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ABSTRACT 
In various papers some authors have previously investigated [2], [3], [4], [5], [6] and determined the spectrum of weighted mean matrices considered as bounded operators on various sequence spaces. In this study, we determine the spectrum of a Norlund matrix as a bounded operator over the sequence space . This will be achieved by applying spectral theory, Banach space theorems of functional analysis as well as summability methods of summability theory. In which case it is shown that the spectrum of , that is  . Also it is shown that  .
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1. INTRODUCTION 

Summability theory has various applications in functional analysis. Summability is typically the rule of assigning limits, which is central to analysis. The findings of this study will help engineers make improvements in the engineering fields where spectral values are applied. Mathematicians will find it meaningful when addressing issues of the same kind. 
Some authors have studied the spectrum of a Norlund infinite matrix over different spaces. We introduce knowledge in the existing literature concerning the spectrum of Norlund infinite matrix. 
Dorff and Wilansky [1] presented that the spectrum of a certain mercerian Norlund matrix with . In 1965, Brown et al [2] discovered the spectrum and eigenvalues of the Cesaro operator of space  of square summable sequences. Wenger [3] calculated the fine spectra of Holder summability operators on the space of convergent sequences . Deddens [4] discovered the spectrum of all Hausdorff operators on  and Rhodes [5] extended Weger’s work by determining the fine spectra of weighted mean operators on . Reade [6] strongminded the spectrum of Cesaro operator on the space of null sequences  . Okutoyi [7], Gonzale[8], work on the fine spectrum of . Mutekhele]9] in his PhD dissertation extended Okutoyi’s work by determining the spectrum of  operator on c(c) - the space of double sequences which converge. He further determined the fine spectra of  operator on c(c) - the space of double sequence which converge. Coskun [10] determined the set of eigenvalues of a special Norlund Matrix as a bounded operator over some sequence spaces. Akanga [11] evaluated the spectrum of a special Norlund matrix as a bounded operator on . Irene [12 ] determined the spectrum of a special Norlund means as an operator on .
A number of research has been done on the spectrum of weighted mean matrices such as Cesaro and Holder means based on the review of the literature. However, not much has been accomplished through Norlund means. The spectrum of a Norlund matrix acting as an operator on the sequence spaces  is determined in this study.


2. preliminaries and methods

2.1 Spectrum

Let  and  be Banach spaces and  be a bounded linear operator. By , we denote the range of , i. e.
			     

By  ,we denote the set of all bounded linear operators on  into itself. If , then the adjoint  is a bounded linear operator on the dual  defined by
  for all . Let  be a complex normed linear space, where  is the zero element and  be a linear operator with domain . With , we associate the operator 

     ,

where  is a complex number and  is the identity operator on . If  has an inverse which is linear, we denote it by  , that is

     ,

and call it the resolvent operator of  . A regular value  is a complex number such that;

1.   exists

2.   is bounded

3.   is defined on a set which is dense in  i.e  

The resolvent set of  , denoted by , is the set of all regular values  . It’s complement  in the complex plane  is called the spectrum of   .


2.2 Classical Summability
The central problem in summability is to find means of assigning a limit to a divergent sequence or sum to a divergent series. In such a way that the sequence or series can be manipulated as though it converges, (Ruckel, 1981), pp. 159-161. The most common means of summing divergent series or sequences , is that of using an infinite matrix of complex numbers or by a power series.

2.2.1. Definition: Sequence to Sequence transformation
Let  be an infinite matrix of complex numbers. Given a sequence   define   . If the series, converges for all , then we call the sequence  , the  of the sequence  . If further, 
 , we say that  is summable  .
There are various sequence to sequence transformations, here we state Norlund means below which is the matrix of intrest in this paper.
2.2.2 (Norlund means)
The transformation given by      
where  , is called a Norlund means and is denoted by ( N,p ). 
Its matrix is given by 
  	


In the matrix above if   . i.e



or



2.2.3 Adjoint of A 
It is the transpose of the matrix A and we denote it here by  .
2.2.4 Dual space of  
It is denoted  and it is the space  ; the space of absolutely convergent series.
2.3 General Results in Classical Summability

Definition 2.3.1 (regular method, conservative method)
Let   be an infinite matrix of complex numbers.
i. If the  transform of any convergent sequence of complex numbers exists and converges then  is called a conservative method. We then write   

ii. If the  transform of any convergent sequence of complex numbers exists and converges, then   is called regular. 

Theorem 2.3.1  if and only if
i. for each fixed  

ii.  

Proof: (Hardy, 1948), pp. 42 - 60; (Maddox, 1970), pp. 165 - 167.


3. results and discussion

Here we first show that  exists and  , secondly the spectrum of Norlund matrix  is determined in the space .















3.1  Exists and  


Proposition 3.1.1 

Proof: This is done by solving the system  for  in terms of  so as to find . That is







This gives the system
























Now solving this system by working out  in terms of  gives;





This yields the matrix of  denoted by  

[image: ]


It is observed that , that is 				 



Corollary 3.1.1 


Proof. From theorem 2.3.1 it is clear that ; From  if  then generally  




Also if , then
 


Hence matrix  


The columns converges to zero if by ratio test    for each 

From matrix   if  we have that 






Similarly for columns , by ratio test we have








So that all columns converge to zero for all 


For the second condition we have a remark;

Remark 3.1.1, For any matrix If    then, 
		  Maddox 1970 pg 164, Reade 1985 pg 266

Now summing the entries of   along the   we have,



By the remark,   hence condition two is filled.

This implies that   if    such that  			


3.2 The Spectrum of 

Theorem 3.2.1 Let  such that  exists. Then   is the set     



Proof. First we find . Then the complement of this is our spectrum, that is;
          
       From corollary 3.1.1, we find out that   such that 
       We also note that when , then the first column  is infinite. That is 



      Therefore the inverse does not exist hence the spectrum of   is the set     



      A disc in the complex plane centered at   of radius 2.           			              



Theorem 3.2.2.The spectrum   is the set   

Proof. Goldberg (1996)								               
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