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Abstract6

Grey system models (GMs) have achieved considerable progress in recent decades, yet their7

effectiveness is often limited when dealing with nonlinear data. In contrast, machine learning (ML)8

models can capture complex nonlinear relationships but generally require large datasets and lack9

interpretability. To address these limitations, this paper proposes a novel neural grey system model10

that embeds a neural network into the traditional GM framework. This integration enhances the11

model’s nonlinear learning capacity while maintaining the grey model’s suitability for sparse and12

uncertain data. The model is optimized using the Adam algorithm, and hyperparameters are13

fine-tuned via GridSearch. To validate its effectiveness, we conduct carbon emission forecasting14

experiments for four countries, comparing the proposed model against eight benchmark models,15

including conventional GMs and ML-based approaches. Results demonstrate superior forecast-16

ing accuracy and generalization ability, confirming the proposed model’s potential for complex,17

nonlinear prediction tasks in environmental and energy domains.18

Keywords: Grey system, Multilayer perceptron, Adaptive Moment Estimation,19

Carbon emission forecasting.20

1 Introduction21

Grey System Theory (GST) has undergone significant development over the past22

four decades. In contrast to conventional uncertainty modeling theories, GST is23

uniquely positioned to analyze systems with limited, incomplete, or low-quality data [1].24

At the core of GST are Grey Models (GMs), which have found widespread applications25

across various domains such as agriculture [2], economic forecasting [3], energy sys-26

tems [4], production planning [5], and traffic management [6]. Originating from Deng’27

s seminal work in 1984 [7], the theory was formally established through the introduction28

of the general grey modeling framework, GM(n, h) [8], with foundational models like29

GM(1, 1) and GM(1, N) applied early on to forecast China’s grain production. Since30

then, numerous variants have emerged, including the Discrete Grey Models DGM(1, 1)31
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and DGM(1, N) [9], which serve as the discrete analogues of their continuous counter-32

parts.33

Broadly, linear grey models can be divided into univariate and multivariate cate-34

gories. The univariate models are further classified into continuous and discrete forms.35

Among the continuous univariate models derived from GM(1, 1), several notable de-36

velopments stand out. For instance, Wang proposed the DSGM(1, 1) model [10], in-37

corporating dynamic seasonal factors, while Wu introduced the FGM(1, 1) model [11],38

which employs fractional-order accumulation to enhance predictive performance. Cui39

extended the framework to a generalized version, NGM(1, 1, k) [12], and Chen further40

improved its adaptability through the NGM(1, 1, k, c) model [13]. Jiang also contributed41

by formulating a version of NGM(1, 1) [14] tailored for non-homogeneous and non-42

equidistant time series. Discrete univariate models, mostly derived from DGM(1, 1),43

have also seen notable enhancements. Xie introduced the NGDM(1, 1) model [15],44

based on a non-homogeneous index sequence, offering improved accuracy. To address45

seasonal variations, Xia proposed the SDGM model [16], utilizing a cyclic accumulation46

mechanism. Yang incorporated trigonometric functions into the DGM structure and47

introduced the DGM(1, 1, T ) model [17], which demonstrated effective drought predic-48

tion capabilities. While continuous multivariate models generally stem from GM(1, N),49

discrete forms are typically based on DGM(1, N) [18].50

Despite the success of linear models, their limited capacity to capture nonlinear51

dynamics has prompted the development of nonlinear grey models. In this context,52

Ma introduced KGM(1, n) [19], a nonlinear multivariate model based on kernel meth-53

ods, and later proposed the GMW-KRGM model [20], which integrates kernel ridge54

regression. Further advancements include models embedding nonlinear elements such55

as y2(t) or yγ(t) to improve expressiveness. The Grey Verhulst Model (GVM(1, 1)), first56

used by Shaikh [21] for natural gas demand forecasting, marked an early attempt at57

modeling nonlinear growth. To counteract its ’drift phenomenon,’ Zhou introduced the58

Generalized Grey Verhulst Model (GGVM) [22], which Xiao [23] later employed in dy-59

namic traffic flow forecasting. Wang’s NGM(1, 1, γ) [24] leveraged biological metabolism60

concepts, and Chen’s Nonlinear Grey Bernoulli Model (NGBM) [25] utilized Bernoulli61

equations. This line of research continued with Lu’s ONGBM(1, 1) [26] and Liu’s62

weighted fractional NGBM [27]. Other important contributions include Xiao’s Grey63

Riccati-Bernoulli Model (GRBM(1, 1)) [28] for energy demand forecasting and Wu’s64

time-variant Bernoulli model NBGM(1, 1, tα) [29] for solar power prediction. Wang65

developed a time-varying GM(1, 1) [30] with adaptive structure parameters, and Wu’s66

Grey Riccati Model (GRM) [31] integrated Riccati equations. Luo later applied a grey-67

Richards hybrid model for epidemic modeling [32], while Gatabazi [33, 34] proposed68

a Fractional Grey Lotka–Volterra Model (FGLVM) for cryptocurrency market analy-69

sis. Mao employed a classical Lotka–Volterra structure to study the impact of online70

payment systems in the banking sector [35].71

Recent years have also witnessed the growing integration of grey models with neu-72

ral networks, aiming to overcome the limitations of traditional models in handling73

nonlinearity. Neural networks, known for their strong approximation capabilities, have74
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been increasingly embedded into grey model structures. Examples include Lei’s Neu-75

ral ODE-based model (NODGM) [36], Li’s DGNNM(2, 1) [37], which couples a discrete76

grey model with a feedforward neural network, and Hao’s hybrid system combining77

grey prediction with a particle-swarm-optimized neural network [38]. While such com-78

binations offer improved performance, they often result in complex architectures and79

challenging training procedures.80

Motivated by the above literature, this study proposes a novel neural grey model81

that integrates neural network structures into the classical grey modeling framework for82

carbon emission forecasting. Specifically, a multilayer perceptron (MLP) is embedded83

into the whitenization equation of the GM(1,1) model to replace the grey action com-84

ponent. The model jointly optimizes the development coefficient and neural network85

weights via gradient descent. To enhance convergence and prediction performance, the86

Adam optimizer is employed, while Grid Search is used for systematic hyperparameter87

tuning. The model is applied to annual carbon emission datasets from multiple coun-88

tries to evaluate its effectiveness in capturing nonlinear patterns under small-sample89

conditions. The main contributions of this paper are as follows:90

• A novel and interpretable neural grey model is proposed, which combines the91

strengths of grey models in small-sample settings with the nonlinear learning ca-92

pacity of neural networks.93

• A dual optimization strategy is introduced, utilizing Adam for efficient conver-94

gence and Grid Search for optimal hyperparameter selection, thereby improving95

model accuracy and generalization.96

• This study pioneers the application of neural grey models to national CO2 emis-97

sion forecasting, demonstrating strong adaptability and potential for supporting98

carbon peaking and neutrality initiatives.99

The remainder of this paper is structured as follows: Section 2 introduces the100

general grey model formulation and solution process; Section 3 introduces the proposed101

neural grey model framework. Section 4 presents five real-world applications and the102

forecasting results; Section 5 discuss the forecasting results of the each carbon emission103

data; and Section 6 concludes the study.104

2 Theoretical background105

2.1 General formulation of multilayer perceptron106

Formally, an MLP consists of an input layer, one or more hidden layers, and an107

output layer. Each layer is composed of numerous artificial neurons, also referred to108

as perceptrons or nodes, interconnected via weighted connections [39]. The primary109

function of the MLP is to transform input data through successive layers of nonlinear110

transformations, ultimately producing an output prediction. A simple mlp network111

structure with one-hidden-layer is shown in Fig.(1).112
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Mathematically, the forward propagation process of an MLP can be expressed as113

follows: for each layer l, the output x(l) is computed as the application of a nonlinear114

activation function σ to the linear transformation of the previous layer’s output x(l−1),115

incorporating weights W(l) and biases b(l) :116

z(l) = W(l)x(l−1) + b(l)

x(l) = σ
(
z(l)
) (1)

During training, the parameters (weights and biases) of the MLP are optimized to117

minimize a predefined loss function, typically through backpropagation and gradient-118

based optimization techniques. Backpropagation involves the systematic calculation of119

gradients with respect to the parameters of the network, facilitating parameter updates120

in the direction that reduces the loss [40].121

MLPs are characterized by their universal approximation capabilities, enabling122

them to approximate arbitrary functions with sufficient capacity and data. However,123

their effectiveness is contingent upon various factors, including network architecture124

design, activation functions, optimization algorithms, and hyperparameter tuning [41].125

Fig. 1. The architecture of the Multi-Layer Perceptron (MLP)

2.2 General formulation of grey system models126

In grey system theory, for original sequences x
(0)
i (t) and y(0)(t) (t = 1, 2, . . . , n),127

their first-order accumulations x
(1)
i (t) and y(1)(t) are defined as:128

x
(1)
i (t) =

t∑
τ=1

x
(0)
i (τ), y(1)(t) =

t∑
τ=1

y(0)(τ), t = 1, 2, . . . , n. (2)

This form of accumulation is known as the first-order accumulated generating operation129

(1-AGO) [42].130
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Accumulate Accumulate Accumulate Accumulate

Fig. 2. The structure of 1-AGO

The general whitening differential equation of the grey system is expressed as [8]:131

dy(1)(t)

dt
+ ay(1)(t) = f

(
x(1)(t); θ

)
, (3)

where x(1)(t) is a vector composed of x(1)
i (t):132

x(1)(t) =
(
x
(1)
1 (t), x

(1)
2 (t), . . . , x(1)

n (t)
)
,

θ is a vector of parameters related to the input sequence, and a is referred to as the133

development coefficient. The function f(·) represents the system behavior.134

By discretizing Eq. (3), we obtain the general discrete equation of the grey system:135

y(0)(k) + az(1)(k) = f
(
1
2

(
x(1)(k − 1) + x(1)(k)

)
; θ
)
, (4)

where z(1)(k) is called the background value, defined as:136

z(1)(k) = 1
2

(
y(1)(k − 1) + y(1)(k)

)
.

For convenience, we let:137

vk = 1
2

(
x(1)(k − 1) + x(1)(k)

)
,

so Eq. (4) can be rewritten as:138

y(0)(k) + az(1)(k) = f(vk; θ). (5)

Eq. (5) is typically used for parameter estimation. Once parameters a and θ are139

estimated, the forecasting phase begins.140

By solving Eq. (3) with the initial condition y(1)(1) = y(0)(1), the continuous form141

of the response function is obtained:142

y(1)(t) = y(0)(1)e−a(t−1) +

∫ t

1

e−a(t−τ)f
(
x(1)(τ); θ

)
dτ. (6)

However, this continuous formulation is difficult to use in practice and is typically143

approximated numerically. By discretizing the integral in Eq. (6), we get the following144

discrete response function:145

ŷ(1)(k) = y(0)(1)e−a(k−1) +
k∑

τ=2

e−a(k−τ+
1
2
) · f

(
1
2

(
x(1)(k − 1) + x(1)(k)

)
; θ
)
, (7)

which can also be written as:146

ŷ(1)(k) = y(0)(1)e−a(k−1) +
k∑

τ=2

e−a(k−τ+
1
2
) · f(vk; θ). (8)
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After obtaining the estimated values of ŷ(1)(k) using Eq. (8), we can calculate147

the predicted values of the original sequence using the inverse accumulated generating148

operation (1-IAGO):149

ŷ(0)(k) = ŷ(1)(k)− ŷ(1)(k − 1). (9)

3 The proposed neural grey system model150

3.1 The representation of grey system model and its solution151

The previous section gave an overview of typical grey system models and their solu-152

tions. It is apparent that existing grey models encounter challenges when attempting to153

predict nonlinear time series data. This arises from the usual estimation of parameters154

a and θ in the function f(·) using the least squares method, resulting in the construction155

of a linear function.156

In this work, we embed a single-hidden-layer neural network as the function f(·)157

to better capture nonlinear patterns in data. Accordingly, we rewrite the whitening158

differential equation (Eq. (3)) as:159

dy(1)(t)

dt
+ ay(1)(t) = f(x

(1)
k ; θ), (10)

where the neural network function f(·) is defined as:160

f(x
(1)
k ; θ) =

L∑
j=1

βj · S(x(1)
k ;wj , bj) + b, (11)

with L being the number of hidden units. Here, S(·) is the activation function, and βj ,161

wj , and bj are the parameters of the neural network.162

In this study, we choose the sigmoid function due to its smoothness and differen-163

tiability:164

S(x;wj , bj) =
1

1 + e−w⊤
j x+bj

. (12)

To estimate the parameters, we solve Eq. (10) and derive its discrete version:165

y(0)(k) + az(1)(k) =
L∑

j=1

βj · S(vk;wj , bj) + b, (13)

where the background value vk is defined as:166

vk =
1

2

(
x(1)(k − 1) + x(1)(k)

)
.

Eq. (13) is a general form of the grey system model with neural structure. If the167

neural network component on the right-hand side is removed and only the bias term b168

is retained, the model degenerates to the classical GM(1,1) [43].169

We can also derive the continuous form of the response function by solving Eq.170

(10) with the initial condition y(1)(1) = y(0)(1):171

y(1)(t) = y(0)(1)e−a(t−1) +

∫ t

1

e−a(t−τ)

(
L∑

j=1

βj · S(x(1)(τ);wj , bj) + b

)
dτ. (14)
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By discretizing the integral in Eq. (14), the discrete response function of the model172

is obtained as:173

ŷ(1)(k) = y(0)(1)e−a(k−1) +
k∑

τ=2

e−a(k−τ+
1
2
) ·

(
L∑

j=1

βj · S(vk;wj , bj) + b

)
. (15)

This final formulation characterizes the neural grey system model, where the dy-174

namic response is regulated by a neural network embedded within the traditional grey175

framework.176

AGO

Input Layer

Hidden Layer

Output Layer

+

AGO +

+

Fig. 3. The structure of the neural grey system model

3.2 Adam algorithm for training the neural grey system model177

Typically, neural networks do not have analytical solutions, and thus optimiza-178

tion algorithms are required to estimate the parameters. Common algorithms include179

Gradient Descent (GD) [44], Stochastic Gradient Descent (SGD) [45], and Adam [46].180

Gradient Descent computes the gradient over the entire training set, which is com-181

putationally expensive for large datasets. SGD uses only one sample per update, which182

reduces computation but introduces significant noise. Adam, however, introduces the183

concept of momentum and adaptively adjusts the learning rate using first and second184

moment estimates, which improves convergence speed and stability [46]. It is simple to185

implement and memory-efficient, making it suitable for training the proposed model.186

The complete procedure of training the neural grey model using the Adam optimizer187

is detailed in Algorithm 1. The specific algorithm is given as follows. We define the188

training error ek at each step k as:189

ek = y(0)(k) + az(1)(k)−
L∑

j=1

βjS(vk;wj , bj)− b. (16)

Then, the total training error is defined as:190

E(a, θ) =
1

N

N∑
k=2

e2k = e⊤e, (17)

where θ = [β,w, b] is the parameter set of the neural network. The goal of the Adam191

optimizer is to minimize E(a, θ).192
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The gradient vector to be computed is:193

J =

[
∂E

∂a
,
∂E

∂θ

]
, (18)

where194

∂E

∂a
=

2

N

N∑
k=2

[
y(0)(k) + az(1)(k)−

L∑
j=1

βjS(vk;wj , bj)− b
]
z(1)(k),

∂E

∂θ
= − 2

N

N∑
k=2

[
y(0)(k) + az(1)(k)−

L∑
j=1

βjS(vk;wj , bj)− b
] L∑

j=1

βj
∂S(vk;wj , bj)

∂θ
.

(19)

For standard GD, parameters are updated as:195 [
a(k+1)

θ(k+1)

]
=

[
a(k)

θ(k)

]
− η · J, (20)

where η is the learning rate.196

To improve stability and convergence, Adam uses first and second moment esti-197

mates. The biased moment estimates are:198

mk = µ1 ·mk−1 + (1− µ1) · J, (21)

vk = µ2 · vk−1 + (1− µ2) · J2, (22)

where µ1 and µ2 are decay rates.199

Then, bias-corrected estimates are computed as:200

m̂k =
mk

1− µk
1

, (23)

v̂k =
vk

1− µk
2

. (24)

The final update rule is:201 [
a(k+1)

θ(k+1)

]
=

[
a(k)

θ(k)

]
− η · m̂k√

v̂k + ϵ
, (25)

where ϵ is a small constant to avoid division by zero.202
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Algorithm 1: Adam Algorithm for Training the Neural Grey System Model
Require: Objective function E(a, θ) (Eq. (17)), learning rate l, maximum

number of epochs T
Ensure: Optimized parameters a, θ

1: Initialize parameters a0, θ0 randomly
2: Set µ1 ← 0.9, µ2 ← 0.999, ϵ← 10−8

3: Initialize m0 ← 0, v0 ← 0

4: For each epoch k from 1 to T , perform:
5: Compute gradient: gk ← ∇E(ak−1, θk−1)

6: First moment estimate: mk ← µ1 ·mk−1 + (1− µ1) · gk
7: Second moment estimate: vk ← µ2 · vk−1 + (1− µ2) · g2k
8: Bias-corrected first moment: m̂k ← mk/(1− µk

1)

9: Bias-corrected second moment: v̂k ← vk/(1− µk
2)

10: Update parameters:
11: ak ← ak−1 − l · m̂k/(

√
v̂k + ϵ)

12: θk ← θk−1 − l · m̂k/(
√
v̂k + ϵ)

13: return aT , θT

203

3.3 Hyperparameter optimization via gridsearch204

In Section 3.2, model parameters such as weights and biases [α,θ] are optimized us-205

ing the Adam algorithm. However, hyperparameters like the number of neurons L and206

learning rate l require separate tuning. To this end, the Grid Search algorithm systemat-207

ically explores all candidate hyperparameter combinations, evaluates their performance208

via cross-validation, and selects the best set [47].209

Let Θ denote the hyperparameter space, with each combination represented by a210

vector θ including L, l, and other relevant parameters. The optimal combination θ∗
211

minimizes a validation loss function f(θ, Dtrain, Dval) after training on Dtrain:212

θ∗ = argmin
θ∈Θ

f(θ, Dtrain, Dval). (26)

Here, f is the Negative Mean Squared Error (NMSE):213

f(θ, Dtrain, Dval) = −
1

|Dval|
∑

i∈Dval

(yi − ŷi)
2, (27)

where |Dval| is the validation set size, and yi, ŷi are true and predicted values.214

As shown in Fig. 2, each parameter combination is denoted by PCi, with corre-215

sponding model MDi. The validation predictions V Pi are compared against true values216

using the Mean Absolute Percentage Error (MAPE) metric Mi:217

Mi =
1

n

n∑
t=1

∣∣∣∣TrueValuet − V Pi,t

TrueValuet

∣∣∣∣ , (28)

where n is the validation set length. Grid Search selects the combination minimiz-218

ing Mi, thus optimizing hyperparameters to enhance model accuracy and generalization.219
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4 Applications220

To verify the superiority of the proposed model, this study utilizes carbon emis-221

sion data from five countries—China, the United States, India, Japan, and Canada—222

spanning the period from 1965 to 2022. For comparative analysis, four grey system223

models—GM, DGM, NGM, and BernoulliGM—along with four machine learning mod-224

els—Support Vector Regression (SVR), Multi-Layer Perceptron (MLP), Random Forest225

(RF), and K-Nearest Neighbors (KNN)—are selected as benchmarks, as summarized226

in Table 1.227

To evaluate the forecasting performance of these models, the Mean Absolute Per-228

centage Error (MAPE) is employed as the evaluation metric. The MAPE is defined as229

follows:230

MAPE =
1

n

n∑
t=1

∣∣∣∣yt − ŷt
yt

∣∣∣∣× 100% (29)

where yt denotes the actual value, ŷt is the predicted value at time t, and n repre-231

sents the total number of observations. MAPE measures the average percentage error232

between predicted and actual values, and is widely used in time series forecasting due233

to its scale-independence and interpretability.234

Table 1: Summary of the eight benchmark models

Full Name Abbreviation Reference

Grey Model GM [8]
Discrete Grey Model DGM [9]
Nonlinear Grey Model NGM [21]
Bernoulli Grey Model BernoulliGM [48]
Support Vector Regression SVR [49]
Multilayer Perceptron MLP [39]
Random Forest RF [50]
K-Nearest Neighbors KNN [51]

4.1 Case I: Annual Carbon Emissions in China235

The performance of various models in forecasting China’s carbon emissions is illus-236

trated in Fig. 4. The detailed MAPE values for both the training and testing datasets237

are presented in Table 2. As depicted in Fig. 4, China’s carbon emissions exhibited a238

pronounced upward trend from 1965 to 2022, with an accelerated growth rate partic-239

ularly after 2000. This trend reflects the rapid economic development and industrial-240

ization, which substantially increased energy demand. In recent years, the growth rate241

has moderated and exhibited fluctuations, indicating the influence of energy structure242
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adjustments and environmental policies. A thorough understanding of these dynamics243

is essential for accurate subsequent carbon emission forecasting.244

In terms of prediction performance, it is evident that the proposed NGSMRF model245

demonstrates a significant advantage over the other eight models, achieving the low-246

est MAPE of 3.3141% on the testing dataset. In contrast, the GM model yields a247

testing MAPE of 20.3820%, and the DGM model reaches 17.2816%, highlighting the248

inherent limitations of traditional grey models that are fundamentally based on lin-249

ear assumptions. Additionally, the MLP model reports a testing MAPE of 19.0688%,250

which suggests potential training deficiencies and indirectly underscores the superior-251

ity of the proposed NGSMRF framework that integrates MLP with GM to enhance252

generalization.253

Moreover, models such as RF and KNN, despite exhibiting strong performance on254

the training dataset, fail to maintain similar accuracy on the testing set. This indicates255

the presence of overfitting to some extent and further emphasizes the robustness and256

generalization capability of the NGSMRF model.257
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Fig. 4. Comparison of predicted annual carbon emissions for China

Table 2: MAPE for training and testing of models on China carbon emission

Metric NN Grey GM NGM DGM Bernoulli GM SVR MLP RF KNN

Train MAPE (%) 6.5673 14.5445 9.8206 1.0923 14.2424 4.8864 33.9280 3.0225 1.2323
Test MAPE (%) 3.3141 20.3820 26.0647 17.2816 22.6771 31.3207 19.0688 6.0410 14.4995
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4.2 Case II: Annual Carbon Emissions in US258

As shown in Fig. 5, the annual carbon emissions of the United States demonstrate a259

generally high level with significant fluctuations from 1965 to 2022. While the emissions260

steadily increased during the 1960s to the early 2000s, peaking around the mid-2000s, a261

clear downward trend has been observed since approximately 2007. This decline reflects262

the combined effects of energy structure optimization, technological improvements, and263

environmental regulations. Unlike rapidly developing economies, the U.S. has entered264

a relatively stable stage of emissions, which makes accurate modeling and forecast-265

ing particularly dependent on capturing long-term non-linear patterns and structural266

changes.267

As presented in Table 3, the proposed NGSMRF model outperforms all baseline268

models on the US dataset, achieving the lowest testing MAPE of 3.3139%, which high-269

lights its robustness and strong generalization capability. In comparison, traditional270

grey models such as GM and NGM exhibit significantly higher testing errors (22.9998%271

and 28.9999%, respectively), largely due to their inherent linear assumptions. The DGM272

model, despite achieving perfect fitting on the training data, records a testing MAPE273

of 7.7398%, indicating poor generalization. Similarly, the MLP model also performs274

poorly on the testing set (25.9244%), suggesting instability during training.275

Notably, RF achieves the best performance on the training set (1.0775%) but fails276

to maintain such accuracy on the testing data (7.0394%), suggesting signs of overfitting.277

A similar trend is observed with KNN. These results further demonstrate the advan-278

tages of NGSMRF, which integrates grey modeling principles with neural structures,279

in delivering stable and accurate predictions across datasets.280
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Fig. 5. Comparison of predicted annual carbon emissions for US
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Table 3: MAPE for training and testing of models on the US dataset

Metric NN Grey GM NGM DGM Bernoulli GM SVR MLP RF KNN

Train MAPE (%) 2.3073 4.9440 4.7762 0.9822 4.2191 11.0056 5.0608 1.0775 0.9892
Test MAPE (%) 3.3139 22.9998 28.9999 7.7398 17.6312 6.0064 25.9244 7.0394 10.2110

4.3 Case III: Annual Carbon Emissions in Indian281

As shown in Fig. 6, India’s carbon emissions have exhibited a continuous and steady282

upward trend from 1965 to 2022. Starting from only 167.5 million tonnes in 1965, emis-283

sions have risen to over 2500 million tonnes by 2022. This consistent increase reflects284

India’s rapid population growth, industrialization, and expanding energy consump-285

tion over the decades. Unlike some developed countries, there is no significant plateau286

or decline in the emission curve, indicating that India is still in a phase of accelerating287

carbon output. Understanding this long-term trend is essential for accurate modeling288

and forecasting of future emissions.289

As shown in Table 4, the proposed NGSMRF model achieves the best overall per-290

formance on the Indian dataset, with a testing MAPE of 5.0274%, outperforming all291

other models. Grey models such as GM and NGM show moderate accuracy, with testing292

MAPE values of 9.3371% and 9.0342%, respectively. DGM, while achieving a perfect293

fit on the training set (0.9812%), suffers from generalization issues, resulting in a test294

MAPE of 13.1059%.295

The SVR and KNN models demonstrate poor generalization capabilities, with296

testing errors exceeding 25%, and SVR in particular reaching 51.6649%, indicating297

significant overfitting. MLP also struggles with a high test error of 17.2737%, which298

may reflect training instability or a mismatch with the dataset’s temporal dynamics.299

These results further confirm the robustness and predictive power of the NGSMRF300

model across different emission patterns and national profiles.301
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Fig. 6. Comparison of predicted annual carbon emissions for India

Table 4: MAPE for training and testing of models on India dataset

Metric NN Grey GM NGM DGM Bernoulli GM SVR MLP RF KNN

Train MAPE (%) 4.8203 3.6871 3.7141 0.9812 4.3328 6.0619 7.5976 2.2730 1.0343
Test MAPE (%) 5.0274 9.3371 9.0342 13.1059 6.8464 51.6649 17.2737 12.2401 26.6656

4.4 Case IV: Annual Carbon Emissions in Canada302

As shown in Fig. 7, Canada’s annual carbon emissions have exhibited a relatively303

moderate upward trend from 1965 to 2022. The emissions increased steadily during the304

1970s through the early 2000s, after which they began to stabilize, fluctuating within a305

narrower range. This pattern suggests that, following a period of industrial expansion,306

Canada has entered a phase of controlled emissions growth, likely influenced by envi-307

ronmental regulations, technological advancement, and energy structure optimization.308

Understanding this transitional trend is essential for developing accurate and reliable309

emission forecasting models.310

As shown in Table 5, the proposed NGSMRF model achieves the best overall per-311

formance on the Canadian dataset, with a testing MAPE of 4.2154%, outperforming all312

baseline models. In contrast, traditional grey models such as GM and NGM result in313

high testing errors of 15.8169% and 18.5485%, respectively, due to their inherent linear314

structure and limited generalization capability.315

Although the DGM model fits the training data perfectly (0.9833%), its test MAPE316

of 5.1286% suggests limited robustness. Models like SVR and RF exhibit good perfor-317

mance, with test errors close to that of NGSMRF (5.2571% and 4.7953%, respectively),318

but slightly inferior in terms of generalization. The MLP model again suffers from319
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overfitting, with a high test MAPE of 16.4517%. These results demonstrate the supe-320

riority of the NGSMRF model in capturing both the temporal dynamics and nonlinear321

patterns of Canada’s carbon emissions.322
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Fig. 7. Comparison of predicted annual carbon emissions for Canada

Table 5: MAPE for training and testing of models on the Canada dataset

Metric NN Grey GM NGM DGM Bernoulli GM SVR MLP RF KNN

Train MAPE (%) 2.5621 5.4283 5.4256 0.9833 4.8105 1.4855 5.5699 1.1771 0.2323
Test MAPE (%) 4.2154 15.8169 18.5485 5.1286 10.7924 5.2571 16.4517 4.7953 4.2556

5 Discussion323

The analysis of historical carbon emissions data from China, the United States,324

India, and Canada reveals distinct national-level trends that reflect their economic325

development stages and energy structures. China’s emissions have shown a dramatic326

increase since 2000, driven by rapid industrialization, although recent years indicate a327

stabilization due to environmental policy interventions. The United States exhibits a328

plateauing and slightly declining trend after peaking in the early 2000s, suggesting a329

successful shift toward cleaner energy. India, on the other hand, continues on a sharp330

upward trajectory, with no signs of slowing, reflecting ongoing industrial expansion and331

energy demand. Canada shows a more moderate and stable emissions profile, with332

fluctuations in recent years indicating the complex balance between energy production333

and climate policy. These national patterns provide important context for interpreting334

model predictions and inform the need for country-specific forecasting strategies.335
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From a modeling perspective, the proposed NGSMRF model consistently achieves336

superior performance across all four national datasets, demonstrating both low train-337

ing and testing MAPE values. Unlike traditional grey models such as GM and NGM,338

which suffer from limited accuracy due to their linear assumptions, NGSMRF effectively339

captures nonlinear temporal dependencies by integrating neural components with grey340

forecasting theory. While some machine learning models like RF and SVR achieve341

competitive training accuracy, they frequently exhibit signs of overfitting, as seen in342

increased testing errors. MLP-based models also demonstrate unstable generalization,343

likely due to difficulties in training on small or non-stationary datasets. In contrast,344

NGSMRF maintains robust performance across different countries and emission pat-345

terns, indicating its strong adaptability and generalization capability. These findings346

highlight the model’s potential as a reliable and accurate tool for long-term carbon347

emission forecasting.348

6 Conclusion349

In this study, we propose a novel neural-grey system model by integrating neural350

networks with the traditional grey system framework through a neural-grey whitening351

equation. The model is trained using the Adam optimizer with hyperparameters tuned352

via GridSearchCV. To evaluate its effectiveness, we compare it against four classical353

grey models (GM, DGM, NGM, Bernoulli GM) and four machine learning models (SVR,354

MLP, RF, KNN) on annual carbon emission datasets from China, the United States,355

India, and Canada. Results show that our model consistently achieves the lowest testing356

MAPE across all datasets, outperforming traditional grey models hindered by linear357

assumptions and machine learning models prone to overfitting. This demonstrates the358

model’s superior ability to capture nonlinear temporal dynamics, offering a robust359

and accurate tool for long-term carbon emission forecasting.360
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