


Computational Design of Novel Schiff Base Inhibitors Against Salmonella Typhi: Molecular Mechanics-Based QSAR Approach


ABSTRACT
[bookmark: _GoBack]Salmonella typhi, a Gram-negative pathogen linked to typhoid disease, has shown concerning patterns of antibiotic resistance, highlighting the need for novel inhibitors. By using predicted Quantitative Structure-Activity Relationship (QSAR) models, this study aimed to identify the structural factors present in Schiff bases that have anti-Salmonella typhi activity. After a thorough collection of 43 Schiff bases was compiled, the minimum inhibitory concentrations (MIC) of each were transformed into pMIC values for analytical use. Molecular descriptors were obtained, and QSAR models were constructed using Genetic Function Approximation (GFA). Model 1 emerged as the most robust iteration, with validation metrics (R2 = 0.800, R2adj = 0.749, Q2 = 0.520, R2 - Q2 = 0.280, and R2pred = 0.642) reflecting substantial predictive capability. The developed model showed that the descriptors were predominant. The observed anti-Salmonella typhi activity of Schiff bases is influenced by directional WHIM, which is weighted by unit weights (Weta3.unity) about molecular weight. The findings highlight how molecular weight affects anti-Salmonella typhi efficacy, which lays the groundwork for the logical development of more potent Schiff base derivatives.
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1. INTRODUCTION
Salmonella typhi is classified as a Gram-negative bacterium that is the etiological agent of typhoid fever. [1, 2], an endemic illness that is particularly prevalent in tropical and subtropical regions globally. This pathogen has emerged as a significant public health challenge in developing nations, with an alarming incidence of over 21.6 million cases and approximately 250,000 fatalities recorded annually[3], thereby representing a critical source of morbidity and mortality in these areas. The Salmonella typhi bacterium has developed resistance to several antibiotics, including ampicillin, ceftriaxone, cotrimoxazole, quinolones, penicillin, cephalosporins, macrolides, and others. In light of the escalating resistance of this pathogen to multiple antibiotics, there has been a growing interest among medicinal chemists in the development of novel inhibitors that exhibit enhanced bioactivity [4]. Consequently, there exists an urgent requirement for the discovery of more efficacious and less toxic anti-Salmonella typhi agents capable of overcoming the resistance mechanisms established by this bacterium.
Schiff bases are synthesized through the condensation of basic amines with carbonyl compounds in ketones or aldehydes, wherein an imine or azomethine functional group (–C = N–) replaces the carbonyl moiety (C = O) [5, 6]. The presence of the imine linkage within Schiff base molecules is pivotal for the manifestation of this compound’s extensive range of biological applications, including analgesic. [7], anticancer [8, 9], antimicrobial [10, 11], antitumor [12], antioxidant [13, 14], antiviral  [15], and anti-inflammatory activities [16]. This category of organic compounds has also exhibited substantial inhibitory efficacy against Salmonella typhi growth, positioning them as promising drug candidates in the ongoing effort to mitigate the perilous trend of multi-drug resistance presented by this pathogenic microorganism [2, 17].
Traditional methodologies employed in drug discovery and development predominantly utilize a trial-and-error strategy that is both time-intensive and financially burdensome, primarily due to the substantial costs associated with late-stage drug candidate failures. This approach further poses challenges to the principles of green chemistry owing to the considerable waste generated during the process[18]. Quantitative structure-activity relationship (QSAR) analysis establishes a mathematical correlation between the physical, chemical, biological, or environmental activities of interest and quantifiable or computable parameters known as molecular descriptors. The fundamental premise of QSAR is that structurally analogous molecules are likely to exhibit similar activities, thereby allowing for the comparison of molecules with unknown properties to those with established characteristics [19]. The application of QSAR methodologies has the potential to substantially diminish the time and effort requisite for the discovery of new therapeutic agents or the enhancement of existing ones by circumventing the conventional trial-and-error paradigm. This approach aids in the elimination of improbable candidates and fosters green chemistry by reducing waste and enhancing efficiency [20].
The current investigation looks at the relationships between the compounds' computed molecular descriptors and experimental pMIC in order to develop reliable, logical, and predictive Genetic function approximation (GFA) based QSAR models for the inhibitory action of Schiff bases against Salmonella typhi.

2. MATERIALS AND METHODS
The following materials were used in this study: Chem draw 12.0.1V, Microsoft Office Excel 2016, Material Studio (modeling and simulation software) version 7.0, Padel descriptor tool kit, Dell Latitude 7480 computer system Intel(R) Core (TM) i7 7600 CPU @2.8GHz/2.9GHz, 16GB RAM size on Microsoft Windows 11 Pro, and DTC.

2.1 Data Collection
A compilation of 43 Schiff bases exhibiting significant anti-Salmonella typhi efficacy in vitro was derived from the existing literature [20–24] for this investigation. The minimum inhibitory concentration (MIC) values of the compounds were transformed to a logarithmic scale [pMIC = -logMIC (µg/ml)] to mitigate data dispersion and facilitate a linear response alongside optimal data fitting [2]. The chemical structures along with the experimental inhibitory concentration (pMIC) values of the Schiff bases against Salmonella typhi are presented in Table 1. Seventy percent of the dataset (29 compounds) was allocated as a training set for model development. In comparison, the remaining thirty percent (14 compounds) was designated as a test set for the external validation of the most statistically robust quantitative structure-activity relationship (QSAR) model.

Table 1. Chemical structures and experimental inhibitory concentration (pMIC) values of Schiff bases against S.typhi 
	S/N
	Structures
	pMIC
	S/N
	Structures
	pMIC

	1
	[image: ]
	1.34
	22
	[image: ]
	1.36

	2
	[image: ]
	1.28
	23
	[image: ]
	1.26

	3
	[image: ]
	1.34
	24
	[image: ]
	1.2

	4
	[image: ]
	1.9
	25
	[image: ]
	1.6

	5
	[image: ]
	1.26
	26
	[image: ]
	0.9

	6
	[image: ]
	1.62
	27
	[image: ]
	1.78

	7
	[image: ]
	1.36
	28
	[image: ]
	1.48

	8
	[image: ]
	1.28
	29
	[image: ]
	1.81

	9
	[image: ]
	1.58
	30
	[image: ]
	2.08

	10
	[image: ]
	1.32
	31
	[image: ]
	1.7

	11
	[image: ]
	1.36
	32
	[image: ]
	2.4

	12
	[image: ]
	1.32
	33
	[image: ]
	2.3

	13
	[image: ]
	1.38
	34
	[image: ]
	1.49

	14
	[image: ]
	1.62
	35
	[image: ]
	1.49

	15
	[image: ]
	1.3
	36
	[image: ]
	0.89

	16
	[image: ]
	1.32
	37
	[image: ]
	1.19

	17
	[image: ]
	1.28
	38
	[image: ]
	1.19

	18
	[image: ]
	1.18
	39
	[image: ]
	1.8

	19
	[image: ]
	1.2
	40
	[image: ]
	1.49

	20
	[image: ]
	1.23
	41
	[image: ]
	1.49

	21
	[image: ]
	1.3
	42
	[image: ]
	1.19

	43
	[image: ]
	1.19
	





2.2 Molecular optimization
Finding a molecule's equilibrium or lowest energy geometry is known as optimization [25].  Each compound's chemical structure in the data set was drawn using ChemDraw Ultra V12.0 and saved as a *cdx file.  Using Chem 3D Pro's molecular mechanics (MM) process, the molecules were optimized.  To determine the molecules' lowest energy or equilibrium geometry, optimization was carried out.  For each molecule, the physicochemical parameters (molecular descriptor) were calculated using its lowest energy structure.

2.3 Descriptor calculation
Arithmetic values that characterize the characteristics of molecules derived from a well-defined algorithm or experimental process are known as molecular descriptors [25].  Using the Padel descriptor toolkit, the different 0D, 1D, 2D, and 3D descriptors were computed.

2.4 Learning Process 
During this procedure, correlation analysis was performed using the Microsoft Excel program in Microsoft Office 2016 to determine the relationship between the compounds' biological activity (pMIC) and the computed descriptors.  To choose the appropriate descriptors for this regression study, a model based on Pearson's correlation matrix was employed.  In order to create QSAR models, the chosen descriptors were put through regression analysis using Genetic Function Approximation (GFA) in Material Studio software, with empirically determined activities as the dependent variable.  To determine which model had the highest fitness score, the models were evaluated using the "lack of fit" (LOF) score, which was calculated using a slightly modified version of the original Friedman formula [2, 26]. The original Friedman formula is used to measure LOF [27].
LOF = SS(1 – c + dp/m)2 ………………….…………………………… 1
In the model, c is the number of terms other than the constant term, d is the user-defined smoothing parameter, p is the total number of descriptors in all model terms (excluding the constant term), M is the number of samples in the training set, and SSE provides the sum of squares of errors [28]. Unlike the widely used least squares measure, the LOF measure is not always lowered by including additional terms in the regression model. The LOF metric prevents over-fitting by reducing the propensity to merely add more terms [29].

2.5 Model validation
Internal and external validation factors were used to assess the best models' predictive power, stability, fitting ability, and reliability [25]. Table 2 displays the minimum recommended value for a generally acceptable QSAR model, which was compared to the validation parameters.


Table 2. Validation Metrics for A Generally Acceptable QSAR Model.
	S/N
	symbol
	Name
	Threshold

	1
	R2
	Coefficient determination
	>0.6

	2
	Q2
	LOO cross-validation coefficient
	>0.5

	3
	R2pred.
	External test set’s coefficient of determination
	>0.6

	4
	R2 - Q2
	Different between R2 and Q2
	<0.3

	5
	F value
	Validation ratio
	High

	6
	P95%
	Confidence interval at 95% confidence level.
	< 0.05

	7
	VIF
	Variance inflation factor
	1≤ VIF ≤10





2.6 Internal validation parameters
The data used to build the model was used for this validation. The square of the correlation coefficient (R2), Adjusted R2 (R2adj), Q2 (Leave one out cross validation coefficient), and validation ratio (F value) are the different internal validation parameters used in this study [30]. 

2.6 External Validation
A crucial stage in the creation of a QSAR model is internal validation. The model's improved stability and predictive ability are demonstrated by the intended internal validation results. For the external test set of molecules, it does not, however, demonstrate any true prediction ability. Thus, it is necessary to assess the best model's extrapolation and external predictive capacity [30]. R2pred is the external prediction parameter employed in this study.

3. RESULTS AND DISCUSSION
For the pMIC of anti-S. typhi compounds, the top three QSAR models developed from the Genetic Function Approximation are Models 1, 2, and 3.  The best model for predicting the pMIC of anti-Salmonella typhi Schiff bases was determined to be Model 1, which had the lowest LOF.  Additionally, its validation parameters and the typical validation metrics for a robust QSAR model agree well [31].


Model 1:
pMIC =  0.052 * minsF + 0.010 * PNSA-3  - 9.772 * Weta3.unity + 3.835 * WK.unity  - 0.727 * Wnu2.eneg  + 0.0182 * Wlambda1.polar + 5.751 
[bookmark: _Hlk204406227][bookmark: _Hlk204406252][bookmark: _Hlk204406317]Friedman LOF=0.046, R2=0.800, R2adj=0.749, R2cv=0.520, SR=Yes, Fvalue(C-SOR)= 14.958, C.Exp.error=2.561, Lack of fit point =22, Min non-exp.error LOFsign.= 0.112

Model 2:
pMIC=  0.0415 * minsF  - 0.759 * hmax   - 8.622 * Weta3.unity  + 3.545 * WK.unity + 0.018 * Wlambda1.polar   + 5.369
Friedman LOF=0.049, R2=0.736, R2adj=0.678, R2cv=0.396, SR=Yes, Fvalue(C-SOR)= 12.809, C.Exp.error=2.663, Lack of fit point =23, Min non-exp.error LOFsign.= 0.128

Model 3:
pMIC =  - 1.736 * BCUTc-1h  + 0.040 * minsF  - 6.592 * Weta3.unity  - 0.800 * Wnu2.eneg + 0.020 * Wlambda1.polar  + 5.356
Friedman LOF=0.0494, R2=0.731, R2adj=0.672, R2cv=0.283, SR=Yes, Fvalue(C-SOR)= 12.481, C.Exp.error=2.663, Lack of fit point =23, Min non-exp.error LOFsign.= 0.129

Table 3. Definition of various descriptors used
	S/N
	Names of descriptors
	Descriptors

	1. 
	minsF
	Minimum atom-type E-State: -F


	2. [bookmark: _Hlk204429390]
	PNSA-3
	Charge-weighted partial negative surface area


	3. [bookmark: _Hlk204431096]
	Weta3.unity
	Directional WHIM, weighted by unit weights


	4. [bookmark: _Hlk204429448]
	WK.unity
	Non-directional WHIM, weighted by unit weights


	5. 
	Wnu2.eneg
	Directional WHIM, weighted by Mulliken atomic electronegativities
	

	6. 
	Wlambda1.polar
	Directional WHIM, weighted by atomic polarizabilities




[bookmark: _Hlk204512335]Model 1, also known as the octa-parametric model, was chosen as the optimization model based on the validation parameters. With R2 = 0.800, R2adj = 0.749, Q2 = 0.520, R2 - Q2 = 0.280, and R2pred = 0.642, the Genetic Function Algorithm-derived QSAR model strongly agrees with the threshold displayed in Table 2. The low residual values shown in Table 4, which compares the compounds' observed and predicted pMIC, demonstrate the predictability of Model 1 [18]. Additionally, Fig.1's plot of predicted pMIC against observed pMIC shows that the model is well-trained and capable of predicting the compounds' pMIC. Additionally, as the propagation of residuals was seen on both sides of zero, the plot of observed pMIC versus residual pMIC (Fig. 3) shows that there was no systemic error in the model generation process [32].

[image: ]
[bookmark: _Hlk204428007]Fig.1. Plot of  Actual pMIC against Predicted pMIC of Model 1(training set)

[image: ]
Fig.2. Plot of Actual pMIC against Predicted pMIC of Model 1(test set)

[image: ]
Fig.3. Residual Plot of Model 1

Table 4. Comparison between Actual pMIC and Predicted pMIC of Model 1 (training set)
	Compound
	Actual pMIC
	Predicted pMIC
	Residual Values

	1
	1.34
	1.339358
	0.007101

	2
	1.28
	1.443971
	-0.15595

	4
	1.9
	1.721728
	0.146945

	5
	1.26
	1.240855
	0.009619

	7
	1.36
	1.325051
	0.041633

	8
	1.28
	1.252462
	0.01311

	10
	1.32
	1.272905
	0.032902

	11
	1.36
	1.463127
	-0.15141

	13
	1.38
	1.39874
	-0.00793

	14
	1.62
	1.559041
	0.071824

	16
	1.32
	1.21716
	0.086602

	17
	1.28
	1.308072
	-0.03361

	19
	1.2
	1.126457
	0.065111

	20
	1.23
	1.405946
	-0.18624

	22
	1.36
	1.258742
	0.091397

	23
	1.26
	1.038636
	0.214726

	25
	1.6
	1.788299
	-0.1684

	26
	0.9
	1.003493
	-0.113

	28
	1.48
	1.457055
	0.015075

	29
	1.81
	1.82734
	0.002871

	31
	1.7
	1.580521
	0.144739

	32
	2.4
	2.232743
	0.158418

	34
	1.49
	1.280793
	0.202357

	35
	1.49
	1.414518
	0.067454

	37
	1.19
	1.482615
	-0.29991

	38
	1.19
	1.322937
	-0.14438

	39
	1.49
	1.586191
	-0.07371

	40
	1.49
	1.50212
	-0.01797

	41
	1.19
	1.20038
	-0.01939




Table 5. Actual, Predicted, and Residual pMIC of Model 1 (test set)
	Compound
	pMIC
	Minsf
	PNSA
	Weta3-Unity
	WK.Unity
	Wnu2.eneg
	Wlamba1.polar
	Pred. pMIC

		3

	6

	9

	12

	15

	18

	21

	24

	27

	30

	33

	36

	39

	42



		1.34

	1.62

	1.58

	1.32

	1.3

	1.18

	1.3

	1.2

	1.78

	2.08

	2.3

	0.89

	1.8

	1.19



		12.86

	0

	0

	13.38

	0

	0

	0

	0

	12.65

	0

	0

	0

	13.19

	0



		-39.28

	-34.90

	-45.88

	-51.99

	-45.70

	-31.98

	-31.28

	-17.03

	-20.31

	-14.65

	-20.55

	-30.39

	-23.62

	-15.85



		0.56

	0.56

	0.54

	0.56

	0.56

	0.53

	0.56

	0.58

	0.58

	0.56

	0.53

	0.57

	0.57

	0.54



		0.32

	0.37

	0.32

	0.31

	0.34

	0.30

	0.35

	0.40

	0.41

	0.41

	0.27

	0.37

	0.38

	0.36



		0.23

	0.17

	0.01

	0.24

	0.20

	0.17

	0.14

	0.12

	0.11

	0.11

	0.68

	0.02

	0.02

	0.03



		0.09

	0.12

	10.97

	10.25

	11.50

	1.87

	22.80

	16.81

	0.03

	17.68

	0.58

	0.38

	0.27

	17.07



		1.57

	1.25

	1.39

	1.64

	1.26

	1.31

	1.68

	1.71

	1.97

	2.01

	0.89

	1.35

	2.08

	1.98






3.1 Significance of the Descriptors in Model 1
The descriptors' positive coefficient follows: The value of the pMIC of these compounds against Salmonella typhi increases as the values of the following descriptors increase: Minimum atom-type E-State: -F (minsF), Charge-weighted partial negative surface area (PNSA-3), Non-directional WHIM, weighted by unit weights (WK.unity), Directional WHIM, weighted by Mulliken atomic electronegativities (Wnu2.eneg), and Directional WHIM, weighted by atomic polarizabilities (Wlambda1.polar). Therefore, the biological activity of these compounds against Salmonella typhi increases with the values of these descriptors, and vice versa. 
Minimum atom-type E-State: -F (minsF) is a descriptor of the electronegativity of Flourine. The result of the QSAR optimization model shows that the inhibitory activity of the studied Schiff bases increases with compounds having fewer numbers of fluorine atoms.
Charge-weighted partial negative surface area (PNSA-3), Non-directional WHIM, weighted by unit weights (WK.unity), Directional WHIM, weighted by Mulliken atomic electronegativities (Wnu2.eneg), and Directional WHIM, weighted by atomic polarizabilities (Wlambda1.polar) are descriptors of molecular weights. 
The Directional WHIM, weighted by unit weights (Weta3.unity), is also a descriptor of molecular weight. Its negative correlation with pMIC of the molecule, as shown in the best model (model 1), indicates that the biological activity of the studied compounds against Salmonella typhi increases with a decrease in molecular weight of the compounds. Therefore, for an enhanced anti-Salmonella typhi biological activity from Schiff bases, the weight of the molecules should be minimal.

3.2 Summary of Findings
[bookmark: _Hlk204513784][bookmark: _Hlk204513904]Models 1, 2, and 3 reflect the optimal QSAR models that were produced in order to investigate the structural requirements controlling the observed biological activities of Schiff bases. The strongest prediction model for Schiff bases' pMIC against Salmonella typhi is Model 1. Directional WHIM, weighted by unit weights (Weta3.unity) relative to molecular weight, was found to have a significant impact on the observed pMIC of the compounds against Salmonella typhi. This descriptor accounts for 48.46% of the molecules' observed inhibitory activity against Salmonella typhi. According to model 1, the descriptors' positive coefficients indicate that a molecule's activity against Salmonella typhi increases with the descriptors' value and vice versa.

RECOMMENDATION
Model 1’s top-performing predicted Schiff bases should be experimentally validated through in vitro and in vivo studies, given their effectiveness against Salmonella typhi. Expanding the dataset to include more structurally diverse Schiff base derivatives should be prioritized, along with the application of advanced machine learning techniques or hybrid QSAR-docking approaches to refine accuracy in predictions. Moreover, chemists must prioritize the synthesis of compounds with optimized molecular weights and electronegativities, given that the model cited these features as critical in determining bioactivity. Integrating computational chemists, microbiologists, and medicinal chemists could rapidly accelerate the development of these compounds into novel anti-typhoid drugs, meeting the critical need for new antibiotics targeting drug-resistant Salmonella typhi. Finally, the application of green chemistry principles to the synthesis could further enhance the alignment of this research with sustainable drug discovery initiatives.

CONCLUSION
The study successfully developed and validated QSAR models to predict the anti-Salmonella typhi activity of Schiff bases. Model 1's exceptional statistical performance demonstrated the importance of descriptors like minsF, PNSA-3, and WHIM-based factors in controlling biological activity. The negative relationship between molecular weight (Weta3.unity) and pMIC suggests that lighter molecules may have stronger inhibitory effects. These findings are consistent with the urgent need for novel antimicrobial medications to combat drug-resistant Salmonella typhi. In addition to saving time and money when compared to traditional drug development, the QSAR method also complies with green chemistry principles by minimizing experimental waste.
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