
INVESTIGATION OF
ONE-POINT

COMPACTIFICATION IN
SEMI-NORMAL SPACES

Abstract

Let X be a non-empty set and (X, τ) be a semi-normal
space. In this paper, we investigated the relationship be-
tween one-point compactification and semi-normal spaces
under the fram.work of semi-open sets. In addition, we in
particular proved that if (X, τ) is a semi-normal space, then
its one-point compactification, X∗ is also semi-normal. We
also extended our work on establishing that, if (X, τ) is a
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semi-normal space, then its one-point compactification, X∗

of X is compact if and only if (X, τ) is also Hausdorff.
Key Words and Phrases:Topological space, semi-open

set, cover of a set, compact set, one-point compactification
and semi-normal space

1 Introduction

A lot of research on the properties of topological spaces has been
done and many results established. The properties (normality[1],
regularity [1], semi regularity [8], connectedness[12] , compactifica-
tion [5], etc.) have been studied and internal characterization of
some spaces like Tychonoff spaces, established. Frink [2] described
compactification with regard to Wallman base in a Wallman space
w(Z) under the framework of ultrafilters. Later, Piekorsz [6] char-
acterized One-point compactification with regard to Wallman base
C under the framework of generalized topological spaces. Marcus
[11] established Schwartz functions and compactification. Recently,
Alrababah [7] improved the concept of D-paracompactness under
the framework of D-sets. In addition, Alrababah [7] studied the
different characteristics of D-paracompactness and how they relate
with topological characteristics. In this note, we have character-
ized one-point compactification with respect to semi-normal spaces
under the framework of semi-open sets.

2 Preliminary Notes

Definition 1. Consider a space (X, τ ), where X is non-empty
set and τ is a topology on X if it satisfies the following properties:

(i). ∅, X ∈ τ .
(ii). The arbitrary union of sets in τ belong to τ .
(iii). Any finite intersection of sets of τ belong to τ .

We made some definitions which are instrumental to this present
paper.
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Definition 2. ([4], Definition 3.1)
Let (X, τ ) be a topological space. If every open covering in X has
a countable sub-covering, then the space is called Lindelöf space.

Definition 3. ([10], Definition 7.1.7)
A subset A of a topological space (X, τ ) is said to be compact if,
every open covering of A has a finite sub-covering. If the compact
subset A equals to X then, (X, τ ) is said to be compact space.

Definition 4. , ([3], Definition1)
A topological space (X, τ ) is said to be semi-normal if for each pair
of disjoint semi-closed sets A,B ⊆ X, there exist disjoint semi-open
sets U, V ⊆ X such that A ⊆ U and B ⊆ V .

Definition 5. ([10], Definition 7.1.7)
Let (X, τ ) be a semi-normal and discrete topological space and
(Y, τY ) be a subspace of (X, τ ). Let f : X −→ Y be an embedding,
that is f is a homeomorphism and f(x) = X, f(x) ⊆ Y . Then
(Y, τY ) is a compactification of (X, τ ).

Definition 6. ([13], Definition 1.3)
A topological space (X, τ ) is said to be locally compact at a point
x ∈ X if, x lies in the interior of some compact subset of X.

Definition 7. (T1 axiom, [9])
A space (X, τ ) is said to have the T1 property if x and y are distinct
points of X, there exists an open sets P and Q such that P contains
x but not y, and the open set Q contains y but not x.

Definition 8. (Completely regular axiom, [9])
A space (X, τ ) is said to be completely regular (or Tychonoff) if it
is both T3

1
2
and T1.

3 One-Point compactification

We begin our results with proposition 9 which is a basis for the
main results.

Proposition 9. One-Point Compactification X∗ of locally
compact Semi-Normal Space is Compact Normal Space.
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Proof. Let X be a locally compact semi normal space and A
and B be disjoint closed subsets of X, such that there exist disjoint
open sets U and V in X such that Āx ⊆ U and B̄x ⊆ V . Let X∗

be one-point compactification of X with ∞ representing the point
at ∞. Considering two scenarios of U and V with respect to ∞:
(i). One or both U and V contain ∞. In this case, extending them
with {∞} does not affect their disjointness. ie. If U ∩ {∞} ̸= ∅ or
V ∩{∞} ̸= ∅ i.e. ∞ belong to either U or V , then extending U and
V with {∞} does not change their relative positions. A ∪ {∞} ⊆
U ∪ {∞} and B ∪ {∞} ⊆ V ∪ {∞}. Since U and V were disjoint
U ∪ {∞} and V ∪ {∞} remain disjoint open sets in X∗.
(ii). Neither U nor V contain ∞: Utilize the local compactness of
X. Since X is locally compact ∀ x ∈ X has compact neighborhood.
i.e x ∈ X \ (U ∪V ), ∃ a compact neighborhood Kx such that Kx ⊆
X \ (U ∪ V ) and does not contain ∞. Let Ku = U ∩ (∪{Kx : x ∈
X\U}) and Kv = V ∩(∪{Kx : x ∈ X\V }). These sets are compact
because they are intersections of compact sets and moreover, Ku ⊆
U \ {∞} and Kv ⊆ V \ {∞}. These guarantee the existence of
disjoint open sets in X∗ i.e (U ∪ {∞}) ∪Ku and (V ∪ {∞}) ∪Kv.
⇒ X∗ is compact by definition of one point compactification and
the existence of disjoint open sets (U∪{∞})∪Ku and (V ∪{∞})∪Kv

in X∗, shows that X∗ is normal which completes the proof.

Theorem 10. If (X, τ ) is a semi-normal space, then its one-
point compactification, X∗ is also semi-normal. .

Proof. Let X be a semi normal space with topology τ and
A,B ⊆ X be disjoint closed sets. By proposition [9] we consider
two scenarios: (i).A∩{∞} ̸= ∅ and B∩{∞} ̸= ∅. ( i.e. A contains
∞ and B is entirely in X), then the semi-normality of X guarantees
the existence of disjoint sets U and V in X such that Āx ⊆ U and
B̄x ⊆ V . Extending U and V with {∞} in X∗ creates disjoint sets
used in U ∪ {∞} and V in X∗ that separates A and B.
⇒ A ⊆ A ∪ {∞} and B ⊆ V .
(ii). Both sets contain ∞: Analyzing the open sets used in X, con-
sider the case when the original open sets are used to separate A
and B, already contain ∞, extending them with {∞} ∈ X∗ would
maintain their disjoint property i.e, Let U ′ and V ′ be two original
open sets in X. Then U ′ ∪ {∞} and V ′ ∪ {∞} are disjoint open
sets separating A and B.
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(iii). Both sets A and B are entirely contained in X i.e Neither
A nor B contain ∞: Since X is semi-normal, ∃ disjoint open sets
U and V in X such that A ⊆ U , B ⊆ V , then U and V are also
disjoint open in X∗. Therefore, for a semi-normal space X, its
One-point compactification X∗ is semi-normal.

Theorem 11. If (X, τ ) is a semi-normal space, then its one-
point compactification, X∗ of X is compact if and only if (X, τ ) is
also Hausdorff.

Proof. Let X be a Hausdorff and semi-normal space. We want
to show that its one point compactification X∗ is compact. From
definition [5], to show that X∗is compact, we consider any open
cover {Ui}i∈I of X∗. We split this in to 2 cases:
Case 1: Some open set Uj in the cover contains ∞. If one of the
open set contain ∞, the remaining set covers X. Moreover, since X
is locally compact and Hausdorff, and X is covered by open sets, ∃a
finite subcover that covers all points in X. Hence, combining the
subcover with the set Uj that contain ∞, we have a finite subcover
for X∗, proving that X∗ is compact in this case.
case 2: No open set Ui contains ∞.
Here the open cover {Ui} only covers points X∗ \ {∞}, which is
homeomorphic to X. Since X is locally compact and Haudorff, ev-
ery point in X has a compact neighborhood. Because X∗ \ {∞} is
homeomorphic to X, ∃ a finite subcover that covers all of X. Since
∞ is not covered by any Ui, this leads to a contradiction (as all
open cover include ∞).
⇒ We can always find a finite subcover for any open cover of X∗.
This shows that X∗ is compact.
Conversely:
Assume that the one-point compactification X∗ of X is compact.
We need to show that X is Hausdorff. Suppose X is not Hausdorff.
Then, ∃ distinct points x, y ∈ X that cannot be separated by dis-
joint open sets.
⇒ no open neighborhoods of x and y are disjoint.
⇒ the space X does not satisfy the separation axioms [7 and 8].
However, X∗ is compact and in a compact space, distinct points can
always be separated by disjoint open sets because compact spaces
are normal (by Tychonoff theorem).
Since X∗ is compact and normal, the points x and y ∈ X must be
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separable by disjoint open sets, contradicting our assumption that
X is not Hausdorff.
Thus, if X∗ is compact, X must be Hausdorff, completing the
proof.

Example 12. Let X = Q, the space of rational numbers, with
the subspace topology from R. X is locally compact, non compact
and Hausdorff. X∗ = {Q ∪ ∞}, which is compact. The topology
τ ∗ = {X∗ \ G : G ⊆ Q}. X∗ is compactified and semi-normal
because X is locally compact and Hausdorff and we can separate
compact sets from closed sets.

4 Conclusion

Finally, the results we discussed, outline clearly the relationship
between semi normal space and one-point compactification.

References

[1] Amir S.S., Separation axioms and its relationship
among them, Math. Department, 20(2018), 1-20.
https://www.uoanbar.edu.iq/EPSCollege/catalog/res1(1).pdf.

[2] Frink O., Compactification and semi normal space,Amer.J
Math, 86(1964), 602-607.

[3] Ganster M., Jafari S. and Navalagi G. B., Semi-Regular and
Semi-Normal spaces, Demonstration Math., 35(2)(2005).

[4] Jesper M., General topology, General Topology Math., 24
(2004), 23-57.

[5] Khatum K., Al-omari A., and Modak S, Nets, Fund Math,
17(2018), 1-17.

[6] Piekosk A. and Wajch E., Compactness and compactification
in genelized topology.Topology and its Applications., 194(2015)
241-268.

6



[7] Alrababah R., Amourah A., Salah J. and Atoom M., New
Results on difference Paracompactness in Topological spaces,
Pure and applied Math, 17(2024).

[8] Strecker G. E. and Wattel E., Semi- Regular and Minimal
Hausdorff embeddings, Math department, 2(1966) 234-237.

[9] Saadoun Amir S., Separation axioms and relationship
among them, Department of Math. , 7 (2013), 38-42.
https://www.uoanbar.edu.iq/EPSCollege/catalog/res1(1).pdf.

[10] Sydney M., Topology without tears, Mineola, 91(2020).

[11] Marcus J. and Sager M., REU - Schwartz Functions and Com-
pactifications, Math. GT, 12(2023), 1-12.

[12] Vivekananda D. and Sanjay M., New compactness and con-
nectedness in topological spaces T0 and T1., International Jour-
nal of Applied Research, 4(4)2018), 286-289

[13] Wallman H., Lattice and topologcal space, Ann. Math., 39
(1938), 112-126.

7


