standard deviation of the four machines 

By applying the following additional relations:  
Π (M) = P r (a < max. (o, a + b)

            = Pr (o < max. (- a, b)

            = Pr (o > a) Pr (o < b)

Table (1): The simulation model to indicate the kinetic relationship between three production plans and four machines

	 π (M*)
	Production
	Classification

	0.436
0.282
0.220
0.0087
--
	426

443

451

458

459
	Basis

Added communication (A) - 2)
Added communication (A) - 2), (J - 3)
Added (A) - 2), (J - 3), (d) - 1)
Communication complete and flexibility complete favorable to choose not limited between plans and machines


From the previous table, π(M) values were derived for each contact or search scenario. An initial π(M*) of 0.436 signaled potential unmet demand for machines A and B, especially when production plans 2 and 3 were scaled. This supported expanding these plans and increasing their use. Simulation analysis indicated that machine "A" was more optimal when executing plans 2 or 3, allowing for additional links between plans and machine groups.

After adding three contacts, π(M*) dropped to 0.0087, highlighting a significant reduction in the value of further searches. This demonstrates the importance of the tabular search method in identifying when additional searches become unproductive—marking a logical stopping point. The table was enhanced to include expected production quantities per added search attempt, illustrating that infinite searches lead to diminishing returns. This confirms the need to impose search limits and monitor stability periods in selected solutions.

The model emphasized mobility and adaptability over static positioning, a limitation in previous models of flexible production systems. The tabular search method, when combined with simulation analysis, provides a practical framework for restructuring cost databases using random linkages between cost records. This supports achieving low-cost design with high flexibility, especially in response to shifting customer demands.

The researcher applied standard assumptions about aligning production plans with machine capacities and adapted the tabular method to suit flexible project environments. A selection mechanism based on simulation was added, incorporating considerations for bottlenecks and peak loads, particularly when the number of plans is fewer than available machine groups. Through extended testing, it was found that after three connections, π(M*) reached the minimal value of 0.0087, indicating the ideal halt point for the search process.

This result offers a valuable contribution: identifying the lowest achievable cost point and determining the moment when further search becomes inefficient. It also establishes the fastest and most accurate way to design cost databases that balance cost minimization with system responsiveness.

While this application ends here, the model clearly holds promise for broader use in solving complex, multi-stage decision problems. It is well-suited for cases involving asymmetry between production plans and machine groups, or bottleneck scenarios, making it particularly relevant for flexible production environments. Future research is encouraged to explore these applications further.

3.3 Features and Creditability of the Proposed Model

After analyzing the previous model and approaches to halting further research—whether by tabular methodology or theoretical search logic—the proposed model demonstrates distinct features that add scientific value and applicability in quantitative research as:

1. Dynamism and Flexibility: The model adapts to flexible production systems, responding to frequent changes in consumer preferences.

2. Ease of Cost Database Use: It enables rapid application and optimization of solutions to achieve the lowest cost, utilizing interrelations among cost files.

3. Proven Scientific Validity: Successfully applied in various problem contexts similar to the current research, confirming its robustness.

4. Use of Dummy Variables: Reflects randomness in consumer behavior and operational variability, enhancing realism in modeling.

5. Effective for Mixed Optimization Problems: Supports sequential development of solutions from different combinations of machines, processes, and plans, guided by iterative evaluation.

6. Responsive to Variable Orders: Facilitates flexible responses to changing production requirements and customer-specific orders.

7. Stage-Based Testing and Evaluation: Each phase includes validation, ensuring final solutions are acceptable and stable for all parties.

8. Expandable to Real-World Complexity: With further development, it could address multiple simultaneous orders and fit into evolving supply chain frameworks—competitive, intelligent, or resilient—as discussed by Rajesh and Ravi (2015), Rajesh (2017), Sharma et al. (2020), Sawyerr and Harrison (2020), Sinar et al. (2022), Kolti et al. (2022), Kepisto et al. (2022), Lerman et al. (2022), Nikookar et al. (2024), Xintao et al. (2022), Yan et al. (2023).

9. Integrated vs. Independent Solutions: The model promotes knowledge flow and integration among database files—sequential or random—enabling comprehensive decision-making.

10. Production Cell-Based Classification: Suggests classifying cost files by production cell function, not cost elements, to allow easier costing of multiple orders and reflect operational realities.

11. Supports Continuous Improvement: Facilitates cost reduction by enabling movement across different operational paths and identifying optimal plans.

12. Includes Sensory and Unmeasurable Variables: Through dummy variables, the model accounts for non-quantified factors influencing cost optimization and performance development.

13. Targeted Cost Design: Helps define cost ranges through quick simulations and measurement, leading to stable and realistic cost determinations aligned with varying customer demands.
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