


[bookmark: _GoBack]Application of Drones in Precision Agriculture: A Review on Benefits and Challenges

Abstract
The integration of drone technology in precision agriculture is transforming conventional farming practices by enabling data-driven, efficient, and sustainable crop management. This review explores the multipurpose applications of drones, such as crop monitoring, spraying, mapping, soil analysis, irrigation management, and yield estimation. These applications help in reducing labor costs, enhancing input efficiency, and improving productivity through       real-time decision-making. Despite their vast potential, the adoption of drones in agriculture faces several challenges including regulatory restrictions, high initial costs, limited battery life, lack of skilled operators, and technical limitations in diverse environmental conditions. The paper critically analyses current advancements, benefits, and technological limitations based on recent research and case studies. It also highlights future prospects of integrating drones with AI, IoT, and GIS for smarter farming systems. The review concludes that while drones hold immense promise for sustainable agriculture, overcoming existing barriers is essential to realize their full-scale deployment and impact.
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1. Introduction
        In the world agricultural sector is have a different production problem, solving these problem and need to produce more food production with using precise resources while minimizing environmental impacts (Guebsi et al, 2024). Traditional agricultural methods of food production are increasingly insufficient to a rising demands for food security issue, climate resilience, and sustainable land use. In this review paper, precision agriculture (PA) is an advanced technologies used to optimize food production and available resource management (Wu et al., 2025). In the various technological innovations, Unmanned Aerial Vehicles (UAVs), it is commonly known as drone, it is useful for multi agricultural operations like soil monitoring, crop monitoring, spraying operation and security (Milics., 2021).
         Drones are revolutionizing the way farmers monitoring, manage, and optimize their Agricultural fields. Its ability to perform remote sensing, site-specific pesticide application, crop health monitoring, soil monitoring and analysis and even livestock tracking in a single or series of operation has made it an essential component of modern agriculture (Tsouros et al., 2019). The traditional methods like manual labor or ground-based machinery operation, drones image gives high-resolution data acquisition details with less human intervention, to make able real-time decision-making (Wu et al., 2025).
         The multipurpose drones bring different uses, including improved input efficiency, reduces operational costs, real time disease detection, and target the weeds, pest and disease, which collectively contribute to sustainable intensification (Lachgar et al., 2021). For example, the integration of multispectral and hyperspectral sensors with drones allows farmers to detect early-stage crop stress and nutrient deficiencies that are invisible to the naked eye (Yang et al., 2017). Additionally, UAVs-based variable rate applicator (VRA) of fertilizers and pesticides reduces wastage and save environment effects (Singh et al., 2021).
         In spite of their clear benefits, the large amount adoptability of multipurpose drones in agriculture faces many challenges. Technical barriers such as less flight endurance capacity, payload limitations, and sensitivity to around weather conditions impede their full potential. In Addition, the lack of powerful regulatory frameworks, initially high investment costs, and Insufficient technical knowledge about drone to farmers further complicate widespread implementation without training them (Sharma et al., 2024). Privacy concerns and data ownership issues related to drone-collected imagery also pose ethical and legal questions that require careful governance (Wu et al., 2025).
           Latest studies show that drones will be complement and, in some cases, outperform traditional methods of field monitoring, mapping and crop spraying. Such as, a comparative study shown in the (Singh et al., 2025) Evidence that drone-based spraying reduced pesticide uses up to 30 per cent while achieving uniform crop coverage and reduces operator exposure to spraying chemicals. In parallel, Salami  et al. (2014) it has been reported that drone-assisted yield approximation showed higher accuracy results compared to manual sampling methods. These findings suggest that UAVs not only enhance productivity of crop but it also contribute more sustainable farming practices in agriculture (Salami et al., 2014).
          In growing regions, drones give a practical solution to the perennial challenges of labour shortages, less and fragmented landholdings (Jabbari et al., 2021). Less landholding farmers, even though they lack of large machinery, can benefit from drone pilot who offer aerial spraying and field mapping on the basis of payment per hour or acres (Milics., 2021). Such service models democratize access to precision farming tools, although scaling them requires supportive policy measures and responsibility building initiatives.
         The older technologies are time consuming and fuel consumption machinery have some issues. Innovations in battery/solar technology, lightweight construction materials, and autonomous GPS systems are increased drone flight time and expanding operation of drone (Sharma et al., 2024). Incorporation of artificial intelligence (AI), and machine learning (ML) and deep learning significantly increases data analytics, Provides the drones full data to accesse all field (Yang et al., 2017).  This review paper aims to provide a comprehensive synthesis of the benefits and challenges associated with applications of drones in precision agriculture. By serious analysing recent research and development contributions from 2020 to 2025, the paper highlights how drone technology is shaping the future of farming, identifies current gaps, and suggests directions for future innovation and policy development. Ultimately, understanding both the promises and the hurdles of drone integration is vital for stakeholders seeking to accelerate the transition towards resilient, data-driven, and environmentally sustainable agricultural systems.

1.1 Drones in Agriculture
In agriculture, a drone known as an Unmanned Aerial Vehicle (UAV) is an aerial platform that operates without human interventions, It is controlled by remotely or autonomously using pre-programmed flight plans and GPS navigation system. In precision agriculture, UAVs are attached with various cameras, different sensor with spraying equipment or mapping equipment to perform tasks such as soil monitoring, crop monitoring, spraying of insectides/pesticides and nano or broadcast fertilizers, soil and field mapping, and livestock surveillance (Tsouros et al., 2019).
1.2 Types of drones
          Types of drone can be broadly categorized based on their design configuration, its utilization, function and operation view.
1.2.1 Fixed-Wing Drones
· Description: Look like small airplanes with wings that provide lift.
· Features: Longer flight endurance (up to several hours), greater coverage area per flight.
· Use Cases: Large-scale surveying, mapping, and monitoring of extensive farms and plantations.
· Limitation: Require runways or catapults for launch and landing; cannot hover.
            Example: SenseFly eBee 
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Figure 1. A fixed-wing UAV (AGEagle Aerial Systems, Inc)
1.2.2 Rotary-Wing Drones (Multirotors)
· Description: Use multiple rotors (quadcopters, hexacopters, or octocopters) for lift and maneuverability.
· Features: Can hover, take off and land vertically (VTOL).
· Use Cases: Close-range inspection, spraying, spot treatments, detailed imaging, field scouting.
· Limitation: Shorter flight time due to higher energy consumption.
          Example: DJI Agras series and DJI Phantom.
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Figure 2. Multi-rotor UAV (www.dji.com/mg-1p/ inform)
1.2.3 Hybrid VTOL Drones
· Description: Combine features of fixed-wing and rotor drones. They take off vertically like a helicopter and transition to horizontal flight.
· Features: Combine endurance and range of fixed-wing with hover capability.
· Use Cases: Suitable for medium to large farms needing both area mapping and spot spraying.
            Example: Quantum Systems Trinity F90+ 
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Figure 3. A hybrid fixed-wing-multi-rotor UAV (https://arcturus-uav.com/product/jump-20)
1.3 Classification of Drones in Agriculture
         The classification of drones helps farmers, researcher’s scholar, and institute, policymakers select the appropriate drone technology for specific works. For example: A fixed-wing drone will be useful for mapping a 500 ha area of any agricultural farm. A hexacopter with a spraying system is better for precise pesticide application in a fragmented field. A hybrid vertical take- off and landing is suitable for combined used where the hover and coverage of crop are both needed. The variety in drone types allow adaptable, measurable solutions that address various agro-climatic zones, farm sizes, and crop requirements (Jabbari et al., 2021).
Table 1. Drones classification
	Classification Basis
	Categories
	Description

	Operation Modes
	Manually, Semi-Autonomous, Fully Autonomous
	Varying levels of pilot control vs. AI-based autopilot system

	Payload
	Imaging/mapping drones, Spraying drones, Multipurpose drones
	Imaging drones carry cameras and sensors also; spraying drones carry tanks and nozzles; multipurpose drones will switch payloads

	Sensor Type source
	RGB, Multispectral, Hyperspectral, Thermal, LiDAR
	Different sensors were provide different data types for crop health, moisture, soil variability


1.4 Working Principles and Components of Agricultural Drone
          The signals are transmitted from transmitter and it is received by the receiver in the drone. From the receiver the signal goes to the flight controller where the signals are processed with accelerometer and gyroscope sensors. The processed signal is sent to the ESC, which allows the specific amount of current to the motor based on the signal it receives. The propellers are mechanically coupled to the motors so that they rotate and produce thrust. The FPV camera takes current supply from the flight controller and it records the video, the video signals are processed by the transmitter and it is received by the receiver in ground. The pump takes current supply from the Li-Po battery and pressurizes the liquid from the storage tank then the pressurized liquid flows through the pipeline and enters the nozzle then gets sprayed. The flow rate of the pump can be controlled by varying the input current which can be controlled by transmitter (Yallappa et al, 2017).
          Drone mounted sprayer consist of two unit which are aerial vehicle (UAV) unit and spraying unit. UAV unit consists of flight controller, remote controller, transmitter, receiver, airframe, landing gear, arms, BLDC motor, Electronic speed controller, camera and GPS. Spraying unit consist of battery, DC motor, Pump, hose pipe and spray nozzle. There are different classification of drone in that medium drone was designed for lift total payload of 2 to 25 kg. The development drone-mounted sprayer is crucial for modern agriculture due to its potential to revolutionize farming practices (Ahirwar et al., 2019). The selection of material, drone configuration, power source, payload capacity, battery type, type of nozzles, safety measures, testing and optimization of parameters has been discussed below.
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Fig 4. Block diagram of principle of drone
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Fig 5. 3D view and Components of drone mounted sprayer for agro-chemical use
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TABLE 2. Components of making a Drone
2. Benefits of Multipurpose Drones in Precision Agriculture
2.1    Enhanced Crop Monitoring and Health Assessment
          To check crop health and status using multi-sensor UAVs was revolutionized precision in agriculture. These UAVs are attached with advanced RGB, multispectral, and thermal sensors, and hyperspectral sensors collect the high-resolution data’s on plant disease, chlorophyll content, soil and plant moisture stress, and thermal temperature variations (Jones et al., 2002; Li et al., 2023). By collecting data across different spectral bands, drones can detect the pest infestations, nutrient deficiencies in crop or diseases before they become visible to the naked eye by human (Barbedo, 2020). The early detection facilitates timely operation, it will target insecticide/pesticide or precise spraying, in which reduces input costs and environmental. The real-time data collection supports data-driven decision-making earlier, helps to better crop management plan and output is higher yields (Phang et al., 2023). All though, UAVs-based crop health monitoring support farmers to enhance productivity, reduce crop losses and increases safety concerns.
2.2 Precision Input Sources Application
         Precision input agricultural sources application is the site-specific and need-based application of agricultural sources like as sowing seeds, fertilizers, insecticide, pesticides or herbicides. Manually or old methods, farmers will apply the agricultural inputs non-uniformly across entire fields, which leads to overdose in some areas and under-application in other place. These variations are leads to increased costs burden, available resource wastage, and severe environmental effect such as soil degradation, soil fertility decreases and water resource contamination (Toscano et al., 2024).
         The application of drones in precision agriculture management of crop has been transformed input agricultural resources application by variable-rates technology, attached with GPS system, different types of sensors, and On spot spraying mechanism, drones can collect field conditions data in rea-time and supply input resources precisely where exact crop or soil required. By the way, drones or unmanned aerial vehicles can have the capability of identifying insects or pest-infested areas in plants canopy or NPK nutrient-deficient area in soil and advances technology have the ability to adjust application rates accordingly wherever needed (Singh et al., 2025). These targeted approach reduces excessive chemical application, significantly lowering input resource cost for farmers and helps in sustainable growth.
         According (Dosari and Al-Mansour., 2023), by applying through drone even in irregular areas that provides uniform area coverage compared to conventions methods. Due to uniformity spraying of chemical, increasing the effectiveness of pest and weed control measures. Moreover, drones can operate in wet or soft fields where heavy machinery might damage crops or soil structure. Patel et al. (2018) note that drone-based precision application is faster than traditional manual or tractor-based technology. Application of agrochemical through drone technology safer compared to other because of hazardous of chemical.
2.3 Soil and Water Management
         Efficient soil and water management is helps to sustainable agriculture growth, and the integration of drone technology in agriculture transforming the modern mechanization. Drones contains advanced remote sensing sensor like multispectral, hyperspectral, and thermal sensors to enable detailed, large-scale mapping of soil properties like soil color, soil structure and soil texture (Surendran et al., 2024; Rahman et al., 2024). The high-resolution aerial photography variations in soil moisture, texture, and nutrient present soil which helps the farmers to that are often invisible to the naked eye.
       Based on the details available in drone maps support for precise irrigation scheduling by identifying areas where the presence of water more or less, reduces water wastage, and improve crop health. For example, Feng and Li (2024) showed by using drone mapping images used to identify the water stress area and irrigate the field with automated irrigation systems. This integration of drone in agriculture allows farmers to adjust irrigation patter alternatively, the crops will receive the amount of irrigation water in right quantity, time and right place. As a result, water use efficiency improves effectively, areas where deficient of water is more or very few rainfall intensities (Luo et al., 2025)
       Further, drones can optimize fertilization application by pointing nutrient-deficient area in fields. By using that data into site-specific fertilizer applicator technology, farmers can reduce excessive chemical use, lower costs, and reduces nutrient runoff into nearby water sources. The aerial photography surveys and data analysis also helps in soil erosion monitoring, drainage planning, and detecting waterlogging field.
      Overall, drone mapping and spraying timely, and environmentally responsible for modern in precision agriculture solution. drones help farming communities to make data-driven decisions to conserve input resources, improve yields, and supports to sustainable farming practices. As remote sensing and automation technologies continue to advance, the role of drones in soil and water management will expand further.
2.4    Labor and Operational Efficiency
        Labor and operational efficiency are important factors drive the adoption of drones and automation in the modern precision agriculture. Automation system helps for as field monitoring, crop health assessment, insecticide spraying, pesticide chemical spraying, and fertilizer applying effectively reduces the need for manual labors (Singh et al., 2024). Drone based systems will cover larger agricultural areas in less time compared to traditional methods, reduced labours and completes their allocation work in less time and efficiency (Chen et al. 2025) in future automated drone operations enable timely interventions by integrating AI system in it, helping that spraying and monitoring occur at the optimal crop stage growth, Lopez and Gomez (2023) report that drones repetitive task and reduces hazardous tasks of chemical effect, such as chemical application. In which, application of drones and automation helps to a more sustainable, precise agricultural management system.



Table 3. Benefits of Drones in Precision Agriculture
	S. No
	Benefit Category
	Specific Benefit
	Example Application
	Research Finding/Result
	Reference (Author, Year)

	1
	Crop health Monitoring
	Early disease detection prediction
	Multispectral imaging collection
	Detected blight 10 days earlier than manual scouting
	Barbedo (2020)

	2
	Yield Estimation
	Improved yield prediction
	RGB + LiDAR fusion
	15% higher accuracy in maize yield prediction
	Jones et al. (2002)

	3
	Water Management system
	Irrigation optimization system
	Thermal image collection
	Reduced water use by 25% in rice paddies
	Li et al. (2023)

	4
	Fertilizer Management system
	Site-specific nutrient application
	Variable rate spreading
	Increased fertilizer efficiency by 18%
	Wu et al. (2025)

	5
	Pest Control
	Targeted pesticide spraying
	Spot spraying
	Pesticide usage reduced by 30%
	Phang et al. (2023)

	6
	Time Efficiency
	Reduced monitoring time
	Large field coverage
	Covered 100 ha in 2 hours vs. 2 days manually
	Singh et al., 2025

	7
	Cost Savings
	Lower operational costs
	Multitask flights
	20% cost reduction compared to manned flights
	Surendran et al., 2024

	8
	Labor Savings
	Reduced manual labor
	Automated flight missions
	35% labor cost savings in monitoring
	Narzari et al. (2025)

	9
	Data Accuracy
	High-resolution data collection
	RGB & multispectral sensors
	Increased NDVI mapping accuracy
	Jones et al. (2002)

	10
	Soil Health Monitoring
	Soil moisture assessment
	Thermal + multispectral integration
	Improved soil moisture maps
	Wang et al.  (2022)

	11
	Environmental Impact
	Lower chemical runoff
	Precision application
	Reduced environmental contamination
	Wang et al. (2021)

	12
	Early Warning Systems
	Real-time alerts
	Live drone feeds
	Enabled early warnings for pest outbreaks
	Barbedo (2020)

	13
	Multiple Operations
	Combined tasks in single flight
	Imaging + spraying + mapping
	Increased operational efficiency by 40%
	Wu et al. (2023)

	14
	Input Use Efficiency
	Precision input placement
	Seed/fertilizer/pesticide
	Reduced input waste
	Li et al. (2014)

	15
	Field Mapping
	Accurate field boundaries
	GIS-based mapping
	Improved farm planning
	Phang et al. (2023)

	16
	Weed Management
	Weed detection and control
	AI-enabled weed mapping
	50% reduction in herbicide use
	Jones et al. (2002)

	17
	Disease Management
	Detection of fungal diseases
	Hyperspectral imaging
	Identified early-stage mildew
	Singh et al. (2025)

	18
	Plant Phenotyping
	Monitoring plant traits
	RGB time-series data
	Improved breeding programs
	Surendran et al., 2024 

	19
	Livestock Monitoring
	Animal location and health
	Thermal drones
	Detected heat stress in cattle
	Wang et al. (2021)

	20
	Harvest Planning
	Optimal harvest timing
	Crop maturity detection
	Reduced post-harvest losses
	Wang et al. (2022)

	21
	Disaster Management
	Post-disaster assessment
	Flood/drought mapping
	Faster damage estimation
	Barbedo (2020)

	22
	Biodiversity Tracking
	Habitat monitoring
	Multispectral drones
	Tracked changes in field biodiversity
	Jones et al. (2002)

	23
	Energy Savings
	Less fuel use than manned aircraft
	Electric drones
	60 % less carbon emissions
	Singh et al. (2025)

	24
	Crop Insurance
	Damage assessment
	Claim verification
	Faster insurance processing
	Wu et al. (2025)

	25
	Compliance
	Regulatory monitoring
	Spray drift checks
	Improved compliance with pesticide laws
	Phang et al. (2023)

	26
	Input Traceability
	Detailed input usage records
	Geotagged spraying
	Better farm audit trails
	Surendran et al. (2024)

	27
	Real-time Decision Making
	Faster management decisions
	On board data processing
	Improved reaction time to crop stress
	Wang et al. (2021)

	28
	Field Trials
	Experimental plot monitoring
	Drone-based phenotyping
	Enhanced research accuracy
	Wang et al. (2022)

	29
	Remote Farm Access
	Hard-to-reach fields
	Hillside vineyards
	Enabled safe monitoring
	Barbedo (2020)

	30
	Climate Monitoring
	Microclimate data collection
	Weather sensors on board
	Better weather response plans
	Jones et al. (2002)

	31
	Pollinator Monitoring
	Bee population mapping
	RGB imaging of flowers
	Supported pollination studies
	Singh et al. (2025)

	32
	Greenhouse Monitoring
	Inside greenhouse surveys
	Thermal drones
	Detected ventilation issues
	Wu et al. (2025)

	33
	Crop Diversification
	Multi-crop monitoring
	Different crop sensors
	Increased farm diversification planning
	Phang et al. (2023)

	34
	Inventory Management
	Input stock check
	Drone inventory flights
	Improved farm logistics
	Surendran et al. (2024)

	35
	Disease Spread Modelling
	Infection spread prediction
	Time-lapse data
	Helped create intervention maps
	Wang et al. (2021)

	36
	Public Safety
	Reduced worker exposure to chemicals
	Remote spraying
	Improved health of farm workers
	Wang et al. (2022)

	37
	Farmer Training
	Practical training tool
	Drone demonstrations
	Enhanced farmer capacity building
	Barbedo (2020)

	38
	Land Use Planning
	Identifying land suitability
	GIS and drone synergy
	Optimized land use
	Jones et al. (2002)

	39
	Cost-Effective Research
	Affordable data for small farms
	Shared drone services
	Made precision ag accessible
	Singh et al. (2025)

	40
	Nutrient Deficiency Detection
	Spotting deficiencies early
	Multispectral imaging
	Enabled faster correction actions
	Wu et al. (2025)

	41
	Cover Crop Monitoring
	Growth stage tracking
	RGB drone data
	Improved cover crop management
	Phang et al. (2023)

	42
	Crop Variety Trials
	Performance comparison
	Drone plot surveys
	Reduced manual data collection
	Surendran et al. (2024)

	43
	Carbon Footprint Reduction
	Low emissions operations
	Battery drones
	Contributed to sustainable farming
	Wang et al. (2021)

	44
	Erosion Monitoring
	Detecting soil erosion
	Topographic mapping
	Enabled soil conservation practices
	Wang et al. (2022)

	45
	Precision Livestock Farming
	Herd size estimation
	Thermal + RGB drones
	Improved herd management
	Barbedo (2020)

	46
	Orchard Management
	Tree health assessment
	Multispectral orchard surveys
	Detected water stress in orchards
	Jones et al. (2023)

	47
	Yield Loss Reduction
	Minimized losses through timely action
	Integrated pest monitoring
	Reduced yield loss by up to 12%
	Singh et al. (2025)

	48
	Smart Irrigation Systems
	Feedback to IoT irrigation
	Drone data + IoT sensors
	Increased irrigation efficiency
	Wu et al. (2025)

	49
	Remote Sensing Integration
	Compatible with satellites
	Drone + satellite synergy
	Multi-scale monitoring
	Phang et al. (2023)

	50
	Community Development
	Shared service model
	Drone cooperatives
	Supported smallholder adoption
	Kumar et al. (2021)


3. Challenges in Deploying Multipurpose Drones
3.1 Technical and Operational Constraints
       Multi-operation of drones for precision agriculture faces lots of technical and operational problems. Using of multiple sensors like as RGB, thermal, multispectral, hyperspectral and LiDAR are careful balancing of payload capacity and flight stability to avoid reducing manoeuvrability and flight endurance (Wu et al., 2025; Surendran et al., 2024). By adding the components in drone like sensors, spraying equipment lead to drain the battery life, required the frequency of recharging of battery, in which turn limit of operational time (Gonzalez et al., 2018). Moreover, analysis of high-resolution data should be needed from various sensors must be used to real time and actionable insights, in which requires powerful on board processors and robust communication systems (Wang et al., 2024). This increases the energy demand also can introduce suspension issues. Weather forecast conditions such as wind speed, natural rainfall and electromagnetic interference cause operational risks to pilot, it also affects flight accuracy and sensor performances. Maintaining of heavy payload systems and repair of multiple sensors addition to operational costs and technical challenges (Li et al., 2023). In future changes in drone is made of lightweight materials, efficient energy storage or backup energy, and AI-based data fusion algorithms are needed to overcoming these constraints.
3.2 Regulatory and Safety Barriers
       The rapid application of drones into precision agriculture without proper research faces lots of regulatory and safety barriers. There will be strict DGCA regulations, privacy concern, and operational safety risks limit, especially in densely populated or sensitive regions (Rahman et al., 2024; Singh et al., 2024). Many countries require special permits for drone flights beyond visual line of sight (BVLOS) or at higher altitudes, they restricting the full potential of autonomous missions and large-area coverage of drone. However, unpredictable in drone laws between regions create lots of challenges for manufacturers and farmers who wish to scale operations globally (Chen et al., 2025). Researchers advocate for international harmonization of drone laws, improved safety standards required to avoid accident, and user education to address these hurdles (Chen et al., 2025). Without proper policies and reliable safety protocols from government, the full benefits of drones for precision agriculture may remain underutilized, slowing advancements in sustainable and smart farming practices. During drone operation in field there will be some restriction from policy in which drone flying area and also drone accident occurs due to battery draining, technical issues or pilot without skilled (Patel et al., 2018).
3.3   Data Management and Analytics
       Application of drones in precision agriculture produce the massive number of heterogeneous data, addition to high-resolution images, multispectral sensor data, thermal readings, and GPS coordinates data. To manage these whose date nee to robust data storage solutions like computing and cloud-based platform to make decision on real-time data transmission and processing even in remote field. Further operation in remote area need good GPS signals and satellite wireless communication, increase the speed and collected data transfer to communication (Ashique et al., 2025). Advance precision technology called an artificial intelligence (AI) and machine learning (ML) algorithms plays an important role in transform the raw data for on sight decision making, such as prediction of pest/insect, optimizing input material, and predicting yield of crop (Li et al, 2023). In, which these systems require skilled pilot, data scientists to design, train the data, test and validate algorithms to get accuracy and scalability. Further, challenges such as data security, privacy concern, and compatibility among different drone systems and farm management software remain significant (Singh et al., 2025).
3.4   Economic and Adoption Barriers
       To application of drone and gets from agricultural technologies like drones and precision agriculture equipment, initially investment cost is high, major problem is to adopt large scale especially for smallholder and marginal farmers in developing regions difficult (Phang et al., 2023). Purchase of drones, sensors, or autonomous machinery, which limits their financial status traditional to smart farming systems (Mowla et al, 2023). Most of farmers are need training program to learn the drones, training modules, during repair and maintenance due to absence of local service providers in rural areas (Surendran et al., 2024). To overcome these above problem, state government subsidies scheme, low-interest loans from banks, and farmer cooperatives society should play a significant role in adopting resources. Additionally, strengthening extension services from agriculture department and demonstration of drones in farms can help farmers gain practical skills knowledge and confidence in using modern technologies. Researchers arguing without institutional support and policy interventions in adaptation of new technology, remains new problem towards large commercial farms, decrease productivity gap (Patel et al., 2018).

Table 4: Key Challenges in application of drone in Agriculture
	Challenge Area
	Description
	Impact
	Key References

	Payload & Energy Limits
	Limited flight time due to heavy/multiple sensors
	Reduced operation time & coverage
	Gonzalez et al., 2018; Wu et al., 2025

	Regulatory Compliance
	Complex airspace rules & privacy concerns
	Restricted flight zones & permissions
	Rahman et al., 2024; Chen et al., 2025

	Data Fusion and  Analytics
	Processing large, multi sensor datasets
	Need for advanced AI & ML tools
	Wang et al, 2024; Ashique et al., 2022

	Cost and Training
	High initial investment and skill requirements
	Low adoption by smallholder farmers
	Mowla et al., 2023; Kumar et al., 2024



5. Future Directions and Recommendations
5.1 Sensor and Payload Innovation
application of drones for precision agriculture to enhance the sensor cameras to get high resolution images and light weight with energy efficient sensor technology is necessary for developing modular payload systems helps farmers to operate drones remote sensing, spraying, or mapping (Mostafavi and Rezaei, 2023; Wu et al., 2025). Innovations in sensors of multispectral, hyperspectral, and thermal sensors could be further improve data accuracy while reducing energy consumption, which directly effects the drones flight endurance and operational costs.
5.2 AI Integration
Artificial intelligence (AI) can play a crucial role in the future of precision agriculture farming using agricultural drones. AI-powered algorithms can help to collect real-time data and on spot decision making on crop health, pest, insect disease, and yield predictions also. It also suggests the pilot to autonomous path plan, obstacle object avoid, and selective mission can significantly reduce the need for human intervention in field, to making operations safer and more efficient (Ashique et al., 2025; Patel et al., 2018). Future research will be focus on developing the AI models and algorithms to safer operations of drone.
5.3 Capacity Building 
      The human involvement plays a supportive role in the successful implement drone technology for precision agriculture. Investment should be start on in different training program, drone’s demonstration on farms, and extension services from agriculture department can help farmers particularly smallholders and developing areas can give skills and confidence needed to operate and maintenance of drone system effective manners (Mowla et al., 2023, 2023; Surendran et al., 2024). 
5.4 Policy Harmonization
 There should be regulatory frameworks for safety guidelines for operation drones and its insurance. Harmonizing agricultural drone’s regulations at farmer field to international levels can provide safe, legal, and efficient operation guidelines of drone’s usage. Clear guidelines from Directorate General of Civil Aviation, integration, data privacy concern, and responsibility to encourage investment and adoption, especially in regions with fragmented policies (Rahman et al., 2024; Singh et al., 2024). Policy making should be collaborative with farmers, stakeholders, manufactures, and government agency which helps to achive the adaption of drone precision agriculture.
6. Conclusions
         Applications drones for precision agriculture by using multiple works  like remote sensing, targeted insecticide and pesticide spraying, crop health monitoring, and soil health monitoring into a single, efficient aerial platform. This integrated approach not only saves time and labour but also improve resources use efficiency, reduces chemical overuse, and reduces environmental impact. Technical challenges facing in drones like limited batteries efficiency, GPS signal loss, weather forecast data, higher discharge rate, payload restrictions, and the need for advanced sensors must be addressed through continuous innovation. Governing drone operations, data privacy, and airspace management also need to evolve to support safe and effective manner. However, many farmers, especially in developing areas, require drone pilot training and support to adoption of drone to manage these advanced precision agriculture technologies. Therefore, collaboration with among researchers, policymakers, scholar, drone manufacturers company, and agricultural extension services providers are important. The right strategies and plan helps in application drones will play a major role in achieving sustainable growth and highly agricultural production systems through worldwide.
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