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A novel wavelet-based approximation scheme for the
approximate solution /source of Fredholm integral equation of
the second kind with variable coefficient and the

pseudo-logarithmic kernels

Abstract. This study introduces an efficient orthonormal polynomial wavelet-based approximation
scheme for solving Fredholm integral equations of the second kind with logarithmic/pseudo-
logarithmic singular kernels. The method exhibits high accuracy and computational efficiency and
seems applicable simultaneously when the exact solution or the source term is unknown to be deter-
mined. The examples exercised here validate the accuracy and effectiveness of the scheme proposed
here.
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1. Introduction

The Fredholm integral equation of second-kind

b
ao(@)u(z) + / Kz tu(t)dt = f(z), = € [a,b] (1)

plays an important role in the theoretical investigation of various physical phenomena in applied sci-
ences. Here ag(z), f(z) are given continuous functions, K (z,t) is the kernel, and u(z) is the unknown
function to be determined. A particular challenging class of these equations involves kernels with
logarithmic/pseudo-logarithmic singularities

K(z,t) = ays(z,t)loglg(x — t)| + ars(z,t) + ar(z,t), (2)
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where the coefficient functions of the singular part and the regular part of the kernel, ayg(z,t) and
ag(z,t) respectively, are continuous functions, while the other function, apg(x,t) may have fixed inte-
grable singularity. The behavior of the argument g(z) is assumed to be g(x) — ¥ as ¢ — 0, v € R,
arises in potential theory [1, 2], elasticity [3, 4], electromagnetic scattering [5, 6] and fluid dynamics [7].
Such kernels often appear in modeling stress intensity near crack tips, surface currents in scattering, and
vortex sheet dynamics, among other phenomena.

Despite their importance, these equations pose significant mathematical and computational chal-
lenges due to the singular behavior of their kernels. Analytical approaches, such as the method of
inversion [8, 9], regularization [3], and series expansions [10], have been developed to isolate and manage
the singularity. In contrast, numerical techniques, for example, singular quadrature [11, 12], collocation
methods [13], and hybrid schemes [14, 15], offer numerical solutions.

This article presents a computational scheme to solve the above-mentioned problems by using an
orthonormal polynomial wavelet basis. The advantage of using an orthonormal polynomial wavelet basis
is the availability of analytical expression of elements on the basis, including a variety of their algebraic
properties, viz., recurrence relation, quadrature rule, etc., which minimizes the computational cost as
well as the comprehensive understanding on the approximate solution simultaneously. Furthermore, a
precise relation can be obtained between a posteriori error in the approximate solution and the wavelet
coeflicients of elements of the orthonormal polynomial wavelet basis. Another important aspect of this
scheme is its applicability to obtain the analytical expression for the unknown source (f(z)) whenever
an exact solution is given. This is a significant contribution of this work as it is the extension of an
established Chebyshev polynomial-based approach of Shoukralla [16], initially developed for the integral
equation of the first kind to that of the second kind, including variable coefficients as well.

Our investigation is organized as follows. The mathematical prerequisites of an orthonormal poly-
nomial wavelet basis involving the classical Legendre polynomial, in particular, have been presented
in Sect. 2. The successive steps of transformation of the integral equation with the pseudo-logarithmic
kernel to equations with the logarithmic kernel and their conversion to a system of linear simultaneous
equations for the coefficients of the elements of wavelet basis in an approximation of the unknown solu-
tion have been discussed in Sect. 3. The scheme for evaluating an approximation to the unknown source
f(z) (whenever the exact solution is known) for Eq. (1) is also available there. The scheme developed in
the previous section has been exercised on a few problems and compared with the results now available

in the literature in Sect. 4. Our findings have been analyzed and concluded in Sect. 5.

2. The orthonormal Legendre polynomial wavelet basis

The scale functions and wavelets of the multiresolution analysis V;, @ W; of the space L?([a,b]) are
j=1

defined as the linear combination [17]

2.7'0

Gii(r) = Y CouPrlx),  Jo=0,1,2,-, i=0,1,-,27 (3)
k=0
i+l

Yia(e) = > ClPu(@), j=jojo+ljo+2, i=01--,2 —1, (4)
k=27 41

of Legendre polynomials P, (%) , © € [a,b] [18] with coefficients

2 1+1 30 2k +1
¢ _ ; (2704+1)
Chik =1/ 55 1 3 oin (7r2jD +2>Uk(yi ) Do (5)




UNDER PEER REVI EW

2 i+1 i 2k +1
Y ; (27)
Ciie =\ g1 50 (W2ﬂ‘ +1)U’“(yi )\/:’ ©

4+ 1
y?:—cos<(zn++ iﬂ-), 1=0,1,...,n—1 (7)

and

are the zeroes of the U, (y). The polynomial Uy (y) is given by [18]

sin [(k + 1) arccos (y)]
sin [arccos (y)]

Ur(y) =

(®)

in the interval y € [—1, 1].

The functions ¢;, ;(z) and ¢; ;(«) with bounds in the indices mentioned above span the approxima-
tion spaces V;, and the detail spaces W; of the MRA Vj, é W;. The elements of scaling and wavelet
functions satisfy the orthonormal conditions a

(5.6, Pj)w = i,
(Vji, Ym)w = GitGjm, 9)
<¢j,z’,wm,l>w =0 (m > j).

J-1
The basis for the truncated MRA Vj, @@ W; up to resolution J € NU {0} is
j=1

BjoJ = {¢jo7¢jov'¢jo+1a -~-a¢J—1} (10)

with
¢j0 = (d)jo,()v ¢j0,1a e a¢j0,2j0) (11)
’l/)J = (w]'707 ¢j,1a e 7¢j,21—1) 5 j = j07j0 + 17 e 7'] —1. (12)

We now recast the basis ¢;, for the approximation space Vj, at the resolution j, and the basis 4; for
the detail space W; at the resolution j appearing in (10) in the form

¢jo = (Po(z), Pi(z), -+, Paio (7)) - Moy,
¥ = (Paiga(x), Pr(x), -+, Poyea (2)) - M, (13)
(14)
involving the matrices
¢ ¢ ¢

CZ;)OO C{;lo C CJ(.;QJ-O0

Cion Cionn - - - Cj02j01
Mg;, = ; (15)

0P c?
Jo0290 jo1290 Tt ¥ 50290230/ (904 1)x (23041)
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and
b P b
C%o2ﬂ+1 CJJ 2041 7 " 0%27 1241
Cioaiva Cjiaa -+ Ciai10in
My = . . c . ' (16)
C;-/)o 2i+1 C;-pl 201+ v - C;‘sz71 2j+1
27 x 27
Then the basis introduced in (10) can be recast into the compact form
BjoJ('r) = Pjo7J(x)'Mjo7J (17)
with
Pjo.s(2) = (Po(x), Pr(2),-- -, Pys(2)) (18)
and,
Mo, 0 0 0... 0
0 My, 0 0... 0
0 0 M, 1 0... 0
M, ;= Jo+1 19
7o 0 0 0 0 19)
0 0 0 0... 0
0 0 0 0... My

J=17 (27 41)x (27 41)
1. Multiscale approximation of a function

The multiscale representation of a function f € L?([a,b]) is the orthogonal projection

J
P, :L*([a,b]) = Vj, @ W; defined by
Vio @ W; j=l1

j=1
270 J—127-1
A
P [f]((L’) = jopjprox Z C]o,k¢jo k+ Z Z dj k'l/}] k= ]OJ CD]O J- (20)
0 P w; j=1 k=0
Ji=io
Here CDjo,J = (CjoadjovdJoJrh T adel) with Cjo = (Cjo,07cjo71’ T 7Cjo,21'0)7 and dj =

(djo.dj1,--+ ydj2i—1), j = jo, -+ ,J — 1. The orthonormality condition (9) may be exploited to obtain
elements of the above vectors as

Ciok = (f(2), bjo a(a / F(@)bjoi(e (21)

and,

dj,k = <f( 1/)3, / f %, (22)

These formulae suggest that coefficients c;, », d; » can be interpreted as the components in the projection

of f(z) along the scale function ¢;, ; in the approximation space Vj, and the wavelet 1; 5, in the detail
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space Wj, respectively. One of the delicate properties of these coefficients is their direct role in the

estimation of error due to the omission of detail spaces W;, j > J.

2.2. Estimates of a posteriori error

The error in the projection prpmz of f € L?([a,b]) into the MRA V}, @ W; may be recast (by using
Jj=Jo

orthonormality condition provided in (9)) to

Bpe = /|1 f(2) - FA7P( ||L2~JZ||¢]d|Lz:JZdj-dj. (23)
j=J

(n) L ds
For f € L*([a,b]) with sup ¢,y | ! n,(z) |<< 1, the ratio r = sup % < 1. In such cases,
’ ' j€{jo, -, J—1} :
a posteriori error can be estimated as
apost _, 1
EL2 J — ﬁ djfl ° djfl. (24)

3. Approximation of unknown solution and source

Proposition 1. [15] The equation

ao(@)u() + IL[au](x) + IR[bu)(z) = f(z) (25)

with
ILla](z) = /Qa(x,t)u(t) log | — | dt, (262)
- /Q b, E)u(t)dt, (26b)

where a(x,t) and b(x,t) are satisfying the condition stated earlier (after (2)) and ap(xz) # 0, x € Q
has unique solution in L*(Q) if =1 ¢ spectrum of ILR[] := — 1($) (IL[] + IR[]) : L?*(?) — L?*(2) and
f e LQ).

3.1. Equation for the coefficients of approximate solution of Eq. (1) when
source (f(x)) are given

For the Fredholm integral equation (1) of the second kind with pseudo-logarithmic kernel (2) and

g(x) ~ x as © — 0, the variable singular term may be split into

-1
log |g(z — t)| = log gf_t)’—i-logpc—ﬂ, (27)
so that Eq. (1) can be recast as
ao(z)u(x) + I L y[avsul(x) + IR 4 [brul(z) = f(x). (28)

Here,

b
Ly [F(z) = / Fla, t)log |z — t] dt, (292)
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b
IRpay[F)(z) = / F(a, t)dt, (29b)
and
br(z,t) = ayg(z,t)log g(xx:tt) ‘ +ars(z,t) +ar(z,t). (29¢)

For the evaluation of singular integral I L, y[aysul(z) in (28) , we adopt the change of variable

r=a(@) = g {b-a)+bta}, t=r(©=g{b-ay+tbta}, &rel-11]  (30a)
to change the domain [a, ] to [—1,1] and get,

b—a

1 B B b —a b—a
Lo glavsul(z) = / avs(€,7)a(r) log|¢ — 7 dr + 2= %log
-1

2
bh—
2

1
[1 ays (&, m)u(r)dr

_1ylavsil (Qf”b‘ba‘a)u b; avg(x,t)u(t)dt. (31)

Here, the symbol F is defined as F(§) = F(z(£)) = F (3 {(b — a)é + b+ a}).
Use of the formula (31) into Eq. (28) gives

ao(z)u(r) + b_TaIL[_Ll] lasu] (Mb__ba_a> + IR ) [Gul(x) = f(z), (32a)

where

G(z,t) = br(x,t) + avs(z, t)log b= (32b)

For the evaluation of the integral IL(_; 1j[F] (£) defined in (29a), we use N —point quadrature rule with
variable weight [19]

IS 1] / F(€,7)1og € — 7|dT ~ Zw F(¢&, 1), €e[-1,1] (33a)

where 75 and wy are the nodes and weights of N—point Gauss-Legendre quadrature rule and variable

weight factor Q¥ (¢) accommodating the presence of logarithmic singular factor in the integral is given by

N—-2 1
OO = (o) = Pu(r) (Qo(E) + o1 = 92) + 3 (Rea(m) = Proa(m)) (Qu(e) + § lox1 - 7
=1

+ Py-aln) (@n-a(©) + {log(1 - ©) + Pyoa(m) (Q(©) + § los(1 - 62). (330)

Here P, (&) and Qk (&) are Legendre polynomials of the first kind and Legendre function respectively.
Double Exponential (DE) or sinh — tanh quadrature rule [20, 21]

2iQ+2

IRyq 4[Gul(z) ~ QDE;o[Cul(x) = QJLQ Y G (az,@ (2;“@)) " (9 (25‘?» 0 (;Q> (34)

k=—2iQ+2
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have been used for evaluation of the integral I R, ; [Gu](x) in Eq. (32a), due to its efficiency for obtaining

highly accurate numerical value of definite (even improper) integrals (involving integrand with finite

2z _ba_“ ) followed

number of fixed integrable singularity). Use of (33a,b) for the integral IL|_ 1j[ay su] (
by replacement of (£,7) in term of (x,t) and substitution of expression of IRy, j[Gu](x) from (34) into

Eq. (32a), gives

N
+ > ooy <ba_a> avs(z,ty)u(te)
k=1

2iQ+2
1 k k ok
S ) () ()
k=—2iQ+2
where t), = t(7;) and 0 = b’T“w{f are the nodes and weights of Gauss-Legendre quadrature rule in the

interval [a,b]. Approximation of the unknown function u(x) with the orthonormal polynomial wavelet
basis B, s(x)
u(x) = ub* PPN (z) = By, s (x) - CDjy - (36)

JoJ

and its substitution in Eq. (35) yields
Ajorini@(x) - CDjo s = f(2) (37a)
where

N
_ 2r—b—a 1
Apsiviale) = [ae)Bisa) + a0 (22 ) avstonti)Bios ) + 5

5 (o)) (o () ()] m

For the reduction of Eq. (37a) into a system of linear simultaneous equations we adopt here wavelet-
Galerkin scheme. So, we multiply both sides by BjTO ;(x) and integrate within the domain [a,b] to get,

Ajor:nj@ - CDjos = Fjos (38)

where
AjosiNjQ = / Ajor.njq(x)dr (39a)
Fjos = / BT () f (x)dz. (39)

To evaluate the integrals in (39a) and (39b), we use DE or sinh — tanh quadrature rule and get
27 Q+2

Approx 1 k k k
Q[jo;l?]p;NjQ = 2]762 Z BjoJ (9 (W)) AjoJ;NjQ (9 (2]62)) o’ <2JQ> (40&)

_2iQ+2
2iQ+2

Approx 1 k k k
s =ga 2 8(?(350))1(0(5)) 7 (50): (on)
2iQ+2
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so that Eq. (38) can be approximately written as

Approx _ T Approx
jorviQ  CPios = Fjoriiq - (41)

Here jp and J (appearing in the approximation in (36)) is coarsest and finest scale in the wavelet approx-
imation respectively, while N (present in (33a)) is the number of nodes in Gauss-Legendre quadrature

rule and j@ is resolution in DE or sinh — tanh quadrature rule.

3.2. Approximation of unknown sources (f(x)) when exact solutions are

known

Whenever the exact solution u®*2°t () of Eq. (28) is known but the inhomogeneous or the source term is

not given, its estimation f¥5*(z) can be obtained by substituting u®*°t(x) in place of u(z) in Eq. (35).
Thus,

fP (@) = Lyjq(@), (42a)
where

21 Q+2

1 k Exact k / k
k=—2iQ+2

To get the coefficient of the projection of f¥(z) to V;, @ W;, we multiply both sides of Eq. (42a)

by BJ ;(x) and integrate over the domain [a,b] to get, o

Falf™™ = Ljgrnio, (43a)
where
LiorinjQ = / o (0) LN () da. (43b)
For the evaluation of the integral in Eq. (43b), we use the DE or sinh-tanh quadrature rule and get
0dQ+2
comemeie= o 5 0(k) e () () o
k=—27Q+*

Substituting Eq. (44) into Eq. (43a) gives
F. ~ EApprox (45)
Jod = Lo IiNjQ

The approximate expression for the unknown source f(x) in Vj, @ W; is then given by
Jj=Jjo

Fui (@) = B (@) - L3N (46)

A
“EPT¥ () of the unknown source whenever

To assess the efficiency of the multiresolution approximation f;
the exact solution is given, successive steps of the previous section can be taken for Eq. (28) with f(z)
given by its approximation in (46). As a result, a system of linear equations

Approx __ pApprox
QljoJ;NjQ CDjys = ['joJI;)NjQ' (47)
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for the unknown coefficients CD;, ; can be obtained. Substitution of the solution of the derived equation

to (36) provides the approximate solution of Eq. (28) for the estimated source f®!(*)(z) in (42a).

Table 1 Inputs [a,b], avs(z,t), g(z), ars(z,t), ar(z,t) and f(z) in Eq. (28) with ag(xz) = 1 and corresponding exact
solution (uf®ect(z)).

Ex. | [a,b] ays(z,t) g(z) ars(z,t) agr(z,t) fl2) uFract ()

ﬁ{xlogz

+(1—z)log(l —x)

1.1 | [0,1] it T 0 P

1+ L 5 Vit
+2tan (’/Hm)
—1( /1
—2tan ( m) }
T (1 log 2
1.2 | [0,m] —et —e?7lx —sin(z —t) ¢ (1+mlog2) e”
log |sin ZF +1£7 (cosz + sin z)
1.3 % @ —4x sinx
14 1 (et (75Y)) ~ s cosh ()
[~ 7] t 02 (z—t in 1
1.5 —I—WMSIH (%1) 2sin § —=(1+x+cost) Val+ao+m
0 Unknown

16 —L (34 /ot sin (55Y)) L (1+a) log (27 +

17 — 1 ginh (2£1) sin? (251) ~Llog(10 + x) e
-1 A7 — 2me S * cos(sin x)
1.8 [0, 2] _9 Unknown
—log (5*3“’;(7**“)) —2me™5" cos (S22)

4. Computational Results

The computational scheme developed in the previous section has been applied to various examples
to examine its accuracy and efficiency in solving Fredholm integral equations of the second kind
with logarithmic or pseudo-logarithmic kernels whenever either the solution or the source term is
unknown. We have considered the examples, Ex. 1.1 — Ex. 1.8, which are of the form of Eq. (28) with
(ap(z), ag(z,t), br(x,t), g(x)) provided in Table 1. Details of the specific inputs for several examples
are provided in Cols. 2-7, with the corresponding exact solutions listed in Col. 8 of the same table. It
has been verified that all the examples listed in the table satisfy the conditions of Prop. 1 stated at
the beginning of the previous section. In our exercise, the following parameter values have been used:
N =20, jQ =5, jo = 1 with different J = 1,--- , 5. The final system of algebraic equations Eq. (41) has
been solved by using the library function Solve[-, -] available in the MATHEMATICA, and all calculations
are performed on a PC with an Intel Core™ i5 processor (2.50 GHz) and 4 GB of RAM.

All the steps discussed in Sect. 2.1 have been exercised to obtain the approximate solution uir}prox(a:)
for Exs. 1.1-1.3. While for the Exs. 1.4-1.7 (whose sources are not known), we exercise the steps discussed

in Sect. 2.2; in the first step, we use the exact solution as input in the proposed scheme to obtain the
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approximate expression of source appearing in (46). The obtained approximate expression of sources

( fﬁgpmx(x» for the examples (Exs. 1.4-1.7) are provided in the Appendix.

To exhibit the qualitative behavior of the sources presented by analytic expressions (A1)—(A5), their
plots are presented in Figure 1. Closely observing these figures reveals that the projection of unknown

sources gradually converges with the increase in the resolution of the detail spaces. These approximate
Approx
JoJ

the problem. To exhibit the accuracies and the rate of convergence of the approximate solution with the

sources have been used further to obtain u (2) of the known solution (regarded as unknown) to

Approx
JoJ
been provided in Figure 2. It is observed that the approximate solution converges rapidly for Exs .1.1-

variation of the resolution J of the detail spaces, plots of absolute error (in log; scale) in u (2) have
1.3, but the convergence rates of Exs. 1.4— 1.7 are relatively slow. Such a slow rate of convergence is
suspected due to the approximation of the source terms.

To examine the reliability of estimation of global a posteriori error provided in the formula (23) of

Sect. 2.2, the exponent n in the O(10™™) of the a posteriori error and L>°— error

Errfoo; = Z?pb] uxect (z) — uil?,pmx(a:) , (48)
z€Ja,

in the uﬁf}pmx(w) (of Exs.1.1-1.7 for J = 1,--- ,4) have been provided in Col. 3 and Col. 4 of Table 2.
Their comparison reveals that the estimate of a posteriori error suggested in formula (23) is quite
efficient. The exponent n in the order of accuracies in approximate solutions obtained by other available
methods have been cited in Cols.5 — 6 of the same table. A close examination of the exponents provided
in Col. 3 (achieved in the proposed scheme) and Cols. 5—6 (for other methods now available) establishes
the proposed scheme’s better efficiency over the available approximation schemes.

Seeing the efficiency of the proposed scheme for examples with known exact solutions, we applied the
scheme to Ex. 1.8 (listed in the last row of Table 1), whose analytic solution is not yet available. The plot
for the approximate solution at J = 5 is presented in Figure 3. A comparison of the exponent n of the
a posteriori error with that of another method (given in Col. 4 and Col. 7 of Table 2) suggests that our
approach succeeds in providing a highly accurate approximate solution in comparison to approximation

methods now available.

5. Conclusion

A computational scheme using an orthogonal polynomial wavelet basis has been developed here to
obtain the accurate approximate source/solution for Fredholm integral equations of the second kind with
logarithmic/pseudo-logarithmic kernels. The method demonstrated high accuracy by testing multiple
examples (Exs. 1.1-1.8). For problems with known sources, it provided solutions that converged quickly.
For problems with unknown sources, the method still delivered reliable results with a slightly slower
convergence rate because of the source approximation. The global a posteriori error estimates provided
by the scheme are validated, showing consistency with the observed L°°—errors, making it worthwhile
to get approximate solutions for those problems whose exact solutions are unknown. Furthermore, a
comparison of the accuracy with other available methods confirms that the proposed scheme achieves
higher accuracy. These findings show its ability as an efficient tool for solving integral equations with
logarithmic/pseudo-logarithmic kernels and can be used to handle complex problems in science and engi-
neering. Furthermore, the extension of this Legendre polynomial wavelet-based approximation scheme
to orthonormal polynomial wavelet basis for solving linear and nonlinear singular integral/integro-
differential equations with weakly, Cauchy and hyper-singular kernels integral are in progress, will be

reported elsewhere.
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Table 2 Exponent in the order (O(10™")) of the L>°—(48) and estimated a
posteriori errors (23) in the Approximate solutions (uﬁ)}(’,prox(:r)) of examples cited in

Table 1 for N = 20, jQ = 5, jo = 1 with different J.

’ ‘ | Order n in errors ‘

‘ Example ‘ 7 | Present scheme Other schemes ‘
L*° | a posteriori | MDGM [22] | LTPSM [23] | THWGM [24]
1 4 5 3
2 6 8 4
1.1 NA NA
3 14 15 5
4 25 6
1 2 2
2
1.2 > 6 3 NA NA
3 15 16 4
4 25 5
1 2 2
2 4
1.3 s 3 NA NA
3 10 12 4
4 29 5
1
1] 1 2
2 1 2
1.4 NA NA NA
3 3 4
4 6
1 1 2
2 2
1.5 3 NA NA NA
3 5 6
4 8
1 2 3
2 4
1.6 3 NA NA NA
3 5 6
4 9
1 1 2
2 2 3
1.7 4 6 NA
3 4 5
4 7
1 - 1 1
2 - 2 2
NA NA
1.8 3 - 5 2
4 - 8 3
5 - 3
MDGM-Meshless discrete Galerkin method, THWGM-Trigonometric Hermite
wavelet Galerkin method and LTPSM-Local thin plate spline method.
Results for Ex. 1.7 from MDGM is provided in [23]
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Fig. 1 Figures of approximate source (fJApme(z)) of Exs. 1.4-1.7 (cited in Table 1) for N = 20, jQ = 5, jo = 1 with

oJ
J=1,---,4.
Ex. 14 Ex. 1.5
f; f
w0l —— j0=1J=1 A5
2500
jo=1J=2 1A=9
sl —— j0=1J=3 HA=17 2000
—o— j0=1J=4 FIA=33 —— j0=1J=1 A5
1500 - i
\ of jo=1J=2 HA=9
—— j0=1J=3 HA=17
1000 -
—o— 0=1J=4 IA=33
10+
500
L ! L L et | L o
-3 2 Nop=r == 2 3 = = T v T i“ ‘2" 3 "
Ex. 1.6 Ex. 1.7
e ;
4or —— j0=1J=1HIA=5
. . .
j0=1J=2 HA=9 -3 -2 -1 "
200 —— j0=1J=3 BA=17 —— j0=1J=1HA=5
- —— j0=1J=4 FIA=33 j0=1 J=2 £iA=9
‘ ‘ ‘\ ‘ ‘ ‘ —— j0=1 J=3 HIA=17
x
) 2 = e 2 3 —— j0=1J=4 F1A=33
n s
20 \ N
-5
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Fig. 2 Plots of absolute errors (in log; scale) in approximation of solutions uﬁf}pmx (z) of examples (Exs.1.1-1.7) listed
in Table 1 for N =20, jQ =5, jo=1with J=1,--- ,4.
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Appendix A

The expressions for the approximation fiy*™*(z) to the (unknown) sources obtained by using the
formula (46) for Ex. 1.3-Ex. 1.7.

APPIox () = —3.99999999999999999828756021617442 — 4.858810570540133 x 10~ 162
+ 2.09158799914740860 x 10~ 1°2° — 3.2537302167705157 x 10~ 227
+ 2.6554690673120803 x 10~ 222 — 1.3784784555915986 x 10~ o411
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Fig. 3 Plot of approximate solution (uJAOp}’mx(:r)) of Ex. 1.8 (Table 1) for N = 20, jQ =5, jo =1 and J = 5.

+ 5.237749649233799 x 1016213 — 1.601414950330776 x 10~ 16217

+ 4.03289420142528 x 10~ 1727 — 8.0875671699093 x 1018217

+ 1.2329079875872 x 10~ 18221 — 1.373784179810 x 1019223

+ 1.07622724992 x 10~2°22° — 5.602689923 x 10~222%7

+ 1.73979025 x 10~ 22 — 2.439554 x 10223 (A1)

APPIOX(1) = —0.42533906162996259697707948043602 + 0.13297425443669444721244458514628x
0.385880153522429612537360713264432% 4 0.119576095988030114599268682344292>
0.459909753523112151224374883370752* — 0.0183030476551831526331917403117982°

+ 0.444667459942303346665446219052832° + 0.0335713110230702478660576152924532"

— 0.343727894368251716391202984606652° — 0.060651949100270289422238417737264°

+ 0.303348735421878709099379572143622° + 0.0523152951376582974720406501120242**

— 0.199737857673358547062512574215152'2 — 0.0306093482822183983865029334568872:'3

+ 0.0971876740359183042820345520376152'* + 0.012589004544530699924645495973274x°
0.0349896309853633207043907195516562'¢ — 0.00369898218501874741044181431238302:'7

+ 0.009336960832849913814514234628614 12 + 0.00077929464727475644160584482934880"7

— 0.00184665612062809304257772504143442%° — 0.000116807918005332219199066045783392:%*

+ 0.000268851267377174504607811428687452%* + 0.0000122319660627572119853233351163152%3

— 0.00002834923414660825785139412208801722* — 8.6576284244624322623832581585300 x 10~ 722
+ 2.1008607759101228977502132541349 x 106225 + 3.90073494752733903414894 x 108227
1.035873104847056114716693 x 10~ "x*® — 9.940832280900628260982 x 10~ 1022

+ 3.048492770216277623453 x 10~ 223° + 1.06431422317815904902 x 10~ 13!
4.05089386249989770298 x 10~ 232 (A2)

g;’{’fg’*(x) = 94.995295581722885758435627000724 + 247.30799798670279401830448491989x
— 2634.7932752084380565740091010687x2 — 3163.00237525835138181145581878922°
+ 17953.9613801234963860928410863312* 4 14137.779617234448376149298081174x°
54459.7464684876339634525719056252° — 31725.5868236150649680936153567192"
+ 91776.6317357218853967769072752502° + 41744.8824546943746093398943916572"
96535.2168492522001677374518868312*° — 35210.67345317619912244014351573 12
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+ 67956.7552773164412851054400384932 "2 + 20135.1989349584413239822261355932 "3

— 33467.8514472621901005551225023352'* — 8092.16978520885711257578352567062°

+ 11861.7666361667428855568257233442'° + 2336.45792639637979206228177276142'7

— 3076.4088389621614874188061965879x'% — 489.965804745071208911329726428952 7

+ 588.011985718384309236785304105232%° + 74.6666738923357894365129666306602*

— 82.64023590732921522212681636485222% — 8.17841064010792027500263126751712

+ 8.42876821124283658649015380523572%* + 0.62694395673464725980327956988794°

— 0.6064964256339701578621156782243622¢ — 0.0319115450184192232425127111163672%7

+ 0.0291720529445268106901028320682802% + 0.000968422891120482012535387901810692%

— 0.000841345924593079759673809426414152%° — 0.0000132559994720448315958200930364562.%*
+ 0.000010998279543500795592974484282866:2, (A3)

POt (z) = —2.1435969250030013079212072726761 — 12.993473449061048493747172552187x
0.02039778242049015490334539906677422 — 0.0165873953654508494224 77398735882

+ 0.00598635953170846251143145009743222* + 0.00593442874692575935295006177932762.°
0.00205657785653125817538916973074912° — 0.00349455338790016221867404007535842"

+ 0.000659022814748111098606141159570682° + 0.0031903623036145027489085330722852x°

— 0.0002039671047827229437981175186583620 — 0.0025455574421552089069300900070871

+ 0.0000606798444726281576714839337226392" + 0.0014621195900220608632056791592542x"3

— 0.000016623559513594330415892306697989z* — 0.000596527893382990404825721556275162:°

+ 3.9776013816159836590049878238720 x 10~ 6216 4 0.0001750391529885497606522369571127527
+ 7.9269125048174425897568800610153 x 10~ 7z® — 0.0000372765370582209807204450266542652°
+ 1.266863438213545757083054 x 10~ 2% + 5.7635980349887861297551044 x 10~ 52!

— 1.57316263492684251515354 x 1082 — 6.4004369539704484313965009 x 10~ 23

+ 1.4704851988814032548515 x 10224 + 4.97175006900217177165771 x 10~ 522

— 9.94075662762348208531 x 10~ 2?0 — 2.5633724746876746968856 x 102227

+ 4.57080677049900838082 x 1012228 + 7.87803647029478569536 x 10122
1.276090018196807157 x 10~ 3230 — 1.0919687262091150624 x 10~ 23!

+ 1.6299522860073145 x 10~ 15232, (A4)

ggf?x(x) = —5.8203153035496555320487850658416 — 0.034380326233149364417917759854266x
+ 1.15258077941307438146180283951612% 4 0.1988094236521436484235451253891923
— 0.17363198673987500968665975583258z* — 0.0301775267673875042695251747229712°
+ 0.0325001049920460984124351064471872° + 0.002610766633990990690713103496714557
— 0.0108290140964551747472502130899412° — 0.000111481426688023876762232523601512”
+ 0.0040178382920104669747061859226430° — 0.000109482768200871886311289141368452: '
— 0.00139558322080133425782325778425922:? 4 0.000101004103879213733330088290892852: 2
+ 0.000435871454542590250421574356036552' — 0.0000491641964208015958588617347593772'5
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0.00011574291813397346171130728255320% 4 0.0000159475902019199242856217471942002'7
+ 0.0000249832947980152996447646195266702'® — 3.6280701714730055310907956 x 10~ 5217
4.2446404228101957539163872 x 10~ %220 4- 5.872645086372813864405653 x 10~z

+ 5.529412010647545558083637 x 10~ 22 — 6.74068076993889880036628 x 10~ 5223

— 5.37244342001707723034657 x 10~ 32%* 4 5.3695248802699594305202 x 10~ 22%

+ 3.7513276832503824710073 x 10~ 2225 — 2.826296689660941993971 x 1010227
1.773741035817001560846 x 10~ 02 4 8.8480453956853749021 x 10~ 2%

+ 5.0762720144297917774 x 101223 — 1.248425173198603131 x 10~ 323!
6.63181113177527444 x 10~ 4232, (A5)
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