
CHARACTERIZATIONS OF OPERATORS ON SOME BANACH
SPACE-VALUED FIBONOMIAL SEQUENCE SPACES

Abstract. In this paper we have tried to reveal the properties of some Ba-
nach space-valued Fibonomial sequence spaces, in particular the properties
of bounded linear operators defined on them. Further we show that these
sequence spaces has a kind of Schauder basis which we introduce it in ours
former works. We also prove that br,s,Fp (V ), 1 ≤ p < ∞, and br,s,F0 (V ) have
the approximation property under certain conditions where V is a a Banach
space.

1. Introduction

Structural analysis of Banach space-valued function or sequence spaces has al-
ways been an interesting subject. In these structural analyses, the Schauder basis
of the space provides an important advantage. This advantage is also encountered
in the study of bounded linear operators on spaces with this base. The study of op-
erators defined between a Banach space-valued function or sequence spaces is more
diffi cult. One of the reasons for this is that Banach space-valued sequence spaces
do not have a Schauder basis in the usual sense. In [9] we give a new definition of
Schauder basis which allows us to better analyse the structural properties of many
Banach space-valued functions or sequence spaces and the bounded linear operators
defined between them. Details of these studies can be found in references ([3, 4, 5]
and [6, 8, 11, 7]). In particular, the above-mentioned new type of basis concept
reveals many new properties of some V -valued sequence spaces where V is a special
Banach space. Therefore, in this paper we will try to reveal some properties of such
sequence spaces, in particular the properties of bounded linear operators defined
on them.
The study of the topological and geometric structures of some sequence spaces

constructed with the help of some important number sequences that we encounter
in nature, for example, Fibonacci, Catalan or Schröder numbers, has been fre-
quently encountered recently. For instance, Bi̧sgin, in [2], investigated geometric
properties of some binomial sequence spaces which include the spaces `p and `∞.
Inspired by this work, Cihat introduced the sequence spaces br,s,Fp (for 1 ≤ p <∞)

and br,s,F∞ in [12]. These spaces were defined with the help of Fibonacci numbers
and (Fn) denote the sequence of Fibonacci numbers defined by the recurrence re-
lation Fn+2 = Fn+1 + Fn with the initial conditions F0 = 0 and F1 = 1. Thus
0, 1, 1, 2, 3, 5, 8, 13, 21, ...are the first few Fibonacci numbers. In [10] we introduced
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some V -valued Fibonacci sequence spaces and investigated some its metric prop-
erties for any Banach space V. With the help of Fibonacci numbers and similar to
the binomial matrix in [2], the matrix Br,s,F is defined in [12] and with the help
of this matrix the sequence spaces br,s,Fp (for 1 ≤ p <∞) and br,s,F∞ are defined
as follows; for nonzero real numbers s, r such that s + r 6= 0, fibonomial matrix

Br,s,F =
(
br,s,Fnk

)
is defined by

br,s,Fnk =

{ 1
(r+s)nF

(
n
k

)
F
rksn−k,

0,

if 0 ≤ k ≤ n
if k > n

as a sub-triangular matrix. Further the sequence spaces are introduced as

br,s,Fp =

{
u = (un) ∈ w :

∞∑
n=0

∣∣∣∣∣ 1

(r + s)
n
F

n∑
k=0

(
n

k

)
F

rksn−kuk

∣∣∣∣∣
p

<∞
}

and

br,s,F∞ =

{
u = (un) ∈ w : sup

n

∣∣∣∣∣ 1

(r + s)
n
F

n∑
k=0

(
n

k

)
F

rksn−kuk

∣∣∣∣∣ <∞
}

in [12]. Additionally, it is shown in the related work that br,s,Fp (for 1 ≤ p <∞)

and br,s,F∞ are BK- spaces with norms

‖u‖br,s,Fp
=

( ∞∑
n=0

∣∣∣∣∣ 1

(r + s)
n
F

n∑
k=0

(
n

k

)
F

rksn−kuk

∣∣∣∣∣
p)1/p

and

‖u‖br,s,F∞
= sup

n

∣∣∣∣∣ 1

(r + s)
n
F

n∑
k=0

(
n

k

)
F

rksn−kuk

∣∣∣∣∣ ,
respectively.
In this work we will first consider any Banach space V and introduce V -valued

fibonomial sequence spaces br,s,Fp (V ) , br,s,F∞ (V ) and br,s,F0 (V ) such that

br,s,Fp (V ) =

{
u = (un) ∈ w (V ) :

∞∑
n=0

∥∥∥∥∥ 1

(r + s)
n
F

n∑
k=0

(
n

k

)
F

rksn−kuk

∥∥∥∥∥
p

V

<∞
}
,

br,s,F∞ (V ) =

{
u = (un) ∈ w (V ) : sup

n

∥∥∥∥∥ 1

(r + s)
n
F

n∑
k=0

(
n

k

)
F

rksn−kuk

∥∥∥∥∥
V

<∞
}

and

br,s,F0 (V ) =

{
u = (un) ∈ w (V ) : lim

n

∥∥∥∥∥ 1

(r + s)
n
F

n∑
k=0

(
n

k

)
F

rksn−kuk

∥∥∥∥∥
V

= 0

}
.

Here w (V ) denotes the vector space of all V -valued sequences and u = (un) ∈ w (V )
means each un ∈ V.
For V = K , the real or complex number, then br,s,Fp (V ) = br,s,Fp and br,s,F∞ (V ) =

br,s,F∞ in [12]. V -valued fibonomial sequence space br,s,Fp (V ) is a Banach space by
the norm

‖u‖ =

( ∞∑
n=0

∥∥∥∥∥ 1

(r + s)
n
F

n∑
k=0

(
n

k

)
F

rks ∈n−k uk

∥∥∥∥∥
p

V

)1/p
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and br,s,F∞ (V ) and br,s,F0 (V ) are Banach spaces by the norm

‖u‖ = sup
n

∥∥∥∥∥ 1

(r + s)
n
F

n∑
k=0

(
n

k

)
F

rksn−kuk

∥∥∥∥∥
V

.

We will mainly see in this work that br,s,Fp (V ) and br,s,F0 (V ) have Schauder
bases in the sense of [9] and that some of these spaces have the approximation
property. Finally, we will give a fundamental result characterizing all bounded
linear operators defined on the space br,s,F0 (V ). The main tool we use to obtain
this result will be a new type of Schauder basis that we will define for the space
br,s,F0 (V ).
Now we should provide a review of some known results from Banach space theory,

[1]. Assume U and V are Banach spaces. A linear operator S : U → V is called
compact if it maps any bounded subset B of U to a relatively compact subset S(B)
in V. The set of all compact linear operators from U to V is written as K(U, V ), or
K(U) if U = V. A compact operator between Banach spaces has a closed range if
and only if it is of finite rank, meaning its range is a finite-dimensional linear space.
A Banach space U has the approximation property if, for every Banach space V ,
the set of finite-rank members of B (V,U) is dense in K (V,U). It is known that
the spaces c0 and `p, where 1 ≤ p < ∞, possess the approximation property [1].
Similarly we can deduce from [9] that c0 (V ) and `p (V ) , where 1 ≤ p < ∞, have
the approximation property if V has.
In general, we know that V -valued sequence spaces has no Schauder basis if

V 6= K. Now let us give the definition of new kind Schauder basis which we
introduced it in [9].

Definition 1. [9] Consider Banach spaces U and V, and let A be an index set and
F is the family of all finite subsets of A. as A collection {ηa : a ∈ A} of continuous
linear operators ηa : V → U is called a V-basis for U if there exists a directed
subset D, by a relation �, of F and there exist unique family {Ra : a ∈ A} of
linear operators from U onto V such that the net (πF (x) : D) converges to x in U
for every x ∈ U . Where each F ∈ D and

πF (x) =
∑
a∈F

(ηa ◦Ra) (x) .

Moreover, {ηa} is called a V-Schauder basis for U whenever each operator Ra is
continuous.

We call {Ra : a ∈ A} as the associate family of functions (A.F.F.) corresponding
to V -basis {ηa : a ∈ A} .
Given a V -basis {ηa : a ∈ A} for U, the finite summation of function πF (x)

induces an operator πF on U for each F ∈ D. This operator known as the F -
projection on U relative to the V -basis. The V -basis in the definition is called
unconditional if directed subset D is taken as whole F with the inclusion relation
⊆ .

Remark 1. Let V be a Banach space over the field C which has a Schauder basis
{xn} in the classical sense. Then, the sequence {ηn} of linear operators

ηn : C→ V : ηn (z) = zxn
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forms a C-basis for V in the sense of above definition. In this case take A = N and
take

D = {{1} , {1, 2} , {1, 2, 3} , . . .}
as a directed set in the poset F with the inclusion relation. Further take {Rn} as
the sequence of coordinate functionals (gn) corresponding to the basis {xn}. Then
we conclude that (πF (x) : D) converges to x in U iff

n∑
k=1

(ηk ◦Rk) (x) =

n∑
k=1

gk (x)xk,

converges to x =

∞∑
n=1

gn (x)xn.

Theorem 1. If a Banach space V possesses a Y -basis {ηa : a ∈ A} , then V is
separable iff the index set A is countable [9].

2. Main Results

In this section, we present a key results concerning V -valued sequence spaces
br,s,F0 (V ) and br,s,Fp (V ).

Theorem 2. Given a Banach space V the sequence
{
Br,s,F In : n ∈ N

}
is an un-

conditional V -Schauder basis for both br,s,F0 (V ) and br,s,Fp (V ) where 1 ≤ p <∞.

Proof. Take A = N and D = F the family of all finite subsets of N with the inclusion
relation in Definition [9]. Let us do the proof only for br,s,Fp (V ). The proof for

br,s,F0 (V ) almost is the same. Consider embeddings

In : V → br,s,Fp (V ) , In (z) = (0, ..., 0, z, 0, ...) ,

where z is in the n.th place. Clearly each In is linear and let us prove that its
bounded:

‖In (z)‖ = ‖(0, ..., 0, z, 0, ...)‖ =
∥∥Br,s,F (0, ..., 0, z, 0, ...)

∥∥
lp(V )

≤
∥∥Br,s,FBr,s,F (0, ..., 0, ‖z‖V , 0, ...)

∥∥
lp

= ‖(0, ..., 0, ‖z‖V , 0, ...)‖br,s,Fp

≤
∥∥Br,s,F∥∥ . ‖z‖V

Remember the sub-diagonal matrix Br,s,F defines a bounded linear operator on lp
and

∥∥Br,s,F∥∥ exists. So each Br,s,F In is a bounded linear operator from V into
br,s,Fp (V ) . Now just the sequence{

Br,s,F In : n ∈ N
}

is a V -Schauder basis for br,s,Fp (V ) . In order to prove this let us consider projections

Pn : br,s,Fp (V )→ V ; Pn (x) = xn where x = (xn) ∈ br,s,Fp (V ) .

In order to show that the operator sequence
{
Br,s,F In

}
defined above is an uncon-

ditional basis, the ordered set D in Definition [9] must be chosen as the family of
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all finite subsets of N by the inclusion relation ⊆. Let us now for any x = (xn) in
br,s,Fp (V ) write

πF (x) =
∑
n∈F

((
Br,s,F In

)
◦ Pn

)
(x)

=
∑
n∈F

(
Br,s,F In

)
(xn) .

We will prove that the net (πF (x) : D) converges to x in br,s,Fp (V ). It is clear that
the convergence of the given net is equivalent to the unconditional convergence of

the sequence of partial sums of the series
∞∑
n=0

(
Br,s,F In

)
(xn) . Now, for any arbitrary

ε > 0, we must find a finite subset F0 = F0 (ε) ∈ D such that for every finite set F
⊇ F0,

‖x− πF (x)‖ ≤ ε.
Since x is contained in br,s,Fp (V ) there is an index n0 (ε) such that the series
∞∑

n>n0

∥∥(Br,s,Fx)
n

∥∥p
V
is strictly smaller than ε. At this point, let us determine F0

as

F0 =

{
n ∈ N :

∞∑
n>n0

∥∥(Br,s,Fx)
n

∥∥p
V
> ε

}
,

Then for each finite F0 ⊆ F we get

‖x− πF (x)‖ = ‖{xn : n ∈ N \ F}‖ ≤ ε.

This shows that (πF (x) : D) converges to x in br,s,Fp (V ) .
Let us now verify that the sequence {Pn} is uniquely defined. Suppose∑

n∈N

(
Br,s,F InPn

)
(x) =

∑
n∈N

(
Br,s,F InP ′n

)
(x)

and write

π◦F (x) =
∑
n∈N

(
Br,s,F In (Pn − P ′n)

)
(x) , F ∈ D.

Remember that

‖π◦F (x)‖ =

(∑
n∈F

∥∥(Br,s,F In (Pn − P ′n)
)

(x)
∥∥p)1/p

and

‖π◦F (x)‖ ≤ ‖π◦G (x)‖
for F ⊆ G. As (πF (x) : D) exhibits convergence toward x in br,s,Fp (V ) we get

lim
F∈D
‖π◦F (x)‖ = 0.

From this observation, it follows that (Pn − P ′n) (x) = 0 for all n and for every
x ∈ br,s,Fp (V ) . Consequently, we obtain Pn = P ′n for each n, ensuring the uniqueness
of the basis. �
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Remark 2. By this result we say any element x = (xn) in br,s,Fp (V ) or in br,s,F0 (V )
can be represented uniquely as

x =

∞∑
n=1

((
Br,s,F In

)
◦ Pn

)
(x)

=

∞∑
n=1

(
Br,s,F In

)
(xn) .

This means in norm that∥∥∥∥∥(xn)−
m∑
n=1

(
Br,s,F In

)
(xn)

∥∥∥∥∥→ 0 as m→∞.

Further this representation is unconditional.

Theorem 3. The approximation property holds in br,s,Fp (V ) for all 1 ≤ p < ∞
and in br,s,F0 (V ) if and only if the Banach space V has this property.

Proof. Again let us give the proof only for br,s,Fp (V ). Suppose that Λ is a compact
linear operator from a Banach space V to br,s,Fp (V ) . We seek a sequence (Λn) of
bounded finite-rank linear operators from V into br,s,Fp (V ) . Due to the compactness
of Λ, for any bounded sequence (xn) in V, the sequence (Λxn) contains a convergent
subsequence

(
Λxnj

)∞
j=0

in br,s,Fp (V ). Further for every x ∈ V, Λx lies in br,s,Fp (V )

and explicitly ∥∥Λxni − Λxnj
∥∥p =

∥∥Λ
(
xni − xnj

)∥∥p
=

∥∥(Br,s,FΛ
) (
xni − xnj

)∥∥p
`p(V )

.

Just now we recall classical Banach space `p has approximation property and with
this conjecture we can say V has the approximation property if and only if `p (V )
has. Hence ∥∥(Br,s,FΛ

) (
xni − xnj

)∥∥p
`p(V )

→ 0 as i, j →∞.
We conclude that the operator Br,s,FΛ : V → `p (V ) is compact. Of course, the
matrix Br,s,F is a bounded linear operator and hence Br,s,FΛ is also bounded.
By the approximation property of `p (V ) there exists a sequence of finite-rank
bounded linear operators (Am)

∞
m=0 from V to `p (V ) such that

∥∥Br,s,FΛ−Am
∥∥→

0 as m → ∞. Thus, we obtain the desired sequence of finite-rank operators as((
Br,s,F

)−1
Am

)∞
m=0

which they map V into `p
(
Br,s,F , V

)
. Note that

(
Br,s,F

)−1
exist and easily it can be verified that each

(
Br,s,F

)−1
Am is a bounded linear

operator of finite rank. Further∥∥∥Λ−
(
Br,s,F

)−1
Am

∥∥∥ = sup
‖x‖=1

∥∥∥(Λ−
(
Br,s,F

)−1
Am

)
x
∥∥∥

= sup
‖x‖=1

∥∥∥Λx−
((
Br,s,F

)−1
Am

)
x
∥∥∥

= sup
‖x‖=1

∥∥∥Br,s,FΛx− Br,s,F
((
Br,s,F

)−1
Am

)
x
∥∥∥
`p(V )

= sup
‖x‖=1

∥∥(Br,s,FΛ−Am
)
x
∥∥
`p(V )

→ 0 as m→∞.
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This completes the proof. �

We now give a characterization of all bounded linear operators defined on the
Fibonomial sequence space br,s,F0 (V ). This is a more comprehensive study than the
characterizations of matrices defined on V -valued sequence spaces. This is because
all scalar infinite matrices defined between these spaces are bounded linear operators
on this space, but the converse is not always true. Similar version of following
characterization also can be done for the space br,s,Fp (V ) where 1 ≤ p <∞.

Theorem 4. The operator space B
(
br,s,F0 (V ) , br,s,F0 (V )

)
is equivalent (isometri-

cally isomorphic) by the mapping

T →
{
TBr,s,F In : n ∈ N

}
to Λ, the space of all sequences ϕ = (ϕn) such that

each ϕn ∈ B
(
V, br,s,F0 (V )

)
and

∑
n∈N
‖g ◦ ϕn‖ <∞

for each g ∈ br,s,F1 (V ∗) . Further Λ is a Banach space with the norm

‖ϕ‖ = sup
‖g‖=1

∑
n∈N
‖g ◦ ϕn‖ .

where
{
Br,s,F In

}
is the V -Schauder basis for br,s,F0 (V ).

Proof. Let us first consider the V -Schauder basis
{
Br,s,F In : n ∈ N

}
of br,s,F0 (V )

and let us write ϕn = TBr,s,F In for T ∈ B
(
br,s,F0 (V ) , br,s,F0 (V )

)
. Further now let

us define an operator

Ψ : B
(
br,s,F0 (V ) , br,s,F0 (V )

)
→ Λ by Ψ (T ) = ϕ such that ϕ = {ϕn}

∞
n=1 .

First of all we have to show that really Ψ defines a mapping. For some finite set
F ∈ F and for x = (xn) ∈ br,s,F0 (V ) let us write

π′F (x) =
∑
n∈F

(ϕn ◦ Pn) (x)

where F is the family of all finite subsets of all natural numbers which is directed by
the inclusion relation. π′F is a continuous linear operator on b

r,s,F
0 (V ) . This is comes

from the fact that π′F (x) = (T ◦ πF ) (x) where πF (x) =
∑
n∈F

((
Br,s,F In

)
◦ Pn

)
(x),

and comes from the continuity of each
(
Br,s,F In

)
◦Pn. Now it is known from former

studies that the dual space c0 (V )
∗

= l1 (V ∗). Further since x ∈ br,s,F0 (V ) if and

only if Br,s,Fx ∈ c0 (V ) we can easily deduce that
(
br,s,F0 (V )

)∗
= br,s,F1 (V ∗), see
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[9]. This fact brings us

sup
‖g‖=1

g∈br,s,F1 (V ∗)

∑
n∈N
‖g ◦ ϕn‖ ≤ sup

‖g‖=1
sup
F∈F

∑
n∈N
‖g ◦ ϕn‖

= sup
‖g‖=1

sup
F∈F

∑
n∈N
‖g ◦ ϕn‖

= sup
F∈F

sup
‖x‖=1

sup
‖g‖=1

∣∣∣∣∣∑
n∈N

(g ◦ ϕn)xn

∣∣∣∣∣
= sup

F∈F
sup
‖x‖=1

sup
‖g‖=1

∣∣∣∣∣g
(∑
n∈N

ϕn (xn)

)∣∣∣∣∣
= sup

F∈F
sup
‖x‖=1

∥∥∥∥∥∑
n∈N

(ϕn ◦ Pn) (x)

∥∥∥∥∥
= sup

F∈F
sup
‖x‖=1

‖π′F (x)‖

= sup
F∈F
‖π′F ‖ .

Remember that Tx ∈ br,s,F0 (V ) and by using again the V -Schauder basis in br,s,F0 (V )
we can say that the net (π′F (x) ,F) converges to Tx. This is equivalent to say that

the series
∞∑
n=1

(ϕn ◦ Pn) (x) is unconditional convergent to Tx. Hence from this fact

we can deduce the net (π′F (x) ,F) is bounded, that is supF∈F ‖π′F (x)‖ < ∞.
Now from the Uniform Boundedness Theorem we get supF∈F ‖π′F ‖ < ∞. This
means ϕ ∈ Λ and so Ψ is well-defined. Now let us show that the function ‖ϕ‖ =

sup‖g‖=1
∑
n∈N
‖g ◦ ϕn‖ defined above satisfies the norm conditions. Let ‖ϕ‖ = 0,

then for each g ∈ br,s,F1 (V ∗) and for each n ∈ N

g ◦ ϕn = 0.

So each ϕn = 0, that is ϕ = 0. Further if ‖λϕ‖ = 0 for any scalar λ then

‖λϕ‖ = sup
‖g‖=1

∑
n∈N
‖g ◦ (λϕn)‖

= sup
F∈F

sup
‖x‖=1

sup
‖g‖=1

∣∣∣∣∣g
(∑
n∈N

λϕn (xn)

)∣∣∣∣∣
= |λ| sup

F∈F
sup
‖x‖=1

sup
‖g‖=1

∣∣∣∣∣g
(∑
n∈N

ϕn (xn)

)∣∣∣∣∣
= |λ| ‖ϕ‖ .

Further the last condition of the norm is straighforward.
Now let us prove that the linear mapping Ψ is an equivalence (isometric isomor-

phism). Since it is relatively easy to show that the operator Ψ is surjective, it is
suffi cient here to show that Ψ is an isometry.
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Since

‖Tx‖ =

∥∥∥∥∥T
( ∞∑
n=1

((
Br,s,F In

)
◦ Pn

)
(x)

)∥∥∥∥∥
=

∥∥∥∥∥
∞∑
n=1

(ϕn ◦ Pn) (x)

∥∥∥∥∥
≤ sup

F∈F
‖π′F (x)‖

≤ ‖x‖ sup
F∈F
‖π′F ‖

≤ ‖x‖ ‖ϕ‖
we have ‖T‖ ≤ ‖ϕ‖ . On the other hand, for any g with ‖g‖ = 1 we get∑

n∈N
‖g ◦ ϕn‖ = sup

‖x‖=1

∣∣∣∣∣g
(∑
n∈N

ϕn (xn)

)∣∣∣∣∣
≤ ‖g‖ sup

‖x‖=1

∥∥∥∥∥
∞∑
n=1

(ϕn ◦ Pn) (x)

∥∥∥∥∥
Hence

‖ϕ‖ = sup
‖g‖=1

∑
n∈N
‖g ◦ ϕn‖

≤ sup
‖g‖=1

sup
‖x‖=1

(
‖g‖ sup

‖x‖=1

∥∥∥∥∥
∞∑
n=1

(ϕn ◦ Pn) (x)

∥∥∥∥∥
)

= sup
‖x‖=1

∥∥∥∥∥
∞∑
n=1

(ϕn ◦ Pn) (x)

∥∥∥∥∥
= sup

‖x‖=1
‖Tx‖

= ‖T‖ .
This shows that Ψ is an isometry. �
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