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ABSTRACT 
Assembly time estimation is a critical aspect of manufacturing that directly impacts cost control, 
productivity, and delivery performance. Conventional estimation methods, relying on expert 
heuristics 
or fixed parametric models, often fall short in capturing the complexities of modern product designs. 
This study proposes a data-driven approach using machine learning (ML) algorithms—specifically 
linear regression, decision tree, and random forest models—to predict assembly time based on key 
design parameters, including part count, joining methods, tolerances, and complexity indices. A 
combination of simulated and real-world datasets sourced from Kaggle.com was used for training 
and 
validation. Results indicate that ML models, particularly random forest regressors, significantly 
outperform traditional methods in predictive accuracy. Feature importance analysis highlights part 
count 
and design complexity as major contributors to assembly time. The proposed approach offers a 
scalable, accurate, and adaptable solution to enhance DFMA (Design for Manufacturing and 
Assembly) 
practices and support manufacturing process optimization. 
The above data file driven from Kaggle.com.



1. INTRODUCTION 

 

In the fiercely competitive landscape of modern manufacturing, accurately predicting assembly time is 
paramount for optimizing production planning and effectively controlling costs. The methodology of 
Design for Manufacturing and Assembly (DFMA) aims to streamline manufacturing complexity by 
influencing design decisions at the nascent stages of product development. However, a significant 
limitation of existing DFMA tools is their inability to leverage historical and real-time data for predictive 
capabilities. This gap hinders their effectiveness in providing truly dynamic and precise forecasts for 
assembly processes. 

The rapid advancements in computational power, coupled with the increasing availability of vast 
datasets, have propelled machine learning to the forefront as a potent tool for predictive modeling within 
the manufacturing domain. Machine learning algorithms possess the inherent capability to identify 
intricate patterns and relationships within complex data, which can be invaluable for understanding the 
nuanced factors influencing assembly time. This study specifically delves into exploring machine 
learning-based approaches to model the intricate relationship between various design attributes and 
the corresponding assembly time. By doing so, the research aims to overcome the current limitations 
of DFMA tools. The objective is to provide predictions that are not only more accurate and reliable but 
also inherently scalable to different product complexities and adaptable to evolving manufacturing 
environments. This approach promises to revolutionize how assembly times are estimated, leading to 
more efficient operations and enhanced cost management in manufacturing. 
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2. OBJECTIVE & LITERATURE REVIEW 

 

 

This paper presents a data-driven methodology to estimate assembly time using machine learning 

techniques, with the aim of enhancing decision-making within the framework of Design for 

Manufacturing and Assembly (DFMA). The primary objective is to develop and compare predictive 

models—namely linear regression, decision trees, and random forests—to accurately estimate 

assembly duration based on key design attributes such as part count, joining method, material type, 

tolerance levels, and surface finish. By analyzing the impact of these parameters through feature 

importance rankings, the study seeks to support the development of a decision-support system for 

designers to evaluate and improve manufacturability early in the design process. A synthetic dataset 

was generated to reflect realistic industrial scenarios, and model development was carried out using 

Python and the scikit-learn library. Among the models, the Random Forest regressor achieved the 

highest predictive accuracy with an R² score of 0.92 and low mean absolute error, indicating its 

potential applicability in industrial DFMA contexts. 

Design for Manufacturing and Assembly (DFMA) remains a cornerstone methodology in product 

development, emphasizing part minimization and simplified assembly to reduce cost and time. 

Traditional DFMA approaches, such as those proposed by Boothroyd, Dewhurst, and Knight [1], rely 

on fixed penalty scoring systems to estimate assembly difficulty based on design features like fastener 

type or part orientation. While these models are effective for guiding design simplification, they are 

inherently static and lack the adaptability required for modern, customized manufacturing 

environments. As a result, researchers have increasingly explored machine learning (ML) techniques 

for assembly modeling, given their ability to learn from data and uncover complex, nonlinear 

relationships between design parameters and assembly time. 

Pedregosa et al. [2] introduced scikit-learn, a widely adopted Python-based ML library offering a 

comprehensive suite of algorithms for regression and classification tasks, making it especially suitable 

for engineering applications. Building upon such tools, Shankar and Chandrasekaran [3] applied 

decision tree regression to model assembly time, demonstrating that part count and joint type were 

dominant predictors. Their work highlighted how interpretable ML models can replicate intuitive 

engineering heuristics while allowing for data-driven insights. 

Further, Baugh [4] employed ensemble learning techniques, such as random forests and gradient 

boosting, within commercial DFMA tools. These models, trained on historical and simulated datasets, 

significantly outperformed traditional DFMA estimations in terms of predictive accuracy. The study 

underscored the value of ML-based models in identifying design inefficiencies, such as over-toleranced 

features or unnecessary fasteners, enabling targeted design refinements. 

Recent literature also explores the integration of ML into CAD and PLM systems to enable automated 

feature extraction and real-time design validation, creating a closed-loop optimization environment. 

The combination of predictive modeling and interpretability empowers engineers to make informed, 

manufacturability-oriented design decisions earlier in the product development lifecycle. 

In summary, this study builds upon the evolving body of literature that supports transitioning DFMA 

methodologies from rule-based systems to adaptive, machine learning-driven frameworks. The 

resulting models not only improve the accuracy of assembly time estimation but also serve as practical 

tools for optimizing design efficiency and manufacturability in modern engineering practice. 
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3. METHODOLOGY 

 

1. Dataset Preparation 

To construct a reliable predictive model, a dataset comprising 250 instances was curated. The data 
sources included: 

 Simulated data based on CAD assemblies and industrial case studies. 

 Annotations for each assembly included total assembly time (in minutes), type of joining method 
(e.g., bolted, welded, adhesive), and tolerance specifications. 

Each record in the dataset represented a unique mechanical assembly and was labeled with both 
design attributes and the actual or estimated assembly time. This provided a solid foundation for 
supervised learning. 

2. Feature Engineering 

The input features were classified as either numerical or categorical: 

Numerical Features: 

 Part Count: Total number of individual components in the assembly. 

 Tolerance Range: Maximum allowable dimensional variation (in micrometers). 

 Component Dimensions: Average size or bounding box of components (optional feature). 

Categorical Features: 

 Joining Method: (e.g., bolts, screws, rivets, welds, adhesives). 

 Material Type: Steel, Aluminium, Polymer, etc. 

 Assembly Orientation Complexity: Easy, Medium, or Complex. 

Processing Steps: 

 Categorical variables were encoded using One-Hot Encoding to convert them into binary 
numerical arrays. 

 Numerical features were normalized using standard scaling (zero mean and unit variance) to 
ensure uniformity across features. 

 Missing values, if any, were imputed using mean (for numerical) or mode (for categorical) 
imputation strategies. 

3. Model Selection and Training 

Four machine learning algorithms were evaluated for predictive accuracy: 

A. Linear Regression 

 Served as a baseline model to quantify linear relationships between features and assembly 
time. 

B. Decision Tree Regressor 
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 Allowed easy interpretability and mimicked human decision logic in engineering. 

C. Random Forest Regressor 

 An ensemble model of multiple decision trees that reduced variance and overfitting. 

 Provided feature importance scores for each input attribute. 

D. Gradient Boosted Regression Trees 

 An advanced technique combining weak learners iteratively. 

 Known for strong performance on smaller datasets. 

Each model was implemented using the Scikit-learn library in Python. 

4. Model Evaluation Strategy 

To ensure robustness and avoid overfitting, the following evaluation methods were applied: 

 5-Fold Cross Validation: Dataset was partitioned into 5 folds; models trained and tested 
iteratively. 

 Performance Metrics: 
o Mean Absolute Error (MAE): Average of absolute differences between predicted and 

actual values. 
o Root Mean Squared Error (RMSE): Penalizes larger errors. 
o Coefficient of Determination (R² Score): Indicates goodness of fit (1 is ideal). 

These metrics allowed quantitative comparison of different algorithms and validated the generalization 
ability of each model. 

5. Predictive Model Deployment 

Once the Random Forest Regressor demonstrated the highest accuracy (R² = 0.89), it was selected for 
final analysis. The trained model was then used to: 

 Predict assembly time for new CAD assembly inputs. 

 Identify high-impact features contributing most to time (e.g., number of parts, joining type). 

6. Result Interpretation 

The final model revealed the following insights: 

 Part count and joining method were the most influential features. 

 Assemblies with high part counts or multiple fastener types had disproportionately higher 
assembly times. 

 Tolerances below 50 µm resulted in increased time due to precision constraints. 

 These insights were mapped back to DFMA principles for potential design optimization. 

 Tools Used: 

 Programming Language: Python 3.10 

 Libraries: Scikit-learn, Pandas, NumPy, Matplotlib 

 Hardware: Intel i5/7 Processor with ≥8GB RAM (minimum spec for training random forests) 
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4. RESULT AND DISCUSSION 

 

 

 

The performance evaluation of the developed machine learning models revealed significant insights 
into the effectiveness of predictive modeling for assembly time estimation. Among the various 
regression models implemented—Linear Regression, Decision Tree Regressor, Random Forest 
Regressor, and Gradient Boosted Trees—the Random Forest Regressor exhibited the highest 
predictive accuracy. It achieved a Mean Absolute Error (MAE) of 2.1 minutes, a Root Mean Squared 
Error (RMSE) of 3.0 minutes, and an R² score of 0.89, indicating that the model could explain 
approximately 89% of the variance in the assembly time data. These metrics demonstrate that the 
model provides robust and reliable predictions across diverse assembly scenarios. 

One of the key advantages of the Random Forest model was its ability to assess the relative importance 
of various input features. The feature importance analysis showed that part count and type of joining 
method were the most significant contributors to assembly time. Specifically, assemblies with a larger 
number of parts or involving time-intensive joining methods (e.g., welding, adhesive bonding) required 
longer assembly durations. In contrast, simpler joining techniques like snap-fits or standard fasteners 
resulted in reduced assembly time. Furthermore, the analysis highlighted that tight tolerances 
(especially those below 50 µm) added complexity to the assembly process, often necessitating 
precision alignment and increased manual effort, which in turn extended assembly duration. 

Compared to traditional rule-based DFMA estimation techniques, the machine learning approach 
offered greater adaptability and granularity. While conventional DFMA tools typically rely on static 
penalty scores or lookup tables, the data-driven models in this study provided dynamic and context-
sensitive predictions. This flexibility is particularly valuable in modern manufacturing environments 
where product configurations change frequently, and there is a need for rapid and accurate estimations. 

In addition to quantitative performance, the model's interpretability allowed engineers and designers to 
understand which aspects of their designs were contributing disproportionately to assembly complexity. 
This insight enabled targeted design modifications such as reducing the number of parts, opting for 
standardized joining methods, or relaxing unnecessary tolerances—all in alignment with DFMA best 
practices. Overall, the study demonstrated that machine learning models, particularly ensemble 
methods like Random Forests, are highly effective in predicting assembly time and offer actionable 
insights that can directly improve product manufacturability and cost-efficiency. 
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5.   EXPERENTIAL TASK 

 

To bridge the gap between theoretical understanding and practical application, an experiential task was 
undertaken as part of this study. The objective was to apply the developed machine learning framework 
in a hands-on environment, simulating an industrial design and assembly workflow. The first step 
involved the collection of real-world or simulated CAD assembly data, where each assembly was 
characterized by attributes such as the number of parts, types of joining methods used (e.g., bolts, 
welds, adhesives), tolerance specifications, material types, and actual or estimated assembly time. This 
dataset served as the foundational input for the machine learning models. 

Using Python as the primary programming language, along with libraries such as scikit-learn, Pandas, 
and Matplotlib, the collected data was preprocessed for modeling. This included one-hot encoding of 
categorical variables, normalization of numerical features, and handling of any missing data. The 
Random Forest Regressor, previously identified as the most accurate model during evaluation, was 
then trained on this dataset. Once the model was validated, it was used to predict the assembly time of 
new or modified designs. 

To extract meaningful insights, the model output was analyzed to identify which components or design 
features disproportionately contributed to longer assembly times. For instance, assemblies with high 
part counts, intricate joining techniques, or overly tight tolerances were flagged by the model as likely 
to increase complexity. These insights were then mapped back to DFMA principles, enabling students 
or engineers to make informed design modifications such as reducing part numbers, simplifying joint 
types, or relaxing unnecessary tolerances. 

This task emphasized the importance of data-driven design decision-making and demonstrated how 
machine learning can be directly integrated into early-stage product development workflows. It also 
provided learners with practical experience in predictive modeling, feature analysis, and model 
evaluation—skills highly relevant in today’s advanced manufacturing landscape. Ultimately, the 
experiential task illustrated the practical applicability of the research and its potential to enhance product 
design efficiency, reduce cost, and support smart manufacturing initiatives. 
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TABLE 1. Data table 
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Step 6: 
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FIG 1. Predicted Assembly time plot: 
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Step 8 & 9:  
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6.  CONCLUSION 

 

This study successfully demonstrates the application of machine learning techniques for predictive 
modeling of assembly time within the framework of Design for Manufacturing and Assembly (DFMA). 
By leveraging a combination of simulated and real-world datasets, the research highlights how data-
driven models—specifically the Random Forest Regressor—can significantly improve the accuracy of 
assembly time estimation compared to traditional rule-based approaches. With an R² score of 0.89 and 
a low mean absolute error, the selected model proved capable of capturing complex, nonlinear 
relationships between design attributes and assembly performance. 

The feature importance analysis provided by the model offered valuable insights, revealing that part 
count, joining method, and tolerance levels are the most influential factors affecting assembly time. 
These findings align well with established DFMA principles, reinforcing the model’s practical relevance. 
Furthermore, the integration of such predictive tools into the early stages of product development can 
enable engineers to make more informed, manufacturability-oriented design decisions, leading to 
reduced production costs, improved assembly efficiency, and shorter product development cycles. 

In summary, this research not only validates the viability of machine learning for intelligent 
manufacturing applications but also presents a scalable and adaptable framework that can be further 
integrated into CAD/PLM systems for real-time design validation. The outcomes serve as a strong 
foundation for future work focused on integrating predictive analytics into advanced manufacturing and 
design environments. 
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APPENDIX 

 

A. Dataset Overview 

 

The dataset used in this study consisted of 250 assembly records sourced from a combination of 
simulated CAD assembly models and real-world industrial case studies (Kaggle.com). Each record 
included: 

 

7.   Numerical features: Part count, tolerance range (µm), component dimensions. 
8.   Categorical features: Joining method, material type, assembly orientation complexity. 
9.   Target variable: Total assembly time (minutes). 

 

Feature Name Type Description 

Part Count Numerical Number of individual components in assembly. 

Joining Method Categorical e.g., bolts, screws, rivets, welds, adhesives. 

Material Type Categorical Steel, Aluminium, Polymer, etc. 

Tolerance Range Numerical Max allowable dimensional variation in micrometers. 

Orientation Complexity Categorical Easy, Medium, Complex. 

Assembly Time Numerical Actual/measured time in minutes. 

 

 

B. Hardware & Software Specifications 

 

          Hardware: Intel i5/i7 Processor, ≥8GB RAM. 

          Software Tools: 
o Python 3.10 
o Scikit-learn (ML models) 
o Pandas & NumPy (data pre-processing) 
o Matplotlib (visualizations) 

          Development Environment: Jupyter Notebook. 
 

 

 

 

C. Model Performance Summary 

 

Model MAE (min) RMSE (min) R² Score 

Linear Regression 3.45 4.82 0.78 
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Model MAE (min) RMSE (min) R² Score 

Decision Tree Regressor 2.54 3.95 0.85 

Random Forest Regressor 2.10 3.00 0.89 

Gradient Boosted Trees 2.21 3.14 0.87 

 

 

D. Feature Importance (Random Forest Model) 
 

 

Feature                         Importance (%) 

Part Count                    38.4 

Joining Method             25.7 

Tolerance Range         18.2 

Orientation Complexity 10.5 

Material Type               7.2 
 

 

 

E. Sample Prediction Output 

 

Input: 

 

          Part Count: 18 

          Joining Method: Welded 

          Material: Aluminium 

          Tolerance: 40 µm 

          Orientation Complexity: Medium 

 

Predicted Assembly Time: 27.4 minutes. 
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