
A Novel Model for Transmission Dynamics of Bacterial
Meningitis Incorporating Vaccination and Treatment Using
Counterfeit and Non-Counterfeit Drugs.

Abstract: The protective membranes around the brain and spinal cord become inflamed or swollen when meningitis occurs.
The original mode of transmission for bacterial meningitis was from animal to human, but it can now spread from person to
person through contaminated surfaces, saliva, respiratory secretions, and aerosol droplets. This study anaylse bacterial
meningitis using counterfeit and non-counterfeit drugs. Numerous mathematical representations regarding bacterial meningitis
transmission formerly been put up and examined, finding out what happen when you subject infected individuals to medication
with counterfeit and non-counterfeit drugs is our objectives. According to the model analysis, the endemic equilibrium is only
locally asymptotically stable when the basic reproduction number is smaller than unity, while the disease-free equilibrium is
asymptotically stable both locally and globally. Using counterfeit drugs on infected individuals may have devastating effect on
these individuals as most may never recover leading to high mortality case. Areas with weaker systems and less regulatory
control may face challenges in ensuring that all patients receive genuine medications. MATLAB software is utilized to do
numerical simulations that illustrate the influence of counterfeit and non-counterfeit drugs resulting to severe illness on areas
prone to counterfeit drugs. A coordinated effort among governments, healthcare providers, pharmaceutical companies, and the
public. Each stakeholder has a role to play in ensuring the integrity of the drug supply chain.

Key Words:Bacterial meningitis, Counterfeit drugs, Non-counterfeit drugs, Vaccination, Exposed

1. Introduction
The inflammation (swelling) of the membranes that envelop the brain and spinal cord is known as meningitis. [1].Bacterial,

viral, or protozoan infections are the causes [2]. Bacterial meningitis is a prevalent illness in children and young adults. Listeria
monocytogens, Haemophilus influenza, Group B Streptococcus, Neisseria menengitidis, and Streptococcus pneumonia are
some of the bacteria that cause bacterial meningitis [3]. Initially spread by animal to human contact, bacterial meningitis can
now spread from person to person through contaminated surfaces, saliva, respiratory secretions, and contaminated air droplets.
When an infected individual interacts with others closely or over an extended period of time, the virus can spread quickly. A
disease outbreak can be caused by living in cramped quarters, going to sporting or cultural activities, sharing cutlery, coughing,
sneezing, and kissing [4]. The symptoms for the bacterial meningitis are fever, intense headache, vomiting, and sensitivity to
light and stiff neck which results to convulsion, delirium and even death [2]. Bacterial meningitis is managed through preventive
by use of vaccine or curative by use of antibiotic approaches.

Vaccination is an effective way of protecting children from bacterial meningitis. The majority of patients make a full recovery
following rapid therapy; yet, some patients continue to have serious health issues after prompt treatment. Loss of limb function,
neurological abnormalities, and hearing impairments are some of these problems. However, no amount of treatment can save
meningitis-related death if the disease is discovered too late. Approximately 5 to 10% of patients will pass away within 24 to 48
hours of the onset of symptoms, even with early identification [5].

It is clear that studying the epidemiological behavior of meningitis has made mathematical modeling essential. Moreover,
mathematical modeling aids in determining illness risk factors and explains why different people do not have the same virus [6].
[7] have created a SIQR model that incorporates persons who are quarantined, potentially lowering the risk of secondary
infection and influencing the dynamics of the transmission process. The dynamics of the SVEIR model were created and
investigated by [8], its functions include a saturated pneumonia vaccine and a saturated infection incidence force [9]
investigated the meningitis and influenza mathematical modeling while under quarantine [10] spent a great deal of work
creating a mathematical model for the co-dynamics of the bacterial diseases listeriosis and meningitis [4] created a model called
susceptible-vaccinated-carrier-infected-recovered-susceptible to study the dynamics of meningitis. Based on their model, they
distinguished between those who recovered and those who did not, with the idea that a high vaccination rate could aid in
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keeping the disease under control.

Given the models that have been presented none have analyzed on modeling meningitis taking critical role of healthcare
infrastructure, regulatory oversight, and public awareness in ensuring the availability and administration of genuine medications
as these may affect the rate of disease mortality and its transmission ensuring there well flow of non-counterfeit drugs in health
facilities and ensuring that the public is well informed on the existence of wrong provider of these counterfeit drugs will greatly
improve on curbing the spread and mortality rate due to meningitis. In this research, bacterial meningitis with vaccination and
non-counterfeit and counterfeit medicine treatment is presented. The model is numerically simulated and subjected to qualitative
analysis to help guide policy decisions about disease control.

1.0.1. Research question ?
What is the impact of counterfeit and non-counterfeit drugs during the outbreak of bacterial meningitis. How will it affect the

general public.

2. Model formulation
We use a set of ordinary differential equations to create a mathematical model for this one. The dynamics of bacterial

meningitis were investigated using mathematical techniques to find threshold parameters for nonlinear ordinary differential
equations. To ascertain their impact on the model’s outcomes, sensitivity analysis of the model parameters as well as
quantitative and qualitative analyses of the model were examined. Our model incorporates the dynamics of bacterial meningitis
with vaccination and treatment using both non-counterfeit and counterfeit medications.

We provide a mathematical compartmental model in which the host population is split up into various classes; susceptible S
(Healthy individuals who are at risk of a disease), infected with or without symptoms I (people who have contracted the illness
and become unwell); Vaccinated V (well individuals immunized against the illness); Exposed E (healthy people who are more
subjected to or is in direct contact with a particular risk or harmful condition than others); Treated (Individuals who are
subjected to treatment using either counterfeit TC or non-counterfeit Tn drugs); Recovered R (individuals who have been
treated and acquiring temporal immunity or who are free of bacteria).

The infectious status is acquired immediately after the infection. As the period of time passed from the moment of the infection
to the moment of the recovery we assume that the total population is constant (that is, no births or immigration are considered).

Parameter definitions
π rate of recruitment
µ natural death rate
α rate at which susceptible individuals get exposed
λ force of infection
θ vaccination rate
ε rate at which the vaccinated individuals get exposed
τ death rate due to infection
ϕ death rate at treatment (TC)
ξ death rate at treatment (Tn)
ρ rate at which infected receive either counterfeit or non-counterfeit drugs
φ recovery rate for (Tn)
ω recovery rate for (TC)
σ rate at which recovered gain temporal immunity and return to susceptible
β infection rate
S susceptible individuals
V vaccinated individuals
E exposed individuals
I infected individuals
TC treated under counterfeit drugs
Tn treatment under non-counterfeit drugs
R recovered individuals

Table 1. Parameter Values for the Model
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2.1. Model Flow Chart

Figure 1. Flow chart for bacterial meningitis incorporating counterfeit and non-counterfeit drugs.
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2.2. Model equations

dS

dt
=π + σR+ (1− θ)V − θS − αS − µS (1)

dV

dt
=θS − (1− θ)V − εV − µV (2)

dE

dt
=αS + εV − λE − µE (3)

dI

dt
=λE − τI − ρI − (1− ρ)I − µI (4)

dTC
dt

=ρI − φTC − ωTC − µTC (5)

dTn
dt

=(1− ρ)I − ξTn − φTn − µTn (6)

dR

dt
=ωTC + φTn − σR− µR (7)

The force of infection is given by;

λ =
β(I + η1TC + η2Tn)

N

where λ is the force of infection, β is the infection rate and N=S+V+E+I+TC + TN+R

3. Model analysis

3.1. Bacterial meningitis without treatment and recovery

The model with meningitis was obtained by setting TC = Tn = R = 0 and obtain (8-11) . In this case we consider individuals
with meningitis and those the vaccinated and setting those at treatment (TC , Tn) and recovered to zero.

dS

dt
=π + σR+ (1− θ)V − θS − αS − µS (8)

dV

dt
=θS − (1− θ)V − εV − µV (9)

dE

dt
=αS + εV − λE − µE (10)

dI

dt
=λE − τI − ρI − (1− ρ)I − µI (11)

equation (8-11) can be considered in Ω. The region Ω=(S,V,E,I) ∈ R4
+ : N ≤ π

µ , is positively invariant. In this region, the
results for system (8-11)’s existence, uniqueness, and continuation hold true, and all of system solutions that started in Ω remain
in Ω for all time t > 0, supporting the model figure 1 is mathematically well posed and its dynamics can be considered in Ω.

3.2. Positivity of the system

We prove positivity by stating and proving the theorem below.
Theorem 3.1. For time t > 0, all of the system of equations (1-7) solutions with positive initial data remained positive.

Proof. We take the system of differential equations (1-7) and it follows directly from the first equation that;

dS

dt
=π + σR+ (1− θ)V − θS − αS − µS (12)
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considering the negative term only;

dS

dt
=− (θ + α+ µ)S (13)

by separation of variables and integration, we have; ∫
dS

S
=

∫
−(θ + α+ µ)dt (14)

lnS(t) =

∫ t

0

−(θ + α+ µ)ds (15)

S ≥ e
∫ t
0
−(θ+α+µ)+C (16)

S(t) ≥ S(0)

∫ t

0

−(θ + α+ µ)dt > 0. (17)

(18)

is non-negative function of t, thus S(t) stays positive. Similarly, by integration and applying the initial conditions, the positivity
of V (t), E (t), TC (t), Tn (t) and R (t) are proved along the same way as S (t) accordingly, from the system of equations (1-7), it
can be shown that,

V (t) ≥ V (0)

∫ t

0

−[(1− θ) + ε+ µ]V > 0. (19)

E(t) ≥ E(0)

∫ t

0

−(λ+ µ)E > 0. (20)

I(t) ≥ I(0)

∫ t

0

−(τ + ρ+ (1− ρ) + µ)I > 0. (21)

TC(t) ≥ TC(0)

∫ t

0

−(Φ + ω + µ)TC > 0. (22)

Tn(t) ≥ Tn(0)

∫ t

0

−(ξ + Φ + µ)Tn > 0. (23)

R(t) ≥ R(0)

∫ t

0

−(σ + µ)R > 0. (24)

(25)

3.3. Boundedness of the system

The boundedness of the system was verified by stating and proving the theorem below
Theorem 3.2. Let the feasible region be defined by;

Ω = S(t), V (t), E(t), I(t), TC , Tn, R(t) with the initial conditions S(0) ≥ 0, V (0) ≥ 0, E(t) ≥ 0, I(0) ≥ 0, TC ≥ 0, Tn ≥
0, R(t) ≥ 0. The region Ω is positively invariant and attracting with respect to the system of equations (1-7) for all t > 0

Proof.

dN

dt
=
dS

dt
+
dV

dt
+
dE

dt
+
dI

dt
+
dTC
dt

+
dTn
dt

+
dR

dt
. (26)

Recovery and differential equation solution via variable separation do not exist in the absence of illness, integrating the
differential equation to obtain;

π

µ
−N ≥ π − µN0

µ
e−µt, (27)

As t→∞, the number of people in N → π
µ and this suggests that;

0 ≤ N < π
µ and N ≤ π

µ , therefore Ω = {S(t), V (t), E(t), I(t), TC(t), Tn(t), R(t) ∈ R7
+;N ≤ π

µ .
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This demonstrates that the solutions are bounded inside Ω. It means that for all t > 0, all of our system (1-7) solutions will start
in Ω and remain in Ω. Therefore, the proof can be concluded by taking into account the way our system behaves in Ω.

3.4. Disease free equilibrium

The disease free equilibrium point of the system of equations (1-7) is obtained by setting all the vaccinated class,exposed class,
the treated class , the infectious class and recovered class to zero.

π − µS0 = 0, (28)

S0 =
π

µ.
(29)

Therefore, the disease free equilibrium point for our system is given by,
ζ0 = (S0, V 0, E0, I0, T 0

C , T
0
n , R

0) = (πµ , 0, 0, 0, 0, 0, 0) as seen in figure 2.
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Figure 2. Over time, the population of infectious cholera cases in the absence of bacterial meningitis disease

3.5. Effective Reproduction number

Using the next generation matrix method [11, 12], the effective reproduction number of the bacterial meningitis model is
obtained as follows;

f =


λE
0
0
0

 , (30)

(31)

v =

 (τ + ρ+ (1− ρ) + µ)I
−ρI + (φ+ ω + µ)TC

−(1− ρ)I + (ξ + φ+ µ)Tn

 (32)
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The matrices F and V are obtained by determining the jacobian matrices of F and V to obtain the eigenvalues at D.F.E FV −1 we
obtain;
Y1 = 0
Y2 = 0

Y3 =
ζ0β(1+

ρη1
µ+φ+ω−−1+ρη2

µ+ξ+φ)

1+τ+µ

Theorem 3.3. If R0 < 1 the D.F.E of bacterial meningitis was locally asymptotically stable and unstable otherwise.

Proof. Calculating the following Jacobian matrix for our equations (1-7)

f1 =π + σR+ (1− θ)V − θS − αS − µS,
f2 =θS − (1− θ)V − εV − µV,
f3 =αS + εV − λE − µE,
f4 =λE − τI − ρI − (1− ρ)I − µI,
f5 =ρI − φTC − ωTC − µTC ,
f6 =(1− ρ)I − ξTn − φTn − µTn,
f7 =ωTC + φTn − σR− µR.

The force of infection is given by λ = β(I+η1TC+η2Tn)
N

Determining the Jacobian matrix at D.F.E we obtain;

−θ − α− µ 1− θ 0 0 0 0 σ
θ −1− ε+ θ − µ 0 0 0 0 0
α ε −µ −β −βη1 −βη2 0
0 0 0 β − τ − 1− µ βη1 βη2 0
0 0 0 ρ −φ− ω − µ 0 0
0 0 0 1− ρ 0 −ξ − φ− µ 0
0 0 0 0 ω φ −σ − µ


the sidetermine signs of the eigen values using Routh-Hurwitz criterion. The characteristic function |A − XiI| = 0 with

i=1,2,3,4,5,6,7.
by Routh-Harwitz criterion for determining the negatives real signs of the eigen values of the cubic polynomial are;

λ7 + a1λ
6 + a2λ5 + a3λ4 + a4λ3 + a5λ2 + a6λ1 + a7 with conditions:

a1 > 0, a1a2a3a4a5a6 > a7 > 0

from the characteristic polynomial the values of a1, a2,a3, a4, a5, a6 and a7 expressed in terms of R∗
0 are;

a1 = −1
a2 = −2−α+ 1+µ+τ

S(1+
ρη1

µ+φ+ω− (−1+ρ)η2
µ+ξ+φ)

−ε−7µ−ξ−σ−τ−2φ−ω a3 = −1−2α+ 1+µ+τ

S(1+
ρη1

µ+φ+ω− (−1+ρ)η2
µ+ξ+φ)

+α 1+µ+τ

S(1+
ρη1

µ+φ+ω− (−1+ρ)η2
µ+ξ+φ)

−

ε−αε+ 1+µ+τ

S(1+
ρη1

µ+φ+ω− (−1+ρ)η2
µ+ξ+φ)

ε+αθ−εθ−12µ−6αµ+6 1+µ+τ

S(1+
ρη1

µ+φ+ω− (−1+ρ)η2
µ+ξ+φ)

µ−6εµ−21µ2−2ξ−αξ+ 1+µ+τ

S(1+
ρη1

µ+φ+ω− (−1+ρ)η2
µ+ξ+φ)

ξ−

εξ−6µξ−2ρ−αρ+ 1+µ+τ

S(1+
ρη1

µ+φ+ω− (−1+ρ)η2
µ+ξ+φ)

ρ−ερ−6µρ−ξρ−τ−ατ−ετ−6µτ−ξτ−ρτ−4φ−2αφ+2 1+µ+τ

S(1+
ρη1

µ+φ+ω− (−1+ρ)η2
µ+ξ+φ)

φ−

2εφ−12µφ−ξφ−2ρφ−2τφ−φ2−2ω−αω+ 1+µ+τ

S(1+
ρη1

µ+φ+ω− (−1+ρ)η2
µ+ξ+φ)

ω−εω−6µω−ξω−ρω−τω−φω+ 1+µ+τ

S(1+
ρη1

µ+φ+ω− (−1+ρ)η2
µ+ξ+φ)

ρη1+

1+µ+τ

S(1+
ρη1

µ+φ+ω− (−1+ρ)η2
µ+ξ+φ)

η2− 1+µ+τ

S(1+
ρη1

µ+φ+ω− (−1+ρ)η2
µ+ξ+φ)

ρη2. The values for a3, a4, a5a6 and a7 are given in the supplementary materials

provided. This made the evidence complete. This outcome indicates believed bacterial meningitis would vanish at any time
provided R < 1, if the original prerequisites of the disease dynamics start in the vicinity of D.F.E.
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3.6. Global stability of the D.F.E

The system of equation (1-7) was proved to lie in the positive region using theorems in section (40-41). The global stability of
disease free equilibrium was investigated using Metzler matrix stability method proposed by [13].

dX

dt
=F (X,Z) (33)

dZ

dt
=G(X,Z), G(X, 0) = 0 (34)

where:X = (S, V,E,R) ∈ R4
+ denotes non-infectious bacterial meningitis compartment and Z = (I, TC , Tn) ∈ R3

+ denotes
the infectious bacterial meningitis compartment ζ0 = (X∗, 0) represents the disease free equilibrium of the system if this point
satisfies following condition:
i.dXdt = F (X, 0), where X∗ is globally asymptotically stable.
ii.dZdt = DZG(X, 0)Z − G(X,Z) ≥ 0 for all (X,Z) ∈ Ω, then we can conclude that ζ0 is locally asymptotically stable if the
following theorems holds:

Theorem 3.4. The equilibrium point ζ0(X∗, 0) of the system (1-7) is globally asymptotically stable if R∗
0 ≤ 1 and the

conditions (i) and (ii) are satisfied, otherwise unstable.

Proof. Let X=(S,V,E,R) and Z=(I, TC , Tn), be the new variables and the sub-systems of the system model (1-7). From equation
(1-7) two vector functions G(X, Z) and F(X, Z) are obtained, we consider reduced systems,

F(X, 0)=


π − µS,

0,
0,
0.

 It is noted that this is an asymptomatic dynamics system independent of the initial condition in Ω;

therefore, the convergence of the solutions of the reduced system (1-7) is global in Ω by computing:
Ĝ(XZ) = DZG(X∗, 0)Z −G(XZ)
Ĝ(X,Z) ≥ 0. Now let A=DZG(X∗.0), which is the jacobian of Ĝ(X,Z) taken in (I, TC , Tn) and evaluated at (X∗, 0), such
that the matrix A is given by;

A=

β − τ − 1− µ βη1 βη2

ρ −φ− ω − µ 0
1− ρ 0 −ξ − φ− µ


AZ=

(β − τ − 1− µ)I βη1TC βη2Tn
ρI (−φ− ω − µ)IC

(1− ρ)I (−ξ − φ− µ)In


Ĝ(X,Z) =


(1− S

N )β(I + TCη1 + η2Tn)
0
0
0

. Therefore if Ĝ(X,Z) ≥ 0, then the disease free equilibrium, ζ0 is globally

asymptotically stable otherwise its unstable. Since S ≤ N , S
N ≤ 1, thus D(X,Z) ≥ 0 for all X,Z ∈ R3

+, then, the D.F.E will
be globally asymptotically stable. Its clear that matrix A is an M-matrix since the off-diagonal elements of A are non-negative.
Therefore, this proves that G.D.F.E is globally asymptotically stable. This complete the proof. This result show that cholera
would die out wheneverR∗

0 < 1 irrespective of the initial conditions.

3.7. Bifurcation

One can investigate the bifurcation analysis by employing center manifold theorems [14]. For the sake of
straightforwardness, the variables are changed first. Let S=y1, V= y2, E = y3, I = y4, TC = y5, Tn = y6, R = y7. Further, by
using vector notation, y=(y1, y2, y3, y4, y5, y6, y7), the meningitis model (42-48) is composed in the format dy

dt = F (y), with
F=(p1, p2, p3, p4, p5, p6) as follows:
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ẏ1 = p1 =π + σy7 + (1− θ)y2 − θy1 − αy1 − µy1, (35)
ẏ2 = p2 =θy1 − (1− θ)y2 − εy2 − µy2, (36)

ẏ3 = p3 =αy1 + εy2 −
β(y4 + η1y5 + η2y6)

N
y3 − µy3, (37)

ẏ4 = p4 =
β(y4 + η1y5 + η2y6)

N
y3 − τy4 − ρy4 − (1− ρ)y4 − µy4, (38)

ẏ5 = p5 =ρy4 − φy5 − ωy5 − µy5, (39)
ẏ6 = p6 =(1− ρ)y4 − ξy6 − φy6 − µy6, (40)
ẏ7 = p7 =ωy5 + φy6 − σy7 − µy7. (41)

where, λ = β(I + η1TC + η2Tn) The process comprises assessing the system (42-48)’s Jacobian at D.F.E
ζ0
∗(S0

∗ , V
0
∗ , E

0
∗ , I∗

0, T 0
C∗, T

0
n∗, R

0
∗) = ( θπµ , 0, 0, 0, 0, 0), indicated by J(ζ0

∗), we obtain

JE0
∗ =



−θ − α− µ 1− θ 0 0 0 0 σ
θ −1− ε+ θ − µ 0 0 0 0 0
α ε −µ −β −βη1 −βη2 0
0 0 0 β − τ − 1− µ βη1 βη2 0
0 0 0 ρ −φ− ω − µ 0 0
0 0 0 1− ρ 0 −ξ − φ− µ 0
0 0 0 0 ω φ −σ − µ


(42)

(43)

we consider the case where R∗
0 = 1. If β = β∗ is selected as the bifurcation parameter, then β∗ can be found by solving for

R∗
C = 1:

β∗ = 1+µ+τ

S(1+
ρη1

µ+φ+ω− (−1+ρ)η2
µ+ξ+φ)

The theorem by [15], investigated the following broad system of β∗-parameterized ordinary

differential equations

dy
dx = f(y, β∗), f : Rn×R −→ Rn and f ∈ C2(R2) in which the system’s equilibrium point is 0(which is, f(y, β∗) ≡ 0 and

1) A = DY f(0, 0) = ( δPi
δyj(0,0) ), is the system’s linearization matrix for the region surrounding its equilibrium with 0 β∗

evaluated at 0;

2) The only simple eigenvalue of A is zero, while all other eigenvalues of A contain negative real components.

3) The zero eigenvalue is represented by the right eigenvector u and the left eigenvector v of matrix A. Suppose that pk is the
kth component of p.

a =

n∑
k,ij=1

vkuiuj
δ2pk
δyiδβ∗ (0, 0)

b =

n∑
k,ij=1

vkui
δ2pk
δyiδβ∗ (0, 0)

(44)

then the local dynamics of the system around the equilibrium point (0,0) is totally determined by the signs of a and b.
Particularly when:

i. a > 0 and b > 0, when β∗ < 0 with |β∗| << 1, (0, 0), is locally asymptotically stable and there exists a positive unstable
equilibrium; 0 < β∗ << 1, (0, 0) is unstable and there exists a negative and locally asymptotically stable equilibrium.

ii. a < 0 and b < 0 when β∗ < 0 with |β| << 1, (0, 0), is unstable; when 0 < β << 1, (0, 0) is asymptotically stable and
there exists a positive unstable equilibrium.

iii. a < 0 and b > 0, when β∗ < 0 is unstable, and there exists a negative and locally asymptotically stable equilibrium; when
0 < β << 1, (0, 0) is stable and there exists a positive unstable equilibrium.
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iv a < 0 and b > 0, when β∗ changes from negative to positive, (0,0) changes its stability from stable to unstable.
Correspondingly a negative equilibrium becomes positive and locally asymptotically stable.

a < 0 and b > 0, then a backward bifurcation occurs at β∗ = 0[16]. Jacobian [J(E0
∗)] at β = β∗ (denoted by J∗

β ) has a right
eigen vector given by u= [u1, u2, u3, u4, u5, u6, u7]T , let u3 = u3 > 0, then

u1 =
(1− θ)v2 + ρv7

θ + α+ µ
(45)

u2 =
−θv1

−1− ε+ θ − µ
(46)

u3 =
αv1 + εv2 − βv4 − βη1v5 − βη2v6

µ
(47)

u4 =
−βη1v5 − βη2v6

β − τ − 1− µ
(48)

u5 =
ρv4

φ+ ω + µ
(49)

u6 =
(1− ρ)v4

ξ + φ+ µ
(50)

u7 =
ωv5 + φv6

ρ+ µ
(51)

(52)

Further, J∗
β has a left eigenvectors v=[v1, v2, v3, v4, v5, v6, v7], let v1 = v1 > 0

v1 =
(1− θ)v2 + ρv7

θ + α+ µ
(53)

v2 =
−θv1

−1− ε+ θ − µ
(54)

v3 =
αv1 + εv2 − βv4 − βη1v5 − βη2v6

µ
(55)

v4 =
−βη1v5 − βη2v6

β − τ − 1− µ
(56)

v5 =
ρv4

φ+ ω + µ
(57)

v6 =
(1− ρ)v4

ξ + φ+ µ
(58)

v7 =
ωv5 + φv6

ρ+ µ
(59)

(60)

v1 =
θu2 + αu3

θ + α+ µ
(61)

v2 =
−(1− θ)u1 − ξu3

−1− ξ + θ + µ
(62)

v3 =0 (63)

v4 =
−ρu5 − (1− ρ)u6

β − τ − 1− µ
(64)

v5 =
βη1u4 + ωu7

θ + ω + µ
(65)

v6 =
βη2u4 + φu7

ξ + φ+ µ
(66)

v7 =
σu1

σ + µ
(67)
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dp3

dy3
=− µ− β(

y4 + η1y5 + η2y6

N
) (68)

d2p3

dy3dy4
=− β

N
(69)

d2p3

dy3dy5
=− β η1

N
(70)

d2p3

dy3dy6
=− β η2

N
(71)

dp4

dy3
=β(

y4 + η1y5 + η2y6

N
) (72)

d2p4

dy3dy4
=
β

N
(73)

d2p4

dy3dy6
=
βη3

N
(74)

a =v3[−2u3u4
β

N
− 2u3u5

βη1

N
− 2u3u6

βη2

N
] + v4[2u3u4

β

N
+ 2u3u5

βη1

N
+ 2u3u6

βη2

N
] (75)

dp3

dy3
=− µ− β(

y4 + η1y5 + η2y6

N
) (76)

d2p3

dy3dβ∗ =− (
y4 + η1y5 + η2y6

N
) (77)

atD.F.E(0, 0), y4 = y5 = y6 = 0 (78)
dp3

dy4
=− βy3

N
(79)

d2p3

dy4dβ∗ =− y3

N
(80)

dp3

dy5
=− η1βy3

N
(81)

d2p3

dy5β∗ =− η1y3

N
(82)

dp3

dy6
=− βy3η2

N
(83)

d2p3

dy6dβ∗ =− η2y3

N
(84)

dp4

dy3
=
β(y4 + η1y5 + η2y6)

N
(85)

d2p4

dy3dβ∗ =
(y4 + η1y5 + η2y6)

N
(86)

atD.F.E(0, 0), y4 = y5 = y6 = 0 (87)
dp4

dy4
=
β

N
− τ − 1− µ (88)

d2p4

dy4dβ∗ =
1

N
(89)

dp4

dy5
=
βη1

N
(90)

d2p4

dy5dβ∗ =
η1

N
(91)

dp4

dy6
=
βη2

N
(92)

d2p4

dy6dβ∗ =
η2

N
(93)

b =v3[−u4
y3

N
− u5

η1y3

N
− u6

η2

N
] + v4[

u4

N
+
η2u5

N
+
u6η2

N
] (94)
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but v1 > 0, b > 0. Hence a < 0 and b > 0, when β∗ < 0 with |β∗| <<, (0, 0) is unstable and there exists a negative and
locally asymptotically stable equilibrium; when 0 < β∗ << 1, (0, 0) is stable and there exists a positive unstable equilibrium.
The direction of the bifurcation of system (1-7) at R0 > 1 is forward. Since the bifurcation parameter changes from negative
to positive and the disease free equilibrium changes its stability from negative to positive. Therefore, When R0 < 1, there is no
backward bifurcation, demonstrating that bacterial meningitis can be wiped out.

3.8. Existence of endemic equilibrium point

A point at which the infection cannot be completely eliminated but endures within the population is known as the point of
endemic equilibrium. The vulnerable class, the transmissible class, and the therapy class must not equal zero at equilibrium
state for the infection to continue in the population. Thus, the condition required and sufficient for the existence of an endemic
equilibrium point is determined in this section. The contagious classes at EEP;

λE − Ω1I, ρI − Ω2TC , (1− ρ)I − Ω3Tn (95)

our new equations reduces on solving for Tn. We obtain;

Tn =
I(−1 + ρ)

Ω3
(96)

Solving for I we obtain;

I =
TCΩ2

ρ
(97)

solving for Tn and replacing in equation (95-96) we obtain;

−Eβ(−1 + ρ)η2Ω2 + (Eβρη1 + (Eβ − Ω1)Ω2)Ω3

ρΩ3
(98)

Which correspond back to the fundamental reproduction number, which demonstrate the disease’s persistence; therefore, the
existence of the endemic equilibrium point (E.E.P) completes the proof as seen in figure 3.
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Figure 3. With time and the existence of meningitis illness, the population of infectious bacterial meningitis

UNDER PEER REVIEW



13

3.9. Global stability of EEP

The requirement for the stability of the endemic equilibrium point was ascertained using a Lyapunov stability criterion. We
found requirements that must be met in order to guarantee global asymptotic stability for the derivative of the Lyapunov function
to be negative definite. For the system of reduced equations;

3.10. Model equations

dS

dt
=π + σR+ (1− θ)V − θS − αS − µS, (99)

dV

dt
=θS − (1− θ)V − εV − µV, (100)

dE

dt
=αS + εV − λE − µE, (101)

dI

dt
=λE − Ω1I, (102)

dTC
dt

=ρI − Ω2TC , (103)

dTn
dt

=(1− ρ)I − Ω3Tn, (104)

dR

dt
=ωTC + φTn − σR− µR. (105)

The reproducibility number of control (R∗
o), the intensity of the illness (λ∗), D.F.E ζ0 = (S0, I0, T 0, R0, S0

0 , I
0
0 , T

0
0 , R

0
0) =

(πµ , 0, 0, 0,
(1−θ)π
N , 0, 0, 0) and E.E.P E∗ = (S∗, I∗, T ∗, R∗, S∗

0 , I
∗
0 , T

∗
0 , R

∗
0) of system (106-112) are provided by the Lyapunov

function that follows
K(S, V,E, I, TC , Tn, R) = S−S∗−S∗Ln S

S∗ +y1(V −V ∗−V ∗Ln V
V ∗ ) +y2(E−E∗−E∗Ln E

E∗ ) +y3(I− I∗− I∗Ln I
I∗ ) +

TC − T ∗
C − T ∗

CLn
TC
T∗
C

+ y5(Tn − T ∗
n − T ∗

nLn
Tn
T∗
n

) + y6(R−R∗ −R∗Ln R
R∗ ),

where y1, y2, y3, y5, y6 are to be determined as positive constants. The function of Lyapunov K(S, V,E, I, TC , Tn, R) satisfies
the conditions K(S∗, V ∗, E∗, I∗, T ∗

C , T
∗
n , R

∗
0) = 0 and K(S, V,E, I, TC , Tn, R) > 0, it is therefore positive definite for;

dk(S, V,E, I, TC , Tn, R)

dt
. (106)

It must meet in order to be negative categorical,

dk(S∗, V ∗, I∗, T ∗
C , T

∗
n , R

∗
0)

dt
= 0, (107)

and

dk(S∗, V ∗, E∗, T ∗
C , T

∗
n , R

∗)

dt
< 0, (108)

the E.E.P E∗ = (S∗, V ∗, E∗, I∗, T ∗
C , T

∗
n , R

∗) for the system satisfies,
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π =µS∗∗ + αS∗∗ + θS∗∗ − (1− θ)V ∗∗ − ρR∗∗ (109)
θS∗∗ =αS∗ ∗+EV ∗ ∗+µV ∗∗ (110)

λ∗∗E∗∗ =αS∗∗ + EV ∗∗ − µE∗∗ (111)
λ∗ ∗ E∗∗ =Ω1I

∗∗ (112)
Ω2T

∗∗
C =∗∗ (113)

Ω3T
∗∗
n =(1− ρ)I (114)

Ω4R
∗∗ =ωT ∗∗

C + φT ∗∗
n (115)

dK(S, V,E, I, TC , Tn, R) = (1− S∗∗

S )dSdt + y1(1− V ∗∗

V )dVdt + y2(1− E∗∗

E )dEdt + y3(1− dI
dt )

dI
dt + (1− T∗∗

C

TC
)dTCdt + y4(1−

T∗∗
n

Tn
)dTndt + (1− dR∗∗

0

R0
)dR0

dt

substituting for dSdt ,
dI
dt ,

dT
dt ,

dR
dt ,

dS0

dt ,
dI0
dt ,

dT0

dt ,
dR
dt in the equation we to obtain

dK(S, V,E, I, TC , Tn, R) = (1− S∗∗

S )dSdt + y1(1− V ∗∗

V )dVdt + y2(1− E∗∗

E )dEdt + y3(1− I∗∗

I )dIdt + y4(1− T∗∗
C

TC
)dTCdt + y5(1−

T∗∗
n

Tn
)dTndt + y6(1− R∗∗

R )dRdt substituting for dSdt ,
dV
dt ,

dE
dt ,

dI
dt ,

dTC
dt ,

dTn
dt ,

dR
dt in the equation we to obtain

dk(S, V,E, I, TC , Tn, R) = (1 − S∗∗

S )(π + ρR + (1 − θ)V − θS − αS − µS − ρR − (1 − θ)V + θS + αS + αS + µS) +

y1(1− V ∗∗

V )(θS − (1− θ)V − εV − µV ) + y2(1− E∗∗

E (αS + εV − λE − µE) +3 (1− I∗∗

I )(λE −Ω1I) + y4(1− T∗∗
C

TC
)(ρI −

Ω2TC) + y5(1− T∗∗
n

Tn
)(1− ρ)I − Ω3Tn) + y6(1− R∗∗

R )(ωTC + φTn − Ω4R)

dk(S, V,E, I, TC , Tn, R) = µS∗∗ +αS∗∗ + θS∗∗ − (1− θ)V 6∗∗− ρR∗∗ + ρR+ (1− θ)V − θS −αS − µS − S∗∗

S µS∗∗ −
S∗∗

S αS∗∗ − S∗∗

S θS∗∗ + S∗∗

S (1 − θ)V ∗∗ + S∗∗

S ρR∗∗ − S∗∗

S ρR − (1 − θ)V S∗∗

S + θS S
∗∗

S + S∗∗

S αS + S∗∗

S µS + θy1S − (1 −
θ)V y1 − εV y1 − V ∗∗

V y1θS + V ∗∗

V y1(1 − θ)V + V ∗∗

V εy1V + V ∗∗

V µV y1 + αy2S + εy2V − λy2E − µy2E − E∗∗

E αy2S −
E∗∗

E Ey2V + E∗∗

E λy2E + E∗∗

E µy2E + λy3E − Ω1y3I − I∗∗

I y3Ω1I + ρy4I − Ω2y4TC − T∗∗
C

TC
ρy4I +

T∗∗
C

TC
Ω2y4TC + (1 −

ρ)y5I − Ω3y5Tn − T∗∗
n

Tn
(1 − ρ)y5I +

T∗∗
n

Tn
Ω3y5Tn +6 TC + φy6Tn − Ω4y6R − R∗∗

R y6φy6Tn + R∗∗

R Ω4R

dk(S, V,E, I, TC , Tn, R) = µS∗∗ + αS∗∗ + θS∗∗ − (1 − θ)V ∗∗ − ρR∗∗ + ρR + (1 − θ)V − θS − αS − µS − S∗∗

S µS∗∗ −
S∗∗

S αS∗∗ − S∗∗

S θS∗∗ + S∗∗

S (1 − θ)V ∗∗ + S∗∗

S ρR∗∗ − S∗∗

S ρR − (1 − θ)V S∗∗

S + θS S
∗∗

S + S∗∗

S αS + S∗∗

S µS + θy1S − (1 −
θ)V y1− εV y1−µV y1− V ∗∗

V y1θS+ V ∗∗

V y1(1− θ)V + V ∗∗

V εy1V + V ∗∗

V µV y1 +αy2S+ εy2V −λy2E−µy2E− E∗∗

E αy2S−
V ∗∗

V εy2V + V ∗∗

V λy2E + V ∗∗

V µy2E + λy3E −Ω1y3I − I∗∗

I λy3E + V ∗∗

V y3Ω1I + ρy4I −Ω2y4TC − T∗∗
C

TC
ρy4I + V ∗∗

V Ω2y4Tc +

(1 − ρ)y5I − Ω3y5Tn − T∗∗
n

Tn
(1 − ρ)y5I +

T∗∗
n

Tn
Ω3y5Tn + ωy6TC + φy6Tn − Ω4y6R − R∗∗

R y6ωTC − R∗∗

R φy6Tn + R∗∗

R Ω4R

λ = β (I+η1TC+η2Tn)
N ,

I(s) = −βIN + y1βI
N ,

TC = −βη1TCN + y1βTC
N ,

Tn = −βη2TnN + y1βη2Tn
N ,

dk(S, V,E, I, TC , Tn, R) = µS∗∗+αS∗∗+θS∗∗−(1−θ)V ∗∗−ρR∗∗+ρR+(1−θ)V −θS−αS−µS−S∗∗

S µS∗∗−S∗∗

S αS∗∗−
S∗∗

S θS∗∗+ S∗∗

S (1−θ)V ∗∗+ S∗∗

S ρR∗∗− S∗∗

S ρR−(1−θ)V S∗∗

S +θS S
∗∗

S + S∗∗

S αS+ S∗∗

S µS+θy1S−(1−θ)V y1−εV y1−µV y1−
V ∗∗

V y1θS+V ∗∗

V y1(1−θ)V +V ∗∗

V εy1V +V ∗∗

V µV y1+αy2S+εy2V −[−βIN + y1βI
N I+−βIN + y1βI

N TC+−βη2TnN + y1βη2Tn
N Tn]y2E−

µy2E− E∗∗

E αy2S− V ∗∗

V εy2V + V ∗∗

V λy2E+ V ∗∗

V µy2E+λy3E−Ω1y3I− I∗∗

I λy3E+ V ∗∗

V y3Ω1I+ρy4I−Ω2y4TC− T∗∗
C

TC
ρy4I+

V ∗∗

V Ω2y4Tc+(1−ρ)y5I−Ω3y5Tn−T
∗∗
n

Tn
(1−ρ)y5I+

T∗∗
n

Tn
Ω3y5Tn+ωy6TC+φy6Tn−Ω4y6R−R

∗∗

R y6ωTC−R
∗∗

R φy6Tn+R∗∗

R Ω4R

I βN (y1 − 1) = 0,
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I βN 6= 0,

y1 − 1 = 0, (116)
y1 =1, (117)

y2 =
−θ
θ

(118)

y3 =− θµ

αλ
(119)

y4 =0 (120)

y5 =− −Ω1θµ

αλ
(121)

y6 =0 (122)

P=µS∗∗ + αS∗∗ + ρR+ (1− θ)V + S∗∗

S (1− θ)V ∗∗ + S∗∗

S ρR∗∗ + θS S
∗∗

S + αS S
∗∗

S + µS S
∗∗

S + θS − (1− θ)V − εV − µV −
V ∗∗

V θS + V ∗∗

V (1− θ)V + V ∗∗

V εV + V ∗∗

V µV + µθ
α E + E∗∗

E θS + E∗∗εθ
Eα V + Ω1θµ

αλ + I∗∗θµ
Iα

Q=−θS − εθ
α V − E∗∗

E λµθα E − E∗∗

E
µθ
α E − θµ

α − Ω1θµ
αλ − I∗∗

I
θµ
λαΩ1I Then dK

dt = 0, holds only when
(S = S∗∗, V = V ∗∗, I = I∗∗, TC = T ∗∗

C ),Tn = T ∗∗
n ,R = R∗∗ Consequently, the largest compact unchanging set in

(S;E; I) ∈ u: dv
dt = 0 is the singleton E∗∗

∗ using Lasalle’s invariance principal, dL(S,I,A,R)
dt < 0 if and only if P > Q [17].

This finding indicates that bacterial meningitis would continue regardless of the starting circumstances anytime P > Q.

4. Model parameters used for simulation

In order to examine the dynamic Runge-Kutta analysis of the framework’s state variables’ dynamics when the model
specifications are present technique is applied to the model equations in this section and then utilized to do numerical
simulations using the fourth order Runge-Kutta method in MatlabR2015a. An ordinary differential equation’s initial value
problem can be solved numerically using the Runge-Kutta method. The initial conditions and parameters values listed in table 2
are used to carry out the numerical simulations and a graphical presentation of the numerical results is made.

Parameter Value Source
π 100-100000 [18]
µ 0.02 [19]
λ 0.00005 assumed
α 0.02 assumed
θ 0.5 [20]
ε 0.6 assumed
τ 0.05-0.5 [2]
ϕ 0.6 assumed
ξ 0.05 assumed
φ 0.5 assumed
ω 0.045 assumed
ρ 0.6 assumed
σ 0.851 [21]
β 0.88 [2]
S 3219640 assumed
V 495329 [22]
E 742993 assumed
I 247664 assumed
TC 33682 assumed
Tn 213982 assumed
R 181885 [23]

Table 2. Parameter values and initial conditions for the Model
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4.1. Sensitivity study of fundamental reproduction numbers normalized

Differential calculus is used to do parameter sensitivity analysis. The investigation entails looking at the parameter that has
the biggest impact on the fundamental reproduction number as in table 3. It is commonly used to determine the robustness of
model predictions to parameter values since there are errors in collecting data or pre-assumed parameter values. It is used to
discover parameters that have high impact on R0 and should be targeted by intervention strategy. Sensitivity indices allow us to
measure the relative change in a variable when a parameter changes. The normalized forward sensitivity index of a variable with
respect to a parameter is the ratio of the relative change in the parameter. Since errors can occur in data collection or pre-assumed
parameter values, it is frequently used to assess how resistant model predictions are to parameter values.

Parameters Sensitivity indices
µ -0.000682545
φ -0.203802
ϕ 0.110635
ω 0.226211
ρ -45.2403
η1 0.00557279
η2 1.0021
τ -0.0475964

Table 3. Sensitivity index of the model

4.2. The impact of bacterial meningitis disease on susceptible population.
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Figure 4. Number of vulnerable individuals across period

From literature, it’s known that without an outbreak of any disease the population of any given place is supposed to increase
exponentially as we only have rates of natural births and mortality. In case of an outbreak like bacterial meningitis has negative
effect on the general public population as it tends to grow slowly, as some will be infected and others will be vaccinated hence
leaving the susceptible class, the susceptible population decrease with time until a certain point where it remain constant, if
appropriate and early intervention measures are not implemented, more individuals will contract bacterial meningitis. The
transmissibility of bacterial meningitis also increases as the volume of bacteria in the environment increases, as observed in
figure 4.
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4.3. The impact of bacterial meningitis disease on vaccinated population.
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Figure 5. Number of vaccinated individuals across period

Vaccines reduce risks of getting a disease by working with your body’s natural defenses to build protection. When you get a
vaccine, your immune system responds. As individual gets vaccinated the population increases to a maximum point then start
decreasing as some don’t respond well to the vaccines and others may get exposed to bacterial meningitis. Vaccination is key
to primary health care, an indisputable human right, and one of the best health investments money can buy. Vaccines are also
critical to the prevention and control of bacterial meningitis outbreaks. They underpin global health security and are a vital tool
in the battle against antimicrobial resistance as observed in figure 5.
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4.4. The impact of bacterial meningitis disease on exposed population.
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Figure 6. Number of exposed individuals across period

During bacteria meningitis outbreaks most individuals gets exposed to the disease either knowingly or unknowingly and
become at risk of infections, higher risk is seen when people are living in close proximity, for example at mass gatherings, in
refugee camps, in overcrowded households or in student, military and other occupational settings. The exposed population in
figure 6 increases to a maximum point then start decreasing as most them will get screened and get early diagnosis against the
disease.
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4.5. The impact of bacterial meningitis disease on infected population.
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Figure 7. Number of infected individuals across period

If an individual is infected with bacterial meningitis either through direct contact with respiratory or throat secretions the
population increases to a maximum point then decreases as diagnosis methods are applied. Without treatment, bacterial
meningitis can lead to serious complications, such as brain damage, hearing loss, seizures, and in some cases, death. Even with
treatment, some patients may experience long-term neurological problems or disabilities as seen in figure 7.
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4.6. The impact of bacterial meningitis disease on treated with counterfeit drugs population.
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Figure 8. Number of treated with counterfeit drugs individuals across period

Treating individuals with counterfeit drugs can have serious consequences for their health and well-being. Counterfeit drugs
are medications that are deliberately and fraudulently mislabeled with respect to their identity or source. As seen in fig 8 the
population increases sharply then decrease and maintain at a level where more people remain infected with the disease. Some
of the effect of counterfeit drugs include;lack of efficacy, toxicity and side effects, Public Health Concerns. To mitigate the risks
associated with counterfeit drugs, regulatory agencies and healthcare providers play a crucial role in ensuring the integrity of the
pharmaceutical supply chain. Patients should also be vigilant and obtain medications from reputable sources, such as licensed
pharmacies and healthcare providers.
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4.7. The impact of bacterial meningitis disease on non counterfeit drugs population.
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Figure 9. Number of treated with non-counterfeit drugs individuals across period

Treating bacterial meningitis with genuine, non-counterfeit drugs is crucial for effectively combating the infection and
improving patient outcomes. As observed in figure 9 the population initially increases then decreases gradually until its
maintained at base line level. using non-counterfeit, genuine drugs for treating bacterial meningitis is essential for effective
therapy, reducing complications, preventing resistance, and ensuring patient safety and recovery. Always obtaining medications
from reputable sources and following healthcare provider recommendations are crucial steps in ensuring effective treatment
outcomes.

UNDER PEER REVIEW



22

4.8. The impact of bacterial meningitis disease on recovered population.
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Figure 10. Number of recovered individuals across period

Recovery from bacterial meningitis is often a complex and ongoing process. While many individuals recover well,
understanding and addressing the potential long-term effects is crucial for improving quality of life and ensuring continued
support and care. The population increases as more are receiving medication as observed in figure 10. while recovery from
bacterial meningitis is a significant achievement, the impact on individuals and the broader community can be extensive.
Addressing the long-term effects, supporting survivors, and investing in preventive measures are crucial for mitigating these
impacts.
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4.9. A graph of variation of rate at which the vaccinated individuals get exposed on Vaccinated and exposed population.
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Figure 11. Number of vulnerable individuals across period

When considering bacterial meningitis, the differences between individuals who have been vaccinated and those who have
been exposed to the disease are significant. From figure 11 it can be seen that if you increase the rate at which vaccinated get
exposed it increases the vaccinated and exposed population and if you reduce the rate, it reduces the population of vaccinated and
exposed. In summary, vaccination against bacterial meningitis provides significant protection against severe disease, reduces the
risk of complications, and contributes to community-wide immunity. Natural exposure without vaccination, on the other hand,
poses a higher risk of severe disease and complications.
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4.10. A graph of variation of rate at which the exposed individuals get infected.
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Figure 12. Number of vulnerable individuals across period

The primary difference between exposed and infected individuals is the presence of symptoms and clinical disease. Exposure
means contact with the bacteria but does not necessarily lead to illness, while infection results in the actual disease with significant
health implications. From figure 12 it can be observed that increasing the force of infection leads to decreasing the exposed and
infected population and increasing the force of infection lead to decrease in exposed and infected population. Monitoring and
preventive measures are important for those exposed, particularly in high-risk settings, to prevent the progression to full-blown
bacterial meningitis.
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4.11. A graph of variation of the rate at which the infected individuals get treated using counterfeit drugs.
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Figure 13. Number of vulnerable individuals across period

The rate at which infected individuals receive counterfeit drugs for bacterial meningitis is influenced by factors including
geographic location, the strength of regulatory frameworks, the integrity of healthcare systems, public awareness, economic
conditions, and healthcare provider practices. From figure 13 if you increase rate at which infected receive counterfeit drugs the
population of infected and treated with counterfeit drugs increases and if you decrease rate at which infected receive counterfeit
drugs the population of infected and treated with counterfeit drugs decreases. Regions with weak regulatory systems and
healthcare infrastructure are more likely to see higher rates of counterfeit drug use, impacting the effectiveness of treatment and
patient outcomes.
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4.12. A graph of variation of the rate at which the infected individuals get treated using non counterfeit drugs.
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Figure 14. Number of vulnerable individuals across period

The rate at which infected individuals receive non-counterfeit drugs for bacterial meningitis is influenced by the quality of the
healthcare system, regulatory oversight, supply chain integrity, economic conditions, public awareness, and healthcare provider
practices. From figure 14 if you increase rate at which infected receive non- counterfeit drugs the population of infected decreases
while the treated population increases and if you decrease rate at which infected receive non- counterfeit drugs the population of
infected increases while the treated population decreases. Regions with strong healthcare infrastructure, effective regulations, and
high public awareness tend to have higher rates of non-counterfeit drug administration. Conversely, areas with weaker systems
and less regulatory control may face challenges in ensuring that all patients receive genuine medications.

4.13. Discussion and conclusion

The feasible region, positivity of the solution set, effective reproductive number, equilibria points, and their stability were
all obtained during the model analysis in section 3. Numerical simulation was carried out using Matlab software to show the
relationship between counterfeit and non counterfeit drugs. In those institution where there poor health system and limited
awareness to the public it become difficult to treat bacterial meningitis due to counterfeit drugs in the health system.
The government or health provider should be equipped with machines or personnel to determine the effectiveness of the drugs
administered to the people to minimize case of counterfeit drugs
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