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Abstract

This paper examines the influence of the FT form factor, associated with second-class tensor

currents (SCCs), in the quasi-elastic radiative scattering of neutrinos on carbon-12(12C). A

general expression for the cross-section is derived via a multipole decomposition of the hadronic

currents, taking into account the circular polarization of the emitted photons. The study focuses

on the impact of FT on three sensitive observables : charge asymmetry, angular correlation and

triple correlation. Numerical results show that FT can produce significant effects, particularly

at low angles and for an incident energy of 300 MeV. For example, with FT = 5× 10−3MeV−1,

contributions can reach 67% for charge asymmetry, 31% for angular correlation, and 1% for triple

correlation at 10◦. These results suggest that precise measurements under these conditions could

experimentally reveal the existence of SCCs.

Keywords : second-class current, charge asymmetry coefficient, correlation coefficient, triple

correlation, neutrino scattering, charged current.

1 Introduction

The study SCCs[1] via radiative neutrino scattering is a specialized field of neutrino physics,

characterized by subtle interactions between neutrinos and matter. These currents, also known as

second-class axial currents, are associated with parity-violating transitions and are generally less

explored than first-class currents. SCCs have mainly been studied in low-energy processes, such as

β decays or muon capture by nucleons and nuclei [2–7]. On the other hand, few experiments have

been carried out at high energies, notably in the context of elastic and quasi-elastic (anti)neutrino

scattering, where the study of these currents remains limited [8–10]. However, measurements of

angular correlations in β decays seem to have provided clearer indications of the existence of

these currents [11,12].

Recent studies by Fatima et al.[13–15] have demonstrated that the presence of a SCC, with or

without time invariance (T), can significantly modify the observables in neutrino/antineutrino-

nucleon quasielastic scattering processes. In particular, SCC tends to increase the total cross-

section with the energy of the final lepton. Furthermore, longitudinal and perpendicular po-

larization asymmetries show a marked dependence on the presence of SCC, particularly in

antineutrino-driven interactions at energies below 8 GeV. These results suggest that SCCs could

be experimentally probed in the strangeness sector through high-precision measurements.

Study of second-class currents in radiative quasi-elastic neutrino and
antineutrino scattering on atomic nuclei
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The work of M. Sajjad Athar et al.[16] on neutrino scattering by nucleon-charged currents has

shown that cross sections are sensitive to the presence of SCCs. This highlights the fact that

whether or not these currents are taken into account can have a significant impact on the deter-

mination of the phenomenological parameter of axial mass (MA), often evaluated by assuming

the absence of SCC.

Thorpe et al.[17] have also studied the effect of SCCs on total and differential scattering cross

sections in antineutrino-induced hyperon production. Their result shows that hyperon yields can

be sensitive to SCCs.

In this study, we specifically examine the influence of the FT form factor, associated with SCCs,

in the quasi-elastic neutrino scattering process, described by the following reaction :

ν(ν̃) + (A,Z) −→ ℓ−(ℓ+) + (A,Z ± 1)∗ −→ (A,Z ± 1) + γRL (1)

2 Differential cross section for quasi-elastic scattering

In first-order perturbation theory, the square of the matrix element associated with the process

(1) is expressed as [18] : ∑
MiMf

|Mfi|2 =
1

2Ji + 1

∑
MiMf

|
∑
Mn

MfnMni|2 (2)

In this expression, Mni and Mfn represent respectively the matrix elements of the weak nuclear

transition and the gamma photon emission, defined by :

Mni = −GF√
2
ℓzµJ

z
µ (3)

Mfn = − 2π√
ωΩ

∑
J1≥1

(−i)J1 [J1]DJ1
M1σ

(ϕγ , θγ , ϕγ)

(
Jf J1 Jn

−Mf M1 Mn

)〈
Jf ||σT̂m

J1 − T̂ e
J1 ||Jn

〉
(4)

Here [J1] =
√
2J1 + 1.

The magnetic and electric multipole operators T̂m
J1σ

and T̂ e
J1σ

are defined in a coordinate system

X ′Y ′Z ′ where the z-axis is oriented along the momentum k⃗ of the photon. In order to define

all multipole operators in a coordinate system where the z axis is oriented along the transferred

momentum quantity q⃗, we rotate the coordinate system X ′Y ′Z ′ by the angles ϕγ and θγ . This

gives us the relationship [19] :

T̂
m(e)
J1σ

(k) =
∑
M1

T̂
m(e)
J1M1

DJ1
M1σ

(ϕγ , θγ , ϕγ). (5)

The function DJ1
M1σ

(ϕγ , θγ , ϕγ) is a Wigner function, and the angles θγ and ϕγ determine the

direction of gamma photon emission.

The constant GF corresponds to the Fermi constant characterizing the weak interaction. The

weak lepton and hadron currents are given by :
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ℓzµ = ū2γµ(aV + aAγ5)u1 (6)

Jz
µ(q) =

〈
JnMn|

∫
dx⃗exp(−iq⃗µx⃗)Ĵ ni

µ (x⃗)|JiMi

〉
(7)

The constants aV and aA represent the vector and axial coupling coefficients of the weak lepton

current, their values depending on the physical process under consideration. The Dirac spinners

uj(j = 1, 2) describe the incoming and outgoing leptons, while qµ = (q, iq0) is the transferred

momentum quadrivector.

The operator Ĵ ni
µ (x⃗) represents the hadronic current density, which can be decomposed into

a vector component and an axial component, taking into account the isotopic structure of the

nucleus [19] :

Ĵ ni
µ = β

(τ)
V (Jµ)τMτ + β

(τ)
A (J5

µ)τMτ (8)

In the case of charged-current transitions, we have τ = 1, Mτ = ±1 and the coefficients β
(τ)
V =

β
(τ)
A = 1, giving for the hadronic current :

Jµ = (Jµ)1Mτ + (J5
µ)1Mτ (9)

The cross section of the process described by equation (1) occurring in a certain direction

and with photon emission can be expressed using the so-called multipole matrix element de-

composition method, used in several scientific works [20–22]. This method provides a better

understanding of the different contributions to the transition probability.

The following formula gives this differential probability, i.e. the probability per unit solid angle

for the neutrino (Ων) and for the emitted photon (Ωγ) :

dσ

dΩνdΩγ
=

Γ
(n→f)
γ

Γ
(n→f)
total

∑
ττ ′

(
τn τ τi

−Mτn Mτ Mτi

)(
τn τ ′ τi

−Mτn Mτ Mτi

)

× dσ0
dΩν

{1 + 1

K0
0

∑
L≥2

f
(n→f+γ)
L (PL(cosθγ)K

0
L

+P 1
L(cosθγ)cosΦγK

1
L + P 2

L(cosθγ)cos2ΦγK
2
L)

+
sγ
K0

0

∑
L≥1

f
(n→f+γ)
L (PL(cosθγ)K̃

0
L + P 1

L(cosθγ)cosΦγK̃
1
L)

+
sγ
K0

0

∑
L≥3

f
(n→f+γ)
L (P 2

L(cosθγ)2cosΦγK̃
2
L)}

(10)

In this expression :

• Γ
(n→f)
γ is the partial probability (or relative width) associated with the emission of a photon

during the transition of the nucleus from the n state to the f state,

• Γ
(n→f)
total is the total transition probability,

• sγ corresponds to the helicity of the photon, i.e. the direction of its rotation,

• dσ0
dΩν

is the basic probability for neutrino scattering when the nucleus is not polarized, given

by :
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dσ0
dΩν

=
16π3G2

F

2ωΩ(2Ji + 1)
K0

0 (11)

The quantum number L, which indicates the angular momentum component in the transition,

takes integer values from 0 up to 2Jn, where Jn is the spin of the excited state of the nucleus.

The functions PM
L (cos θγ) are associated Legendre polynomials.

Finally, the functions f
(n→f+γ)
L represent the various multipolar contributions to the transition

and are defined by :

f
(n→f+γ)
L =



Y T
L (q0)

Y T
0 (q0)

pour L paire

Y T ′
L (q0)

Y T
0 (q0)

pour L impaire

(12)

The function Y T
L (q0), is defined by the following expression :

Y T
L (q0) = −(−)Jf+Jn

∑
J ′
1J1

[J ′
1][J1][L]

(
J1 J ′

1 L

1 −1 0

){
J1 J ′

1 L

Jn Jn Jf

}
×{P+

J ′
1+J1

(FEJ ′
1
FEJ1 + FMJ ′

1
FMJ1) + P−

J ′
1+J1

(FEJ ′
1
FMJ1 − FMJ ′

1
FEJ1)}

(13)

where q0 is the energy associated with the gamma transition.

The quantities J1 and J
′
1 are quantum numbers related to the angular momentum of the system,

and they must satisfy the following condition : |Jn − Jf | ≤ J1(J
′
1) ≤ Jn + Jf

The symmetry factors P±
J ′+J are defined by :

P±
J ′+J = 1

2(−)
1
2
(J ′−J+η)(1± (−)J

′+J) with,

η =

{
0 pour P+

J ′+J

1 pour P−
J ′+J

(14)

The functions Km
L and K̃m

L that appear in the differential probability expression are given by :

K0
L = f1Y

L
1 + f2Y

L
2 + f3Y

L
3 + f4Y

L
4 + f5Y

L
5

K1
L = f6Y

L
6 + f7Y

L
7 + f8Y

L
8 + f9Y

L
9

K2
L = f10Y

L
10

K̄0
L = f1Ȳ

L
1 + f2Ȳ

L
2 + f3Ȳ

L
3 + f4Ȳ

L
4 + f5Ȳ

L
5

K̄1
L = f6Ȳ

L
6 + f7Ȳ

L
7 + f8Ȳ

L
8 + f9Ȳ

L
9

K̄2
L = f10Ȳ

L
10

K̄2
1 ≡ 0

(15)
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Here, the fi functions (with i = 1, 2, . . . , 10) represent the leptonic contributions, while Y L
i and

Ȳ L
i designate the corresponding hadronic functions. Detailed expressions for these functions,

including the effects of longitudinal electron (or positron) polarization and lepton masses, are

given in the appendix.

3 Quasi-elastic scattering of neutrinos (or antineutrinos) on the carbon

nucleus 12C

As an example of transition, consider the following diffusion processes :

ν(ν̃) + 12C −→ e−(e+) + 12N∗(12B∗) −→ 12N(12B) + γRL (16)

This is an interaction between a neutrino (or antineutrino) and a carbon nucleus 12C, producing

an electron (or positron) and an excited boron or nitrogen nucleus. This excited nucleus then

returns to its ground state, emitting a gamma photon.

In this case :

The quantum number L, which describes the orbital angular momentum of the transition, varies

between 0 and Jn. As here Jn = 1, we have 0 ≤ L ≤ 2.

The total angular momentum J and J ′ satisfy the condition |Ji − Jn| ≤ J(J ′) ≤ Ji + Jn, giving

J = J ′ = 1 in this process.

The differential cross section for this process, deduced from equation (16), is written :

dσ

dΩνdΩγ
=

Γ
(n→f)
γ

Γ
(n→f)
total

Σ0{K0
0 + f

(n→f+γ)
2 (P2(cosθγ)K

0
2 + P 1

2 (cosθγ)cosϕγK
1
2

+P 2
2 (cosθγ)cos2ϕγK

2
2 ) + sγf

(n→f+γ)
1 (P1(cosθγ)K

0
1 + P 1

1 (cosθγ)cosϕγK
1
1 )}exp(−2y)

(17)

where, Σ0 =
8π3G2

F

3ωΩ
; f

(n→f+γ)
1 = −

√
3√
2
; f

(n→f+γ)
2 =

1√
2
.

The Km
L functions describing the various multipolar components of the transition are given by :

K0
0 =

1√
3
{v1H1 − v2H2 + v3H3 + v4H4 + v5H5} ,

K0
2 =

1√
6
{v1H1 − v2H2 − 2v3H3 − 2v4H4 − 2v5H5} ,

K1
2 =

1√
6
{v6H6 − v7H7 + v8H8 − v9H9} ,

K2
2 =

1

2
√
6
v10H10,

K0
1 =

1√
2
{−v1H2 + v2H1} ,

K1
1 =

1√
2
{−v6H7 + v7H6 − v8H9 + v9H8} .

(18)
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4 Angular correlation coefficient

Consider the angular correlation coefficient between the emitted photon and the neutrino (or

antineutrino), defined by the following expression :

Aνγ =
dσ(p⃗γ ↑↑ p⃗ν)− dσ(p⃗γ ↑↓ p⃗ν)
dσ(p⃗γ ↑↑ p⃗ν) + dσ(p⃗γ ↑↓ p⃗ν)

(19)

where p⃗γ and p⃗ν denote the photon and neutrino (or antineutrino) impulse vectors respectively.

The symbols ↑↑ and ↑↓ indicate that the directions of these momenta are respectively parallel

or antiparallel.

In the context of radiative emission following a weak interaction in the 12C nucleus, a numerical

analysis of the energy dependence of the coefficient Aνγ(Eν , θ), for a scattering angle θ = 10◦

and for FT = 5.10−3MeV −1, has been carried out. This study highlights the effect of the SCC

on this correlation coefficient. The relative contribution of this current, denoted δAνγ , increases

significantly with neutrino energy Eν . More precisely, the following values were obtained :

Eν (MeV) δAνγ (θ = 10◦) δAνγ ( θ = 20◦)

20 1% 1%

50 3% 4%

200 16% 27%

300 31% 13%

Table 1 – Comparison of the relative contributions δAνγ for different neutrino energies and two

angular configurations.

These results show that the angular correlation coefficient Aνγ is a particularly sensitive tool

for detecting the possible presence of SCCs, especially at high energies. This makes it a key

parameter in experimental research aimed at testing the limits of the Standard Model of particle

physics.

Figure (1) illustrates the variation of this relative contribution as a function of neutrino energy

and scattering angle, providing a useful tool for analyzing the presence and potential impact of

SCC in nuclear weak interactions.

5 Triple Correlation Coefficient

The triple correlation coefficient Tνγ is a physical quantity used to detect possible asymmetries

in particle emission during a decay process. It is defined as follows :

Tνγ =
dσ(p⃗γ ↑↑ p⃗ν × p⃗e)− dσ̃

dσ̃
(20)

dσ(p⃗γ ↑ p⃗ν × p⃗e) is the differential cross section associated with a configuration in which the

photon pulse is aligned with the vector p⃗ν × p⃗e, i.e. perpendicular to the plane formed by the

neutrino and electron pulses, dσ̃ is the isotropic component of the differential cross section, i.e.

the part that does not depend on the photon’s emission angles (θγ , ϕγ).
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Figure 1 – Relative contribution of SCC to the angular correlation coefficient

This coefficient is sensitive to certain fine properties of the interactions, in particular to the

presence of SCC, which are forbidden in certain fundamental symmetries of the Standard Model,

but could appear if new interactions were present.

In the particular case of neutrino scattering on a 12C nucleus, with gamma photon emission, the

study was carried out for a scattering angle fixed at θ = 10◦.

Numerical analysis of the function Tνγ(Eν , θ) , which represents the dependence of the angu-

lar correlation coefficient on neutrino energy, shows that the relative contribution of the SCC,

denoted δTνγ , increases with neutrino energy. More precisely :

Eν (MeV) δTνγ ( θ = 10◦) δTνγ ( θ = 20◦)

20 0.3% 1%

50 0.4% 2%

200 0.7% 4%

300 1% 7%

Table 2 – Relative contributions of the SCC to the function Tνγ(Eν , θ) for different neutrino

energies and two angular configurations.

These results suggest that the influence of SCC becomes increasingly significant at high energies,

making them a good indicator for testing the limits of the Standard Model.

The figure (2) illustrates this growth : it shows how the relative contribution of SCC to the

angular triple correlation coefficient varies as a function of neutrino energy and scattering angle.
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6 Charge Asymmetry

The charge asymmetry coefficient Aνν̃ quantifies the difference in behavior between a neutrino

and an antineutrino during a scattering process. It is defined by the following relationship :

Aνν̃ =
dσν − dσν̃
dσν + dσν̃

(21)

where :

• dσν represents the differential interaction cross-section for a neutrino,

.

• dσν̃ is the same cross-section but for an antineutrino.

This coefficient therefore measures the asymmetry between the two types of particle, and makes

it possible to explore effects linked to the violation of certain fundamental symmetries, notably

the charge conjugation symmetry(C).

In the case where the photon is emitted in the same direction as the incident neutrino momentum,

a numerical study has been carried out to analyze how this coefficient Aνν̃ varies as a function

of neutrino energy, at a scattering angle fixed at 10◦. This analysis was carried out assuming a

value for the form factor FT = 5.10−3MeV −1, which corresponds to an assumption about the

strength of the SCC.

The results show that the relative contribution of SCC to the charge asymmetry coefficient,

denoted δAνν̃ , increases strongly with neutrino energy : These results clearly show that at high

energies, the second-class current plays an increasingly significant role in the difference between

neutrino and antineutrino behavior. When the scattering angle is fixed at θ = 20◦, a similar

trend is observed, though with slightly reduced contributions.

Figure (3) illustrates these results by plotting the evolution of the relative contribution of the

second-class current to the charge asymmetry coefficient δAνν̃ , as a function of incident neutrino

Figure 2 – Relative contribution of SCC to the angular correlation coefficient
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Eν (MeV) δAνν̃ (θ = 10◦) δAνν̃ ( θ = 20◦ )

20 2% 2%

50 20% 19%

200 58% 45%

300 67% 49%

Table 3 – Relative contributions of the second-class current to the charge asymmetry coefficient

δAνν̃ at different neutrino energies and for two angular configurations.

energy, for different scattering angles.

Figure 3 – Relative contribution of SCC to the charge asymmetry coefficient

7 Conclusion

In this paper, we have established the general expression of the differential cross section for

the neutrino-nucleus radiative scattering process via the charged current taking into account

the tensor form factor FT of the SCC. Numerical analysis of the angular correlation coefficient,

the triple correlation coefficient and the charge asymmetry coefficient for quasi-elastic neutrino

scattering on nuclei, revealed significant sensitivity to the presence of the SCC form factor FT .

In particular, for a typical value of the SCC form factor (FT = 510−3MeV −1), the contribution

of these currents can modify the charge asymmetry and angular correlation coefficients by tens

of percent, depending on the energy of the incident neutrino (or antineutrino). These results

highlight the potential interest of experimental studies of the quasi-elastic neutrino scattering

process on nuclei, accompanied by gamma radiation, as a sensitive tool for probing the existence

of second-class currents, the detection of which would represent a significant advance beyond

the Standard Model.
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8 Appendix

The most general form of the lepton current is :

ℓµ = (ℓ⃗, ℓ4 = iℓ0) = ū2γµ(aV + aAγ5)u1

In the case of quasi-elastic diffusion we have : aV = aA = 1 et ℓµ = ū2γµu1

The leptonic tensor ℓµℓ
∗
ν is given by : ℓµℓ

∗
ν = δν ū2γµ(aV + aAγ5)u1ū1(aV − aAγ5)γνu2,

δν =

{
−1, ν = 1, 2, 3

+1, ν = 4

ℓµℓ
∗
ν = δνTr {γµ(aV + aAγ5)Λ1(aV − aAγ5)γνΛ2} ,

Λ1 =
1

4ϵE1
(m1 − iϵP̂1)(1− iŜ1γ5) et Λ2 =

1
4ϵE2

(m2 − iϵP̂2)(1− iŜ2γ5)

ϵ = +1 for particles, ϵ = −1 for anti-particles.

To evaluate the tensor ℓµℓ
∗
ν it is necessary to calculate the traces of the products of matrices

using the known results of the products of gamma matrices :

f1 =
1

2
(ℓ1ℓ

∗
1 + ℓ2ℓ

∗
2) f2 = Im(ℓ1ℓ

∗
2)

f3 = ℓ3ℓ
∗
3 f4 = −2Re(ℓ3ℓ

∗
0)

f5 = ℓ0ℓ
∗
0 f6 = − 1√

2
Re(ℓ1ℓ

∗
3)

f7 =
1√
2
Im(ℓ2ℓ

∗
3) f8 =

1√
2
Re(ℓ1ℓ

∗
0)

f9 =
1√
2
Im(ℓ2ℓ

∗
0) f10 =

1

2
(ℓ1ℓ

∗
1 − ℓ2ℓ

∗
2)

f̃1 =
1√
2
Im(ℓ∗3ℓ1) f̃2 = − 1√

2
Re(ℓ∗3ℓ2)

f̃3 = − 1√
2
Im(ℓ1ℓ

∗
0) f̃4 =

1√
2
Re(ℓ2ℓ

∗
0)

f̃5 = Re(ℓ1ℓ
∗
2) f̃6 = 2Im(ℓ0ℓ

∗
3)

(22)

In the case of massless neutrinos, the leptonic functions take the form :

v1 = 2(1− C1C2), v2 = 2η(C2 − C1), v3 = 2(1 + 2C1C2 − cos θ), v4 = −4(C1 + C2),

v5 = 2(1 + cos θ), v6 =
−2

√
2

sin θ
(C2

2 − C2
1 ), v7 =

2η
√
2

sin θ
(C1 + C2)(cos θ − 1),

v8 =
2
√
2

sin θ
(C2 − C1)(1 + cos θ), v9 =

2η
√
2

sin θ
(C2

1 + C2
2 − 2C1C2 cos θ),

v10 = − 2

sin2 θ
(C2 − C1 cos θ)(C2 cos θ − C1)

(23)

Here, θ is the angle between the neutrino(antineutrino) and electron(positron) pulses, η takes



the value +1 for neutrino scattering and −1 for antineutrino and the coefficients C1, C2 are

given by the relations : C1 = (Eℓcosθ − Eν)/q, C2 = (Eℓ − Eνcosθ)/q

The hadronic functions are given by the following formulas :

Y L
1 = −

∑
J ′J

AL
−1,1{P+

J ′+J{F
(τ)
MJF

(τ ′)
MJ ′ +F

(τ)
EJF

(τ ′)
EJ ′ +F

5(τ)
MJ F

5(τ ′)
MJ ′ +F

5(τ)
EJ F

5(τ ′)
EJ ′ }+P−

J ′+J{F
(τ)
MJF

(τ ′)
EJ ′ −

F
(τ)
EJF

(τ ′)
MJ ′ + F

5(τ)
EJ F

5(τ ′)
MJ ′ − F

5(τ)
MJ F

5(τ ′)
EJ ′ }}

Y L
2 =

∑
J ′J

AL
−1,1{P+

J ′+J{F
(τ)
MJF

5(τ ′)
EJ ′ +F

(τ)
EJF

5(τ ′)
MJ ′ +F

5(τ)
MJ F

(τ ′)
EJ ′ +F

5(τ)
EJ F

(τ ′)
MJ ′}+P−

J ′+J{F
(τ)
MJF

5(τ ′)
MJ ′ −

F
(τ)
EJF

5(τ ′)
EJ ′ + F

5(τ)
EJ F

(τ ′)
EJ ′ − F

5(τ)
MJ F

(τ ′)
MJ ′}}

Y L
3 =

∑
J ′J

AL
0,0P

+
J ′+J{F

(τ)
LJ F

(τ ′)
LJ ′ + F

5(τ)
LJ F

5(τ ′)
LJ ′ }

Ȳ L
3 =

∑
J ′J

AL
0,0P

−
J ′+J{F

5(τ)
LJ F

(τ ′)
LJ ′ − F

(τ)
LJ F

5(τ ′)
LJ ′ }

Y L
4 =

∑
J ′J

AL
0,0P

+
J ′+J{F

(τ)
LJ F

(τ ′)
CJ ′ + F

5(τ)
LJ F

5(τ ′)
CJ ′ }

Ȳ L
4 =

∑
J ′J

AL
0,0P

−
J ′+J{F

5(τ)
LJ F

(τ ′)
CJ ′ − F

(τ)
LJ F

5(τ ′)
CJ ′ }

Y L
5 =

∑
J ′J

AL
0,0P

+
J ′+J{F

(τ)
CJF

(τ ′)
CJ ′ + F

5(τ)
CJ F

5(τ ′)
C′ }

Ȳ L
5 =

∑
J ′J

AL
0,0P

−
J ′+J{F

5(τ)
CJ F

(τ ′)
CJ ′ − F

(τ)
CJF

5(τ ′)
CJ ′ }

Y L
6 = −

√
2
∑
J ′J

AL
0,1{P+

J ′+JF
(τ)
LJ F

(τ ′)
EJ ′ + F

5(τ)
LJ F

5(τ ′)
EJ ′ )− P−

J ′+J(F
5(τ)
LJ F

5(τ ′)
MJ ′ − F

(τ)
LJ F

(τ ′)
MJ ′)}

Y L
7 =

√
2
∑
J ′J

AL
0,1{P+

J ′+J(F
(τ)
LJ F

5(τ ′)
MJ ′ + F

5(τ)
LJ F

(τ ′)
MJ ′)− P−

J ′+J(F
5(τ)
LJ F

(τ ′)
EJ ′ − F

(τ)
LJ F

5(τ ′)
EJ ′ )}

Y L
8 = −

√
2
∑
J ′J

AL
0,1{P+

J ′+JF
(τ)
CJF

(τ ′)
EJ ′ + F

5(τ)
CJ F

5(τ ′)
EJ ′ )− P−

J ′+J(F
5(τ)
CJ F

5(τ ′)
MJ ′ − F

(τ)
CJF

(τ ′)
MJ ′)}

Y L
9 =

√
2
∑
J ′J

AL
0,1{P+

J ′+JF
(τ)
CJF

5(τ ′)
MJ ′ + F

5(τ)
CJ F

(τ ′)
MJ ′)− P−

J ′+J(F
5(τ)
CJ F

(τ ′)
EJ ′ − F

(τ)
CJF

5(τ ′)
EJ ′ )}

Y L
10 = −

∑
J ′J

AL
−1,−1{P+

J ′+J{F
(τ)
EJF

(τ ′)
EJ ′−F (τ)

MJF
(τ ′)
MJ ′+F

5(τ)
EJ F

5(τ ′)
EJ ′ −F 5(τ)

MJ F
5(τ ′)
MJ ′ }+P−

J ′+J{F
5(τ)
EJ F

5(τ ′)
MJ ′ +

F
5(τ)
MJ F

5(τ ′)
EJ ′ )− F

(τ)
EJF

(τ ′)
MJ ′ + F

(τ)
MJF

(τ ′)
EJ ′ }}

Ȳ L
10 = −

∑
J ′J

AL
−1,−1{P+

J ′+J{F
(τ)
EJF

5(τ ′)
MJ ′ −F (τ)

MJF
5(τ ′)
EJ ′ )+F

5(τ)
EJ F

(τ ′)
MJ ′−F 5(τ)

MJ F
(τ ′)
E′ }+P−

J ′+J{F
5(τ)
MJ F

(τ ′)
MJ ′+

F
5(τ)
EJ F

(τ ′)
EJ ′ − F

(τ)
MJF

5(τ ′)
MJ ′ + F

(τ)
EJF

5(τ ′)
EJ ′ }}

Ȳ L
1 = Y L

2 , Ȳ L
2 = Y L

1 , Ȳ L
6 = −Y L

7 , Ȳ L
7 = −Y L

6 , Ȳ L
8 = −Y L

9 , Ȳ L
9 = −Y L

8 .

FMJ ,FEJ ,FCJ and FLJ(F
5
MJ ,F

5
EJ ,F

5
CJ and F 5

LJ) are matrix elements of the magnetic, electrical,



coulombic and longitudinal multipole vector (axial-vector) operators calculated in the core layer

model.

F
(1)
M1 =

ψ

6
√
π

q

M
e−y(F1 − µ(2 − y)), F

5(1)
C1 =

ψ

3
√
2π

q

M
e−y(

3

2
FA − (1 − y)(q0FP − 2ηMFT )),

F
5(1)
L1 =

√
2ψ

3
√
π
e−y(1− y)(FA − q2

2MFP ), F
5(1)
E1 =

ψ

3
√
π
e−yFA(2− y).

where ψ is a nuclear parameter ; µ = F1+2MF2 ; q0 is the transition energy ; y = (bq/2)2 where

b is the harmonic oscillator parameter.

The coefficient AL
m′m is given by :

AL
m′m = (−)Jf+Jn [J ′][J ][L]

(
(L−M)!

(L+M)!

)1/2
(

J ′ J L

m′ m M

){
J ′ J L

Jn Jn Ji

}
(24)
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