
A Study On Dual Generalized Edouard Numbers

Abstract.In this research, we introduce the generalized dual Edouard numbers, a novel class of number

sequences that extends existing recurrence relations into a new mathematical framework. Several special

cases of these numbers are examined in detail, including the dual Edouard numbers and the dual Edouard-

Lucas numbers, each revealing intriguing combinatorial and algebraic properties.

Explicit expressions for these sequences are derived, such as Binet-type formulas, generating functions,

and summation identities, which offer analytical insight into their behavior and structural patterns. In

addition, we explore matrix representations associated with these sequences, providing an elegant algebraic

tool for further theoretical development and potential applications.
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1. Introduction

In mathematical and geometric contexts, a hypercomplex system refers to a framework that generalizes

the principles of complex numbers. These systems possess rich algebraic structures and are frequently studied

for their diverse applications in physics and engineering. Below, we provide a concise overview of the key

application areas of hypercomplex number systems in these fields.

In contrast to complex numbers, hypercomplex systems provide a more sophisticated framework for

representing transformations and symmetries in higher-dimensional spaces. As noted by Kantor in [20],

these systems can be viewed as extensions of the real number line, offering algebraic tools tailored to mul-

tidimensional analysis. The principal types of hypercomplex number systems encompass complex numbers,

hyperbolic numbers, and dual numbers. Complex numbers, defined by a real and an imaginary component,

serve as the foundational structure for more advanced hypercomplex systems. Hyperbolic numbers build
1
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upon the complex number framework and are employed in diverse mathematical models, particularly those

involving Lorentz transformations and spacetime geometries. Dual numbers, distinguished by the presence

of a dual unit whose square is zero, are instrumental in various algebraic constructions, including automatic

differentiation and kinematic analysis.

The following sections offer more detailed insights into the mathematical properties and application

areas of these hypercomplex systems.

• Complex numbers are constructed by extending the real number system through the introduction

of an imaginary unit, denoted as ”i”, which satisfies the identity i2 = −1. A complex number is

typically expressed in the form z = a + bi, where a and b are real numbers, and i represents the

imaginary unit.

• Hyperbolic numbers also referred to as double numbers or split complex numbers extend the real

number system by introducing a new unit element j, which satisfies the identity j2 = 1 [25]. These

numbers are distinct from real and complex numbers due to their unique algebraic properties. A

hyperbolic number is defined as:

H = {h = a+ jb : a, b ∈ R, j2 = 1, j 6= ±1}.

where a and b are real numbers and j is the hyperbolic unit. This structure enables the modeling of

systems with split-signature metrics and has notable applications in areas such as special relativity

and signal processing.

• Dual numbers [13] expand the real number system through the incorporation of a new element

ε, which satisfies the identity ε2 = 0. This infinitesimal unit distinguishes dual numbers from

other hypercomplex systems and makes them especially valuable in modeling instantaneous rates

of change. A dual number is defined as:

D = {d = a+ εb : a, b ∈ R, ε2 = 0, ε 6= 0}.

where a and b are real numbers, and ε is the nilpotent unit. Dual numbers are commonly used in

applications such as automatic differentiation, kinematics, and perturbation analysis, due to their

ability to elegantly encode infinitesimal variations.

• Among the non-commutative examples of hypercomplex number systems are quaternions [16].

Quaternions generalize complex numbers by incorporating three distinct imaginary units, typi-

cally denoted as i,j, and k. A quaternion has the form as a0+ ia1+ ja2+ka3, where a0, a1, a2, a3 ∈

R.These multiplication rules result in a non-commutative structure, meaning the order of multipli-

cation affects the result.The set of quaternion numbers is formally defined as:

HQ = {q = a0 + ia1 + ja2 + ka3 : a0, a1, a2, a3 ∈ R, i2 = j2 = k2 = ijk = −1},
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• Additional hypercomplex systems include octonions and sedenions, which are discussed in [19] and

[26]. The algebras C (complex numbers), HQ (quaternions), O (octonions), and S (sedenions) are

all constructed as real algebras derived from the real numbers R using a recursive procedure known

as the Cayley—Dickson Process. This technique successively doubles the dimension of each algebra

and continues beyond sedenions to produce what are collectively referred to as the 2n-ions.The

following table highlights selected publications from the literature that investigate the properties

and applications of these extended number systems.

For more information on hypercomplex algebra, see [22,17,24,21]

A dual hyperbolic number is a type of hypercomplex number, specifically a member of the hyperbolic

number system. A dual hyperbolic number is defined as follows

q = (a0 + ja1) + ε(a2 + ja3) = a0 + ja1 + εa2 + εja3

where a0, a1, a2, a3 ∈ R .

HD, the set of all dual hyperbolic numbers, are generally denoted by

HD = {a0 + ja1 + εa2 + εja3 : a0, a1, a2, a3 ∈ R, j2 = 1, j 6= ±1, ε2 = 0, ε 6= 0}.

The {1, j, ε, εj} is linearly independent, and the algebra HD is generated by their span, i.e. HD =

sp{1, j, ε, εj}

Therefore, {1, j, ε, εj} forms a basis for the dual hyperbolic algebra HD. For more detail, see [3].

The next properties are holds for the base elements {1, j, ε, εj} of dual hyperbolic numbers (commutative

multiplications):

1.ε = ε, 1.j = j, ε2 = ε.ε = (jε)2 = 0, j2 = j.j = 1

ε.j = j.ε, ε.(εj) = (εj).ε = 0, j(εj) = (εj)j = ε

where ε denotes the pure dual unit (ε2 = 0, ε 6= 0), j denotes the hyperbolic unit (j2 = 1), and εj denotes

the dual hyperbolic unit ((jε)2 = 0).

We claim that p and q be two dual hyperbolic numbers that q = a0 + ja1 + εa2 + jεa3 and p =

b0 + jb1 + εb2 + jεb3 and then we can write the product of p and q as

qp = a0b0 + a1b1 + j(a0b1 + a1b0) + ε(a0b2 + a2b0 + a1b3 + a3b1) + jε(a0b3 + a1b2 + a2b1 + b0a3)

and we can write the sum dual hyperbolic numbers p and q as componentwise.

The dual hyperbolic numbers form a commutative ring, real vector space and an algebra. HD is not

field since every dual hyperbolic numbers doesn’t have an inverse. For more detail about dual hyperbolic

numbers, see [3].

It’s known that many author studied the generalized (r, s, t) sequence. One of these sequences is gener-

alized Edouard numbers. Soykan, [30] defined generalized Edouard numbers. Before we present our original
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study , we recall some proporities related to generalized Edouard numbers such as reccurance relations,

Binet’s formula, generating function .

A generalized Edouard sequence , with the initial values W0,W1,W2 not all being zero, {Wn}n≥0 =

{Wn(W0,W1,W2)}n≥0 is defined by the third-order recurrence relations

Wn = 7Wn−1 − 7Wn−2 +Wn−3; W0,W1,W2 (n ≥ 3) (1.1)

Moreover, we define generalized Edouard sequence given to negative subscripts as follows,

W−n = 7W−(n−1) − 7W−(n−2) +W−(n−3)

for n = 1, 2, 3, .... Thus, recurrence (1.1) is true for all integer n.

In the Table 1 we give the first some generalized Edouardnumbers with positive subscript and negative

subscript

Table 1. A few generalized Edouard numbers

n Wn W−n

0 W0 W0

1 W1 7W0 − 7W1 +W2

2 W2 42W0 − 48W1 + 7W2

3 W0 − 7W1 + 7W2 246W0 − 287W1 + 42W2

4 7W0 − 48W1 + 42W2 1435W0 − 1680W1 + 246W2

5 42W0 − 287W1 + 246W2 8365W0 − 9799W1 + 1435W2

6 246W0 − 1680W1 + 1435W2 48756W0 − 57120W1 + 8365W2

If we obtain,respectively, W0 = 0,W1 = 1,W2 = 7 then{Wn} = {En} is called the Edouard sequence,

W0 = 3,W1 = 7,W2 = 35 then {Wn} = {Kn} is called the Edouard-Lucas sequence. Alternatively, Edouard

sequence {En}n≥0, Edouard-Lucas sequence {Kn}n≥0 are given by the third-order recurrence relations as

En = 7En−1 − 7En−2 + En−3, E0 = 0, E1 = 1, E2 = 7, (1.2)

Kn = 7Kn−1 − 7Kn−2 +Kn−3, K0 = 3,K1 = 7,K2 = 35, (1.3)

The sequences given above can be extended to negative subscripts by defining, respectively,

E−n = 7E−(n−1) − 7E−(n−2) + E−(n−3),

K−n = 7K−(n−1) − 7K−(n−2) +K−(n−3),

for n = 1, 2, 3, ... . As a consequence, recurrences (1.2)-(1.3) hold for all integer n.

We can list some important properties of generalized Edouard numbers that are needed.

Binet formula of generalized Edouard sequence can be calculated using its characteristic equation written

as

x3 − 7x2 + 7x− 1 =
(
x2 − 6x+ 1

)
(x− 1) = 0.
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The roots of the characteristic equation are

α = 3 + 2
√
2,

β = 3− 2
√
2,

γ = 1,

By using these roots and the recurrence relation, Binet formula are written below

Wn =
z1α

n

(α− β)(α− γ) +
z2β

n

(β − α)(β − γ) +
z3γ

n

(γ − α)(γ − β)

=
z1α

n

(α− β)(α− γ) +
z2β

n

(β − α)(β − γ) −
z3
4

where

z1 = W2 − (β + 1)W1 + βW0,

z2 = W2 − (α+ 1)W1 + αW0,

z3 = W2 − 6W1 +W0.

and

A1 =
W2 − (β + 1)W1 + βW0

(α− β)(α− γ) , (1.4)

A2 =
W2 − (α+ 1)W1 + αW0

(β − α)(β − γ) ,

A3 =
W2 − 6W1 +W0

(γ − α)(γ − β) .

Then we present Binet formula of Edouard sequences and Edouard-Lucas sequences, respectively, given

below

En =
αn+1

(α− β)(α− 1) +
βn+1

(β − α)(β − 1) −
1

4
,

Kn = αn + βn + 1.

After then we can write the generating function of generalized Edouard numbers,
∞∑
n=0

Wnx
n =

W0 + (W1 − 7W0)x+ (W2 − 7W1 + 7W0)x
2

1− 7x+ 7x2 − x3 . (1.5)

Next, we give the exponential generating function of
∞∑
n=0

Wn
xn

n! of the sequence Wn.

Lemma 1. [5, Lemma 1.4]. Suppose that fGWn(x) =
∞∑
n=0

Wn
xn

n! is the exponential generating function

of the generalized Edouard sequence {Wn}. Then
∞∑
n=0

Wn
xn

n!
=
(W2 − (β + 1)W1 + βW0)

(α− β)(α− 1) eαx +
(W2 − (α+ 1)W1 + αW0)

(β − α)(β − 1) eβx − (W2 − 6W1 +W0)

4
ex.

The previous Lemma gives the following results as particular examples.
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Corollary 2. Exponential generating function of Edouard and Edouard-Lucas numbers are

a):
∞∑
n=0

En
xn

n!
=

∞∑
n=0

(
αn+1

(α− β)(α− 1) +
βn+1

(β − α)(β − 1) −
1

4
)
xn

n!
=

αeαx

(α− β)(α− 1) +
βeβx

(β − α)(β − 1) −
1

4
ex.

b):
∞∑
n=0

Kn
xn

n!
=

∞∑
n=0

(αn + βn + 1)
xn

n!
= eαx + eβx + ex.

For more details, see [30].

Now, we are presenting information about specific number systems, including the hypercomplex system,

which encompasses complex numbers, hyperbolic numbers, and dual numbers. We note that hyperbolic

numbers will play a crucial role in our work. Moreover hyperbolic functions and numbers find applications

in various branches of engineering, such as electrical engineering (e.g., transmission lines), control systems

(e.g., system dynamics), signal processing (e.g., filter design), and diverse fields of engineering physics,

including special relativity, wave propagation, fluid dynamics, optics, and heat conduction. It’s important

to note that while hyperbolic numbers have interesting mathematical properties, their adoption in practical

applications depends on the specific problem at hand and whether they offer advantages over other number

systems in a given context.

Initially, we discuss hypercomplex number systems, which are extensions of real numbers, for more detail

see [20]. In addition that some commutative special cases of hypercomplex number systems include complex

numbers, hyperbolic numbers, and dual numbers. These systems are widely used in various branches of

mathematics and physics. We will now present these number systems sequentially, as outlined below.

• Complex numbers simplest form of hypercomplex numbers. Complex numbers defined as z = a+ib,

where a and b real numbers and i imaginary unit that satisfy i2 = −1. In addition that a and b

named, respectively, Re(z) and Im(z) Consequently, the definition of complex numbers given by,

C = {z = a+ ib : a, b ∈ R, i2 = −1}.

• Hyperbolic (double, split-complex) numbers, for more detail see [25], Split-complex numbers, com-

monly recognized as hyperbolic numbers, defined as h = a + jb where a and b real numbers and

j hyperbolic unit that satisfy j2 = 1. In addition that a and b named, respectively, Re(h) and

Hyp(h). Thus, the definition of hyperbolic numbers given by,

H = {h = a+ jb : a, b ∈ R, j2 = 1, j 6= ±1},

• Dual numbers, see [13], defined as d = a + εb where a and b real numbers and ε dual unit that

satisfy ε2 = 0. Furthermore, a and b called, respectively, Re(d) and Du(d). Thus, defination of dual

numbers given by,

D = {d = a+ εb : a, b ∈ R, ε2 = 0, ε 6= 0}.
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• A dual hyperbolic number, specifically within the hyperbolic number system, constitutes a distinct

type of hypercomplex number. A dual hyperbolic number is defined by,

q = (a0 + ja1) + ε(a2 + ja3) = a0 + ja1 + εa2 + εja3

where a0, a1, a2, a3 ∈ R and the set of all dual hyperbolic numbers are defined by

HD = {a0 + ja1 + εa2 + εja3 : a0, a1, a2, a3 ∈ R, j2 = 1, j 6= ±1, ε2 = 0, ε 6= 0}.

The {1, j, ε, εj} is linear independent and HD = sp{1, j, ε, εj} so that {1, j, ε, εj} is a basis of HD. For

more detail see, [3]

The next properties are true for the base elements {1, j, ε, εj} (commutative multiplications):

1.ε = ε, 1.j = j, ε2 = ε.ε = (jε)2 = 0, j2 = j.j = 1

ε.j = j.ε, ε.(εj) = (εj).ε = 0, j(εj) = (εj)j = ε

where ε satisfy the pure dual unit (ε2 = 0, ε 6= 0), j satisfy the hyperbolic unit (j2 = 1), and εj satisfy the

dual hyperbolic unit ((jε)2 = 0).

In addition that the other number sytems are quarternions, octonions and sedenions given below, re-

spectively,

• Quaternion numbers, non-commutative examples of hypercomplex number systems, are a four-

dimensional extension of complex numbers. They are expressed as a0 + ia1 + ja2 + ka3, where

a0, a1, a2, a3 ∈ R, and i, j, and k are the quaternion units that satisfy specific multiplication rules.

For more detail see [16]. Quaternion numbers are defined by

HQ = {q = a0 + ia1 + ja2 + ka3 : a0, a1, a2, a3 ∈ R, i2 = j2 = k2 = ijk = −1},

• Octonions is a set, every element of the set linear combinations of unit octonions {ei : i =

0, 1.2, ..., 7}, doneted as O. Octonions are defined by,

O = {
7∑
i=0

aiei : ai ∈ R, e0ei = eie0 = ei, eiej = −δije0 + εijkek }

where ee = 1, δij is Kroneker delta (equal to 1 if and only if i = j), εijk is anti-symetric tensor. For

more detaıl see [19, 33]

• Sedenions is a set, every element of the set linear combinations of unit sedenions {ei : i =

0, 1.2, ..., 15}, denoted by S. It can be seen from here that ever sedenion can be written as

15∑
i=0

aiei

where ai is real number. For more detail see, [26, 33].

Next we give some proporties on two hyperbolic numbers, h1 = a+ jb and h2 = c+ jd, as
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h1 + h2 = (a+ b) + j(c+ d),

h1.h2 = (ac+ bd) + j(ad+ bc),

h1 = a− jb
h1
h2

=
(ac− bd) + j(cb− ad)

c2 − d2 ,

h1 = h2 if only if a = c and b = d,

〈h1, h2〉 = (ac+ bd) + j(bc+ ad),

‖h1‖ =
√
|a2 − b2|, called norm of h1,

if
∣∣a2 − b2∣∣ > 0, h1 is named spacelike vector,

if
∣∣a2 − b2∣∣ < 0, h1 is named timelike vector,

if
∣∣a2 − b2∣∣ = 0, h1 is named null(light-like) vector.

Note that{R2, H, 〈, 〉} is called Lorentz plane and denoted as R21. There is an isomorphism relationship

between the Lorentz plane and hyperbolic numbers. For more detail, see [33].

Hence the algebras C (complex numbers), HQ (quaternions), O (octonions) and S (sedenions) are real

algebras attained from the real numbers R by a doubling procedure known as the Cayley-Dickson Process.

This doubling process can be extended beyond the sedenions to form what are known as the 2n-ions (see for

example [6, 16, 18, 23, 15].

Some authors have conducted studies about the dual, hyperbolic, dual hyperbolic and other special

numbers. Now we give some information published papers in litarature.

• Cockle [10] explored hyperbolic numbers with complex coeffi cients, contributing to the early devel-

opment of hypercomplex algebra.

• Eren and Soykan [12] studied the generalized Generalized Woodall Numbers.

• Cheng and Thompson [8] introduced dual numbers with complex coeffi cients, expanding the alge-

braic versatility of dual number systems for applications in polynomial equations and transformation

theory.

• Akar at al [3] introduced the concept of dual hyperbolic numbers, combining characteristics of dual

and hyperbolic systems into a unified algebraic structure.

Next, we present some information on hyperbolic numbers presented in literature.

• Aydın [1] presented hyperbolic Fibonacci numbers given by

F̃n = Fn + hFn+1,

where Fibonacci numbers are given by Fn+2 = Fn+1 + Fn, with the initial conditation F0 = 0, F1 = 1.
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• Soykan and Taşdemir [28] studied hyperbolic generalized Jacobsthal numbers given by

Ṽn = Vn + hVn+1

where generalized Jacobsthal numbers are Vn+2 = Vn+1+2Vn with the initial conditation V0 = a, V1 = b.

• Taş [32] studied hyperbolic Jacobsthal-Lucas sequence written by

HJn = Jn + hJn+1

where Jacobsthal-Lucas numbers given by Jn+2 = Jn+1 + 2Jn with the inintial conditation J0 = 2,

J1 = 1.

• Dikmen and Altınsoy, [11] studied On Third Order Hyperbolic Jacobsthal Numbers given by

Ĵ (3)n = J (3)n + hJ
(3)
n+1,

ĵ(3)n = j(3)n + hj
(3)
n+1

where Jacobsthal numbers, respectively, given by J (3)n = J
(3)
n−1 + J

(3)
n−2 + 2J

(3)
n−3, J

(3)
0 = 0, J

(3)
1 = 1,

J
(3)
2 = 1, j

(3)
n = j

(3)
n−1 + j

(3)
n−2 + 2j

(3)
n−3, j

(3)
0 = 2, j

(3)
1 = 1, j

(3)
2 = 5.

Following this, we provide details on dual hyperbolic sequences as they are presented in literature.

• Soykan et al [27] presented dual hyperbolic generalized Pell numbers given by

V̂n = Vn + jVn+1 + εVn+2 + jεVn+3

where generalized Pell numbers, with the initial values V0, V1 not all being zero, are given by Vn =

2Vn−1 + Vn−2, V0 = a, V1 = b (n ≥ 2).

• Cihan et al [2] studied dual hyperbolic Fibonacci and Lucas numbers given by, respectively,

DHFn = Fn + jFn+1 + εFn+2 + jεFn+3,

DHLn = Ln + jLn+1 + εLn+2 + jεLn+3

where Fibonacci and Lucas numbers, respectively, given by Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1,

Ln = Ln−1 + Ln−2, L0 = 2, L1 = 1.

• Soykan et al [28] studied dual hyperbolic generalized Jacopsthal numbers given by

Ĵn = Jn + jJn+1 + εJn+2 + jεJn+3

where Jn = Jn−1 + 2Jn−2, J0 = a, J1 = b.

• Yılmaz and Soykan [34] introduced dual hyperbolic generalized Guglielmo numbers are
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T̂0 = T0 + jT1 + εT2 + jεT3

where Tn = 3Tn−1 − 3Tn−2 + Tn−3, T0 = 0, T1 = 1, T2 = 3.

• Ayrılma and Soykan [4] studied dual hyperbolic generalized Edouard number and Edouard-Lucas

number given by

Ê0 = E0 + jE1 + εE2 + jεE3,

K̂0 = K0 + jK1 + εK2 + jεK3,

where En = 7En−1 − 7En−2 + En−3, E0 = 0, E1 = 1, E2 = 7 and Kn = 7Kn−1 − 7Kn−2 +Kn−3,

K0 = 3,K1 = 7,K2 = 35.

• Bród et al [7] studied dual hyperbolic generalized balancing numbers as

DHBn = Bn + jBn+1 + εBn+2 + jεBn+3

where Bn = 6Bn−1 −Bn−2, B0 = 0, B1 = 1.

Next section, we define the dual generalized Edouard numbers and some special properties, generating

function and Binet’s formula , of these numbers.

2. Dual Generalized Edouard Numbers and their Generating Functions and Binet’s Formulas

In this section, we define dual generalized Edouard numbers then we present generating functions and

Binet formulas for these numbers.

On the set of HD, we will now explore dual generalized Edouard numbers on D.The nth generalized

dual Edouard numbers, with DW0, DW1, DW2 being the initial conditions, are defined as follows

DWn =Wn + εWn+1. (2.1)

in addition (2.1) can be written to negative subscripts by defining,

DW−n =W−n + εW−n+1 (2.2)

so identity (2.1) holds for all integers n.

Now we define some special cases of dual generalized Edouard numbers. The nth dual edouard numbers,

the nth dual Edouard-Lucas numbers, respectively, are given as

the nth generalized dual Edouard numbers DEn = En + εEn+1, with DK0, DK1, DK2 being the initial

conditions, are defined as follows

DEn = En + εEn+1
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where

DE0 = E0 + εE1,

DE1 = E1 + εE2,

DE2 = E2 + εE3,

the nth generalized dual Edouard-Lucas numbers DKn = Kn+ εKn+1, with DK0, DK1, DK2 being the

initial conditions, are defined as follows

DKn = Kn + ε Kn+1

where

DK0 = K0 + ε K1,

DK1 = K1 + ε K2,

DK2 = K2 + ε K3,

For dual Edouard numbers, taking Wn = En, E0 = 0, E1 = 1, E2 = 7, we get

DE0 = ε,

DE1 = 1 + 7ε,

DE2 = 7 + 42ε,

for dual Edouard-Lucas numbers, taking Wn = Kn, K0 = 3, K1 = 7, K2 = 35, we get

DK0 = 3 + 7ε,

DK1 = 7 + 35ε,

DK2 = 35 + 199ε,

Thus, by using (2.1), we can formulate the following identity for non-negative integers n,

DWn = 7DWn−1 − 7DWn−2 +DWn−3. (2.3)

Hence the sequence {DWn}n≥0 can be given as

DW−n = 7DW−(n−1) − 7DW−(n−2) +DW−(n−3),

for n∈{1, 2, 3....} by using (2.2). Accordingly, recurrence (2.3) is true for all integer n.

In the Table 2, We provide the initial dual generalized Edouard numbers with both positive and negative

subscripts.

Table 2. Some dual generalized Edouard numbers
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n DWn DW−n

0 DW0 DW0

1 DW1 7DW0 − 7DW1 +DW2

2 DW2 42DW0 − 48DW1 + 7DW2

3 DW0 − 7DW1 + 7DW2 246DW0 − 287DW1 + 42DW2

4 7DW0 − 48DW1 + 42DW2 1435DW0 − 1680DW1 + 246DW2

5 42DW0 − 287DW1 + 246DW2 8365DW0 − 9799DW1 + 1435DW2

6 246DW0 − 1680DW1 + 1435DW2 48756DW0 − 57120DW1 + 8365DW2

Note that

DW0 =W0 + εW1, DW1 =W1 + εW2, DW2 =W2 + εW3.

Some dual Edouard numbers, dual Edouard-Lucas numbers with positive or negative subscripts are presented

tables which is given below .

Table 3. dual Edouard numbers Table 4. dual Edouard-Lucas numbers
n DEn DE−n

0 ε

1 1 + 7ε 0

2 7 + 42ε 1

3 42 + 246ε 7 + ε

4 246 + 1435ε 42 + 7ε

5 1435 + 8365ε 246 + 42ε

n DKn DK−n

0 3 + 7ε

1 7 + 35ε 7 + 3ε

2 35 + 199ε 35 + 7ε

3 199 + 1155ε 199 + 35ε

4 1155 + 6727ε 1155 + 199ε

5 6727 + 39203ε 6727 + 1155ε

Now, we will establish Binet’s formula for the dual generalized Edouard numbers, and for the remainder

of the study, we will utilize the following notations:

α̃ = 1 + εα, (2.4)

β̃ = 1 + εβ, (2.5)

γ̃ = 1 + ε. (2.6)

Note that the following identities are true.

α̃2 = 1 + 2αε,

β̃
2
= 1 + 2βε,

γ̃2 = 1 + 2ε,

α̃β̃ = 1 + ε(α+ β),

α̃γ̃ = 1 + ε(α+ γ),

γ̃β̃ = 1 + ε(γ + β).
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Theorem 3. (Binet’s Formula) For any integer n, the nth dual generalized Edouard number can be

expressed as follows

DWn = α̃A1α
n + β̃A2β

n + γ̃A3 (2.7)

where α̃, β̃, γ̃ are given as (2.4),(2.5),(2.6).

Proof. Using Binet’s formula of the generalized Edouard numbers given below

Wn = A1α
n +A2β

n +A3

where A1, A2, A3 are given (1.4) we get

DWn = Wn + εWn+1,

= A1α
n +A2β

n +A3 + (A1α
n+1 +A2β

n+1 +A3)ε

= α̃A1α
n + β̃A2β

n + γ̃A3.

This proves (2.7). �
As special cases, for any integer n, the Binet’s Formula of nth dual Edouard numbers, the Binet’s

Formula of nth dual Edouard-Lucas numbers, respectively, are

En =
α̃αn+1

(α− β)(α− 1) +
β̃βn+1

(β − α)(β − 1) −
γ̃

4
,

Kn = α̃αn + β̃βn + γ̃,

Next, we will introduce the generating function of the dual generalized Edouard numbers.

Theorem 4. The generating function for the dual generalized Edouard numbers is

fDWn(x) =
DW0 + (DW1 − 7DW0)x+ (DW2 − 7DW1 + 7DW0)x

2

(1− 7x+ 7x2 − x3) . (2.8)

Proof. Let the generating function of the dual generalized Edouard numbers is given below

fDWn
(x) =

∞∑
n=0

DWnx
n
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Following that, by utilizing the definition of the dual generalized Edouard numbers, and substracting

7xg(x) and −7x2g(x)and x3g(x) from g(x), we get

(1− 7x+ 7x2 − x3)fGDWn
(x) =

∞∑
n=0

DWnx
n − 7x

∞∑
n=0

DWnx
n + 7x2

∞∑
n=0

DWnx
n − x3

∞∑
n=0

DWnx
n,

=

∞∑
n=0

DWnx
n − 7

∞∑
n=0

DWnx
n+1 + 7

∞∑
n=0

DWnx
n+2 −

∞∑
n=0

DWnx
n+3,

=

∞∑
n=0

DWnx
n − 7

∞∑
n=1

DWn−1x
n + 7

∞∑
n=2

DWn−2x
n −

∞∑
n=3

DWn−3x
n,

= (DW0 +DW1x+DW2x
2)− 7(DWx+DW1x

2) + 7GW0x
2

+

∞∑
n=3

(DWn − 7DWn−1 + 7DWn−2 −DWn−3)x
n,

= DW0 +DW1x+DW2x
2 − 7DW0x− 7DW1x

2 + 7DW0x
2,

= DW0 + (DW1 − 7DW0)x+ (DW2 − 7DW1 + 7DW0)x
2.

Note that we use the recurrence relation DWn = 7DWn−1 − 7DWn−2 + DWn−3. We rearrange equation

which is given above then we obtain (2.8). �
As specific cases, the generating functions of the dual Edouard, Edouard-Lucas are given by

fDEn(x) =
ε+ x

(1− 7x+ 7x2 − x3) ,

fDKn(x) =
7ε+ 3 + (−14ε− 14)x+ (3ε+ 7)x2

(1− 7x+ 7x2 − x3) ,

respectively. �
Next, we give the exponential generating function of

∞∑
n=0

DWn
xn

n! of the sequence DWn.

Lemma 5. Suppose that fDWn
(x) =

∞∑
n=0

DWn
xn

n! is the exponential generating function of the dual

generalized Edouard sequence { DWn}.

Then
∞∑
n=0

DWn
xn

n! is given by

∞∑
n=0

DWn
xn

n!
=

∞∑
n=0

DWn
xn

n!
+ ε

∞∑
n=0

DWn+1
xn

n!

=
(W2 − (β + 1)W1 + βW0)

(α− β)(α− 1) eαx +
(W2 − (α+ 1)W1 + αW0)

(β − α)(β − 1) eβx − (W2 − 6W1 +W0)

4
ex

+ε(
(W2 − (β + 1)W1 + βW0)α

(α− β)(α− 1) eαx +
(W2 − (α+ 1)W1 + αW0)β

(β − α)(β − 1) eβx − (W2 − 6W1 +W0)

4
ex).

Proof: Note that we have
∞∑
n=0

DWn
xn

n!
=

∞∑
n=0

(DWn + εDWn+1)
xn

n!
.

Then using the Binet’s formula of dual generalized Edouard numbers or exponential generating function of

the generalized Edouard sequence we get the required identy.
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The previous Lemma gives the following results as particular examples.

Corollary 6. Exponential generating function of dual Edouard and dual Edouard-Lucas numbers are

a):

∞∑
n=0

DEn
xn

n!
=

αeαx

(α− β)(α− 1) +
βeβx

(β − α)(β − 1) −
1

4
ex + ε(

α2eαx

(α− β)(α− 1) +
β2eβx

(β − α)(β − 1) −
1

4
ex).

b):
∞∑
n=0

DKn
xn

n!
= eαx + eβx + ex + ε(αeαx + βeβx + ex).

3. Deriving Binet’s Formula From the Generating Function

Next ,by using generating function fDWn(x), we investigate Binet formula of {DWn}.

Theorem 7. (Binet formula of dual generalized Edouard numbers)

DWn = α̃A1α
n + β̃A2β

n + γ̃A3. (3.1)

Proof. We write

∞∑
n=0

DWnx
n =

DW0 + (DW1 − 7DW0)x+ (DW2 − 7DW1 + 7DW0)x
2

(1− 7x+ 7x2 − x3) =
d1

(1− αx) +
d2

(1− βx) +
d3

(1− x) ,

(3.2)

so that

∞∑
n=0

DWnx
n =

d1
(1− αx) +

d2
(1− βx) +

d3
(1− x) ,

=
d1(1− x)(1− βx) + d2 (1− αx) (1− x) + d3 (1− αx) (1− βx)

(x2 − 6x+ 1) (1− x) ,

then, we get

DW0+(DW1−7DW0)x+(DW2−7DW1+7DW0)x
2 = d1+d2+d3+(−d2−αd2−βd1−αd3−βd3)x+(αd2+βd1+αβd3)x2.

By equation the coeffi cients of corresponding powers of x in the above equation, we get

DW0 = d1 + d2 + d3, (3.3)

DW1 − 7DW0 = −d2 − αd2 − βd1 − αd3 − βd3,

DW2 − 7DW1 + 7DW0 = αd2 + βd1 + αβd3.
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If we solve (3.3) we obtain

d1 =
DW0α

2 + (DW1 − 7DW0)α+ (DW2 − 7DW1 + 7DW0)

(α− β)(α− γ) ,

d2 =
DW0β

2 + (DW1 − 7DW0)β + (DW2 − 7DW1 + 7DW0)

(β − α)(β − γ) ,

d3 =
DW0 + (DW1 − 7DW0) + (DW2 − 7DW1 + 7DW0)

(γ − α)(γ − β) ,

Thus (3.2) stated as follows

∞∑
n=0

DWnx
n = d1

∞∑
n=0

αnxn + d2

∞∑
n=0

βnxn + d3

∞∑
n=0

xn,

=

∞∑
n=0

(d1α
n + d2β

n + d3)x
n,

=

∞∑
n=0

(
DW2 − (β + 1)DW1 + βDW0

(α− β)(α− γ) αn +
DW2 − (α+ 1)DW1 + αDW0

(β − α)(β − γ) βn +
DW2 − 6DW1 +DW0

(γ − α)(γ − β) )xn.

Hence, we get

DWn = α̃A1α
n + β̃A2β

n + γ̃A3. �

4. Some Identities Related to Dual Generalized Edouard numbers

We will now introduce some specific identities, i.e Simpson’s formula, for the dual generalized Edouard

sequence {DWn}. The next theorem gives the Simpson’s formula for the dual generalized Edouard numbers.

Theorem 8. (Simpson’s formula for dual generalized Edouard numbers) For all integers n we have,

∣∣∣∣∣∣∣∣∣
DWn+2 DWn+1 DWn

DWn+1 DWn DWn−1

DWn DWn−1 DWn−2

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
DW2 DW1 DW0

DW1 DW0 DW−1

DW0 DW−1 DW−2

∣∣∣∣∣∣∣∣∣ . (4.1)

Proof. First we assume that n > 0. For the proof, we employ mathematical induction on n. For n = 0
identity (4.1) is true. Now we take (4.1) is true for n = k. Therfore, the following identity can be written

∣∣∣∣∣∣∣∣∣
DWk+2 DWk+1 DWk

DWk+1 DWk DWk−1

DWk DWk−1 DWk−2

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
DW2 DW1 DW0

DW1 DW0 DW−1

DW0 DW−1 DW−2

∣∣∣∣∣∣∣∣∣ .
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If we take n = k + 1, we can get

∣∣∣∣∣∣∣∣∣
DWk+3 DWk+2 DWk+1

DWk+2 DWk+1 DWk

DWk+1 DWk DWk−1

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
7DWk+2 − 7DWk+1 +DWk DWk+2 DWk+1

7DWk+1 − 7DWk +DWk−1 DWk+1 DWk

7DWk − 7DWk−1 +DWk−2 DWk DWk−1

∣∣∣∣∣∣∣∣∣
= 7

∣∣∣∣∣∣∣∣∣
DWk+2 DWk+2 DWk+1

DWk+1 DWk+1 DWk

DWk DWk DWk−1

∣∣∣∣∣∣∣∣∣− 7
∣∣∣∣∣∣∣∣∣
DWk+1 DWk+2 DWk+1

DWk DWk+1 DWk

DWk−1 DWk DWk−1

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣
DWk DWk+2 DWk+1

DWk−1 DWk+1 DWk

DWk−2 DWk DWk−1

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
DWk+2 DWk+1 DWk

DWk+1 DWk DWk−1

DWk DWk−1 DWk−2

∣∣∣∣∣∣∣∣∣
Attention that if we take n < 0 the proof can be conducted in a similarly. Thus, the proof is concluded.�
From Theorem 4.1, we get following corollary.

Corollary 9.

(a):

∣∣∣∣∣∣∣∣∣
DEn+2 DEn+1 DEn

DEn+1 DEn DEn−1

DEn DEn−1 DEn−2

∣∣∣∣∣∣∣∣∣ = −7ε− 1

(b):

∣∣∣∣∣∣∣∣∣
DKn+2 DKn+1 DKn

DKn+1 DKn DKn−1

DKn DKn−1 DKn−2

∣∣∣∣∣∣∣∣∣ = 3584ε+ 512

Theorem 10. We assume that n and m are integers, En is Edouard numbers, the following identity is

true:

DWm+n = Em−1DWn+2 + (Em−3 − 7Em−2)DWn+1 + Em−2DWn. (4.2)

Proof. The identity (10) can be proved by mathematical induction on m. First we take n,m > 0. If
m = 0 we get

DWn = E−1DWn+2 + (E−3 − 7E−2)DWn+1 + E−2DWn
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which is true by seeing that E−1 = 0, E−2 = 1, E−3 = 7. We assume that the identity given holds for m = k.

For m = k + 1, we get

DW(k+1)+n = 7DWn+k − 7DWn+k−1 +DWn+k−2

= 7(Ek−1DWn+2 + (Ek−3 − 7Ek−2)DWn+1 + Ek−2DWn)

−7(Ek−2DWn+2 + (Ek−4 − 7Ek−3)DWn+1 + Ek−3DWn)

+(Ek−3DWn+2 + (Ek−5 − 7Ek−4)DWn+1 + Ek−4DWn)

= (7Ek−1 − 7Ek−2 + Ek−3)DWn+2 + ((7Ek−3 − 7Ek−4 + Ek−5)

−7(7Ek−2 − 7Ek−3 + Ek−4))DWn+1 + (7Ek−2 − 7Ek−3 + Ek−4)DWn

= EkDWn+2 + (Ek−2 − 7Ek−1)DWn+1 + Ek−1DWn

= E(k+1)−1DWn+2 + (E(k+1)−3 − 7E(k+1)−2)DWn+1 + E(k+1)−2DWn.

The other cases on n,m the proof can be done easily. Consequently, by mathematical induction on m, this

proves (10). �

5. Linear Sum Formulas of Dual Generalized Edouard Numbers

In this section, we give the summation formulas of the dual generalized Edouard numbers with subscripts.

Proposition 11. For the generalized Edouard numbers, we have the following formulas:

(a):
∑n
k=0Wk =

1
4 (−(n+ 3)Wn + (n+ 2)(7Wn+1 −Wn+2)− (n+ 1)Wn+1 + 2W2 − 13W1 + 7W0).

(b):
∑n
k=0W2k =

1
32 (−(n+3)W2n+(n+2)(−7W2n+2+48W2n+1− 7W2n)− (n+1)W2n+2+15W2−

96W1 + 49W0).

(c):
∑n
k=0W2k+1 =

1
32 (−(n+ 3)W2n+1 + (n+ 2)(−W2n+2 + 42W2n+1 − 7W2n)− (n+ 1)(7W2n+2 −

7W2n+1 +W2n) + 9W2 − 56W1 + 15W0).

Proof. It is given in Soykan [31, Theorem 3.3]. �
Now, we will introduce the formulas that allow us to find the sum of dual generalized Edouard numbers.

Theorem 12. For n ≥ 0, dual generalized Edouard numbers have the following formulas:

(a):
∑n
k=0DWk =

1
4 (−(n+3)DWn+(n+2)(7DWn+1−DWn+2)−(n+1)DWn+1+2DW2−13DW1+

7DW0).

(b):
∑n
k=0DW2k =

1
32 (−(n+3)DW2n+(n+2)(−7DW2n+2+48DW2n+1−7DW2n)−(n+1)DW2n+2+

15DW2 − 96DW1 + 49DW0).

(c):
∑n
k=0DW2k+1 =

1
32 (−(n + 3)DW2n+1 + (n + 2)(−DW2n+2 + 42DW2n+1 − 7DW2n) − (n +

1)(7DW2n+2 − 7DW2n+1 +DW2n) + 9DW2 − 56DW1 + 15DW0).

Proof.
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(a): Note that using (2.1), we get

n∑
k=0

DWk =

n∑
k=0

Wk + ε

n∑
k=0

Wk+1

and using Proposition 11 the proof can be done easily.

(b): Note that using (2.1), we get

n∑
k=0

DW2k =

n∑
k=0

W2k + ε

n∑
k=0

W2k+1

and using Proposition 11 the proof can be done easily.

(c): Note that using (2.1), we get

n∑
k=0

DW2k+1 =

n∑
k=0

W2k+1 + ε

n∑
k=0

W2k+2

and using Proposition 11 the proof can be done easily. �
As a special case of the Theorem 12 (a), we present the following corollary.

Corollary 13.

(a):
∑n
k=0DEk =

1
4 (−(n+ 3)DEn + (n+ 2)(7DEn+1 −DEn+2)− (n+ 1)DEn+1 + 1).

(b):
∑n
k=0DKk =

1
4 (−(n+ 3)DKn + (n+ 2)(7DKn+1 −DKn+2)− (n+ 1)DKn+1 − 8ε).

As a special case of the Theorem 12 (b), we present the following corollary.

Corollary 14.

(a):
∑n
k=0DE2k =

1
32 (−(n+3)DE2n+(n+2)(−7DE2n+2+48DE2n+1−7DE2n)− (n+1)DE2n+2+

7ε+ 9).

(b):
∑n
k=0DK2k =

1
32 (−(n+3)DK2n+(n+2)(−7DK2n+2+48DK2n+1−7DK2n)−(n+1)DK2n+2−

32ε).

As a special case of the Theorem 12 (c), we present the following corollary.

Corollary 15.

(a):
∑n
k=0DE2k+1 =

1
32 (−(n+3)DE2n+1+(n+2)(−DE2n+2+42DE2n+1−7DE2n)−(n+1)(7DE2n+2−

7DE2n+1 +DE2n) + ε+ 7).

(b):
∑n
k=0DK2k+1 =

1
32 (−(n + 3)DK2n+1 + (n + 2)(−DK2n+2 + 42DK2n+1 − 7DK2n) − (n +

1)(7DK2n+2 − 7DK2n+1 +DK2n)− 64ε− 32).
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6. Matrices related with Dual Generalized Edouard Numbers

In this part of our study we give some identities on some matrices linked to dual Edouard numbers.By

using the {En} which is defined by the third-order recurrence relation as follows

En = 7En−1 − 7En−2 + En−3

with the initial conditions E0 = 0, E1 = 1, E2 = 7 we present the square matrix A of order 3 as

A =


7 −7 1

1 0 0

0 1 0



such that detA = 1. Then, we give the following Lemma.

Lemma 16. For all integers n the following identity is tru


DWn+2

DWn+1

DWn

 =


7 −7 1

1 0 0

0 1 0


n

DW2

DW1

DW0

 . (6.1)

Proof. First, we get n ≥ 0. Lemma 16 can be given by mathematical induction on n. If n = 0 we get


DW2

DW1

DW0

 =


7 −7 1

1 0 0

0 1 0


0

DW2

DW1

DW0



which is true. We claim that the identity (6.1) given holds for n = k. Thus the following identity is true.


DWk+2

DWk+1

DWk

 =


7 −7 1

1 0 0

0 1 0


k

DW2

DW1

DW0

 .
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For n = k + 1, we get


7 −7 1

1 0 0

0 1 0


k+1

DW2

DW1

DW0

 =


7 −7 1

1 0 0

0 1 0



7 −7 1

1 0 0

0 1 0


k

DW2

DW1

DW0



=


7 −7 1

1 0 0

0 1 0




DWk+2

DWk+1

DWk



=


7DWk+2 − 7DWk+1 +DWk

DWk+2

DWk+1



=


DWk+3

DWk+2

DWk+1

 .

For the other case n < 0 the proof is easily attainable. Consequently, using mathematical induction on n,

the proof is completed.

Note that

An =


En+1 −7En + En−1 En

En −7En−1 + En−2 En−1

En−1 −7En−2 + En−3 En−2

 .

For the proof and more detail see [29].

Theorem 17. If we define the matrices NDW and SDW as follow

NDW =


DW2 DW1 DW0

DW1 DW0 DW−1

DW0 DW−1 DW−2

 ,

SDW =


DWn+2 DWn+1 DWn

DWn+1 DWn DWn−1

DWn DWn−1 DWn−2

 .

then the following identity is true:

AnNDW = SDW .

UNDER PEER REVIEW



Proof. For the proof, we can use the following identities

AnNDW =


En+1 −7En + En−1 En

En −7En−1 + En−2 En−1

En−1 −7En−2 + En−3 En−2




DW2 DW1 DW0

DW1 DW0 DW−1

DW0 DW−1 DW−2

 ,

=


a11 a12 a13

a21 a22 a23

a31 a32 a33


where

a11 = DW2En+1 +DW1 (En−1 − 7En) +DW0En,

a12 = DW1En+1 +DW0 (En−1 − 7En) +DW−1En,

a13 = DW0En+1 +DW−1 (En−1 − 7En) +DW−2En,

a21 = DW2En +DW1 (En−2 − 7En−1) +DW0En−1,

a22 = DW1En +DW0 (En−2 − 7En−1) +DW−1En−1,

a23 = DW0En +DW−1 (En−2 − 7En−1) +DW−2En−1,

a31 = DW2En−1 +DW1 (En−3 − 7En−2) +DW0En−2,

a32 = DW1En−1 +DW0 (En−3 − 7En−2) +DW−1En−2,

a33 = DW0En−1 +DW−1 (En−3 − 7En−2) +DW−2En−2,

Using the Theorem 10 the proof is done. �
From Theorem 17, the following corollary can be written.

Corollary 18.

(a): Let the matrices NDE and SDE are defined as the following

NDE =


DE2 DE1 DE0

DE1 DE0 DE−1

DE0 DE−1 DE−2

 ,

SDE =


DEn+2 DEn+1 DEn

DEn+1 DEn DEn−1

DEn DEn−1 DEn−2

 ,

so that the identity given below is true for An, NDE, SDE,

AnNDE = SDE ,
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(b): Let the matrices NDK and SDK are defined as the following

NDK =


DK2 DK1 DK0

DK1 DK0 DK−1

DK0 DK−1 DK−2

 ,

SDK =


DKn+2 DKn+1 DKn

DKn+1 DKn DKn−1

DKn DKn−1 DKn−2

 ,

so that the following identity is true for An, NDK , SDK ,

AnNDK = SDK .
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