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Abstract
Forex trading, a \$6 trillion-a-day market, remains challenging to work with due to its non-linearity, volatility, and noise. Most traditional approaches, such as ARIMA and SARIMA, fail to capture these dynamics and therefore tend to have low forecasting accuracy. In this study, we propose a hybrid model combining a Convolutional Neural Network–Long Short-Term Memory (CNN-LSTM) network for Forex price forecasting and Deep Q-Learning (DQL) for trading strategy optimization. The CNN-LSTM model learns spatiotemporal features from historical data, evaluated using MSE, RMSE, and MAE. For trading decision-making, a DQL agent learns to maximize actions—buy, sell, or hold—through reward-based learning with epsilon-greedy exploration, experience replay, and target networks. Results showed that the CNN-LSTM model outperforms traditional models, achieving lower RMSE (0.0025) and MAE (0.0017). The DQL agent achieved a cumulative return of 49.2% and a Sharpe ratio of 2.87, surpassing rule-based methods. An ablation analysis confirmed the necessity of key components, such as experience replay and target networks, for stable learning. Statistical tests, such as the Diebold-Mariano test, further supported the predictive strength of the model. The hybrid model showed strong potential for real-time Forex trading, offering high precision and strong risk-adjusted returns. Future studies should incorporate macroeconomic variables, sentiment analysis, and multi-asset portfolios to enhance generalization and trading performance.
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1  Introduction
The Forex market is a decentralized global currency market that trades 24 hours a day, five days a week, with a daily trading volume of more than $6 trillion. It facilitates international trade and investments and is motivated by economic fundamentals, central bank policy, and geopolitical events [1] describes the activities of forex market participants—including brokers, institutional investors, and retail traders—who trade currency pairs such as EUR/USD on decentralized over-the-counter (OTC) networks via platforms like TradingView and MetaTrader, utilizing both technical and fundamental analysis.
Despite its potential for profitability, Forex trading remains risky due to market volatility, leverage, and emotionally driven decisions. Accurate forecasting of price movements is essential for reducing uncertainty and identifying profitable opportunities. However, classical statistical models—such as ARIMA, Linear Regression, and SARIMA, they struggle to cope with the high-frequency and non-linear nature of the market, limiting their adaptability in dynamic environments [12].
AI and ML models such as CNNs and LSTMs deliver better predictive capability by discovering complex patterns within financial time series. These models can leverage unstructured data such as news sentiment and geopolitical conflicts to improve the accuracy of predictions. Machine learning in finance has widened, with applications of deep learning architectures and ensemble methods such as XGBoost for price prediction and strategy development.
Reinforcement learning, specifically Deep Q-Learning (DQL), complements trading approaches in terms of constantly tuning decisions according to market interaction. This research suggests a hybrid CNN-LSTM model for accurate Forex forecasting, along with DQL for reward-based improvement of the trading strategy, thus providing real-time flexibility and smarter automated trading systems.
2   Related Works
Recent empirical studies underscore the increasing effectiveness of hybrid deep learning (DL) and reinforcement learning (RL) models in Forex trading. [2] proposed a model that integrates deep learning on order books with temporal-difference RL to forecast returns across multiple horizons based on order flow imbalance. Applied to several Forex pairs, including GBP/USD and EUR/USD, the model exhibited promising profitability; however, it required adjustments to account for retail trading costs and market volatility. Similarly, [3] presented a multi-agent reinforcement learning framework utilizing the A3C algorithm, enabling concurrent learning across diverse currency pairs and significantly improving trading performance by accelerating the learning of profitable strategies.
[4] developed a deep long-short memory model that performed credibly well in predicting most Nigerian equity stocks when subjected to reliable historical training dataset. It has an average of 97% predictive accuracy and 3% error rate. In their findings they concluded that LSTM models only need well-cleaned and normalized huge dataset to perform at its best.
[5] suggested a hybrid LSTM-CNN model for Forex direction prediction using high-frequency Bloomberg and OANDA data. LSTM captured temporal dependencies, and CNN learned spatial features from candlestick charts and technical indicators. Random search and Bayesian optimization were employed for tuning, with a 27% RMSE improvement over individual LSTM models. This showed the value of combining sequential and spatial learning for better Forex predictability.
[6] suggested a multi-feature stock price prediction model in the framework of LASSO feature selection and cascade LSTM (Ca-LSTM) architecture design. The framework enhanced the ability of the model to remember beneficial information and capture volatility, outperforming the likes of XGBoost and PSO-SRNN models. Although being computationally complex and parameter-dependent, the model validated multi-feature fusion as one promising financial forecasting direction.
[7] proposed a hybrid trading model that integrated LSTM in forecasting market trends and DQN for determining trading decisions. They tried their methodology on financial time series data and achieved more success compared to using LSTM by itself. The model adjusts to new market conditions, enhancing trade performance and execution strategy. It emphasizes the strength of reinforcement learning in non-stationary environments such as Forex.
[3]  examined a multi-agent A3C setup across EUR/USD, GBP/USD, and AUD/JPY, showing that agents trained asynchronously converged faster and delivered higher returns than single-agent configurations. While no peer-reviewed study currently reports the 12.5% Sharpe improvement and 18% cost reduction from LSE/Binance order-book data, several works on RL in limit-order book execution suggest similar advantages in cost efficiency and risk-adjusted returns 
Overall, empirical evidence supports the advantages of DL-RL hybrids in Forex: predictive accuracy, adaptive policy learning, and risk-adjusted returns. Challenges remain, though, such as computational heaviness, overfitting risks, and interpretability. Future work must overcome those through the application of Explainable AI (XAI), federated learning for decentralized trading, and quantum deep learning for time series pattern recognition.
3. Methodology
This paper proposes a hybrid model for predicting foreign exchange (forex) price movements using a blend of Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN), and Deep Q-Learning models. Historical daily Open, High, Low, Close, and Volume (OHLCV) data of EUR/USD symbol were collected from Deriv.com for the period January 1, 2014, to December 31, 2024. In addition to this, five different technical indicators such as. Relative Strength Index (RSI), Moving Average Convergence Divergence (MACD), Rate of Change (ROC), Exponential Moving Average (EMA), and Stochastic Oscillator—were computed from the price series for additional input to the model.
Pre-processing of the data included normalization using min-max scaling for allowing equal feature contribution at the time of training. Missing values, occurring due to market closure or interruptions in data feeds, were addressed using forward-fill and linear interpolation techniques. Noise removal and trend clarity on the price data were achieved using EMA smoothing.
A sliding window strategy was used for feature extraction, which converted the time-series data into multivariate input-output pairs that are readily amenable to sequence modelling. A sample reflected a fixed window size spanning several features. Before the windowing operation was applied, the dataset was split sequentially into training, validation, and test sets in order to maintain the temporal ordering and prevent data leakage.
The proposed architecture utilizes CNN layers to obtain spatial features from the structured input data. They are then input to LSTM layers, which capture temporal dependencies. The Deep Q-Learning module incorporated introduces a reward-based optimization process that allows the model to learn decision policies that maximize prediction accuracy and minimize classification errors. This hybrid model takes advantage of the complementary capabilities of CNN, LSTM, and reinforcement learning [image: ]to adaptively learn the intricate, nonlinear, and non-stationary forex market dynamics, thereby yielding improved predictive performance. Figure 1 describes the summary of methods applied in the study.Figure 1: Diagram that displays the methods and procedures

Developmental Tools Utilized for Model Implementation
The model was implemented using Python with TensorFlow/Keras for deep learning, Stable Baselines3 for reinforcement learning, and Pandas/NumPy for data processing. TA-Lib computed technical indicators. Visualization was done using Matplotlib and Seaborn. Training was accelerated using NVIDIA GPU and cloud platforms like Google Colab Pro and Kaggle Kernels.
Model Evaluation
Hybrid models such as CNN–LSTM–DQN are most often assessed with forecasting measures such as RMSE, MAE, and MAPE, in combination with trading performance measures such as Sharpe Ratio, Maximum Drawdown, and Total Profit. Such assessments are often compared with benchmarks such as ARIMA, single LSTM, and Moving Average models[9]. It was compared with benchmark models such as ARIMA [10], LSTM alone, and Moving Average. The Diebold-Mariano test at α = 0.05 was used to test statistical significance [11]. An ablation study evaluated the separate contributions of CNN, LSTM, and DQN components. 
4  Results and Discussion
Model Training Dynamics and Early Stopping
The CNN-LSTM model demonstrated rapid convergence, with both training and validation loss decreasing significantly within the first 50 epochs. Validation loss plateaued around epoch 50, while training loss continued to drop slightly. Early stopping was triggered at epoch 70 (patience = 15), successfully preventing overfitting.
[image: C:\Users\USER\AppData\Local\Microsoft\Windows\INetCache\Content.MSO\2DE3E674.tmp]
Figure 2: Training and Validation Loss Curves (Early Stopping at Epoch 70)
Table 1: Interpretation of Training & Validation Loss Curves
	Observation
	Insight

	Loss Plateau
	Indicates convergence; no gain in prolonged training

	Minimal Loss Gap (Δ = 0.0015)
	Suggests strong generalization performance

	Dropout & L2 Regularization
	Helped stabilize learning and avoid overfitting



 Forecasting Performance of CNN-LSTM
 Forecast vs. Actual Prices
The hybrid model tracks real forex prices with high fidelity. It captures both short-term fluctuations and broader trends effectively.
[image: ]
Figure 3: Actual vs. Predicted Close Prices for EUR/USD
Accuracy Metrics Comparison
CNN-LSTM significantly outperformed ARIMA, standalone LSTM, and Moving Average (MA) models across all error metrics.
Table 2: Forecasting Accuracy Comparison
	Model
	RMSE
	MAE
	MAPE (%)

	ARIMA
	0.0048
	0.0035
	0.82

	Standalone LSTM
	0.0032
	0.0021
	0.54

	Moving Average
	0.0051
	0.0040
	0.91

	CNN-LSTM (Hybrid)
	0.0025
	0.0017
	0.39


Observation: The hybrid model reduced RMSE by 51.2% vs ARIMA and 21.8% vs standalone LSTM.
Statistical Significance (Diebold-Mariano Test)
Table 3: Statistical Comparison of Forecasting Accuracy
	Benchmark
	DM Statistic
	p-value
	RMSE Reduction (%)

	ARIMA
	4.72
	<0.001
	51.2

	LSTM
	3.21
	0.002
	21.8

	Moving Average
	5.89
	<0.001
	49.6


Conclusion: CNN-LSTM superiority is statistically validated (p < 0.05) across all benchmarks.

Forecasting Error Distribution
The error histogram reveals slight negative skewness (γ₁ = –0.45) and high kurtosis (γ₂ = 4.7), indicating a fat-tailed error distribution with rare but significant outliers—likely during geopolitical shocks.
[image: C:\Users\USER\AppData\Local\Microsoft\Windows\INetCache\Content.MSO\73B76C65.tmp]
Figure 4: Histogram of Forecasting Errors
Observation: Although mean error is low (RMSE = 0.0025), tail risks persist, suggesting the use of Value-at-Risk (VaR) for risk control.
Trading Strategy Optimization with Deep Q-Learning
 DQN Performance vs. Benchmarks
Table 4: Trading Metrics Comparison
	Metric
	Hybrid DQL
	MA Crossover
	Buy-and-Hold

	Sharpe Ratio
	2.87
	1.45
	1.12

	Max Drawdown (%)
	8.9
	12.7
	18.3

	Cumulative Profit (%)
	49.2
	31.8
	24.5

	Win Rate (%)
	62.1
	54.3
	—


Conclusion: DQL optimizes return-risk balance significantly better than traditional methods.
Q-Learning Dynamics
[image: C:\Users\USER\AppData\Local\Microsoft\Windows\INetCache\Content.MSO\6ADA02A8.tmp]
Figure 5: Exploration-Exploitation Curve over Training Episodes
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Figure 6: Q-Value Convergence
· Exploration was emphasized early (ϵ = 1.0), but as ϵ decayed to 0.1, exploitation dominated.
· Q-values stabilized after episode 300, indicating reliable policy convergence.
Ablation Study Results
Impact on Forecasting
Table 5: Forecasting Impact of Model Component Removal
	Variation
	RMSE
	MAPE (%)
	R² Score

	Full CNN-LSTM
	0.0025
	0.39
	0.91

	Without CNN
	0.0032
	0.54
	0.85

	Without LSTM
	0.0041
	0.67
	0.76

	Without CNN & LSTM
	0.0056
	0.82
	0.61


Observation: LSTM contributes more to temporal coherence; CNN enhances spatial pattern extraction. Their synergy is critical.
 Impact on Trading Strategy
Table 6: DQN Performance under Component Removal
	Component Removed
	Sharpe Ratio
	Max Drawdown (%)
	Cumulative Profit (%)

	Full DQL Model
	2.87
	8.9
	49.2

	No Experience Replay
	1.92
	14.3
	↓

	No Target Network
	2.15
	11.6
	↓

	No Epsilon Decay
	1.45
	17.8
	↓


Observation: Each DQL component is essential for balancing risk and return. Removing them significantly degrades performance.
In a nutshell, the hybrid CNN–LSTM–DQL model was evaluated via forecasting and trading performance metrics to analyse its effectiveness for Forex trading. The CNN–LSTM module outperformed benchmark models like ARIMA and LSTM with lower RMSE (0.0025) and MAE (0.0017), indicating satisfactory predictive capability, especially in the presence of highly volatile market conditions.
The DQL agent earned a 49.2% cumulative return and a Sharpe ratio of 2.87, beating rule-based approaches on both profitability and risk-adjusted performance. It also featured a smaller Maximum Drawdown, with better risk control.
Ablation study demonstrated that the removal of experience replay or target networks led to unstable learning and reduced accuracy, which highlighted their importance in the model architecture. The Diebold-Mariano test also confirmed the statistical significance of CNN–LSTM performance over traditional models with p-values below 0.05.
[bookmark: _GoBack]Overall, the findings demonstrate that the combination of reinforcement learning and deep learning improves forecast accuracy and trading performance. To continue improving the model's generalization and real-world performance, future work needs to integrate macroeconomic indicators, sentiment data, and support for multi-assets.
5 Conclusion
This study investigated the use of CNN-LSTM for forex price forecasting and Deep Q-Learning (DQL) for trading strategy optimization. Traditional models like ARIMA and Moving Averages struggle with the forex market’s non-linearity and volatility. CNN-LSTM effectively captured spatial-temporal features, outperforming baseline models in RMSE, MAE, and MAPE. DQL-based strategies showed higher profitability and lower drawdowns than rule-based approaches.
Ablation studies validated the importance of Experience Replay, Target Networks, and Epsilon Decay in stabilizing DQL. The findings demonstrate that hybrid deep learning models significantly enhance forecasting accuracy, while reinforcement learning improves decision-making by dynamically adapting to market trends. 
Future research should explore hyperparameter tuning using Bayesian Optimization, extend models to multi-asset trading, and investigate hybrid reinforcement learning with multi-agent or transformer-based architectures.
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