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1 Introduction

In recent decades, the evolution of deep learning techniques has revolutionized

the �eld of arti�cial intelligence, paving the way for sophisticated models capable of

capturing complex patterns in data. Among these, Multilayer Perceptrons (MLPs) have

played a foundational role, serving as the building blocks for various neural network

architectures.

A layered network of perceptrons is �rst introduced by Frank Rosenblatt in his

book Perceptron [1] [2] [3]. The perceptrons in his book is composed of an input layer,

a hidden layer with randomized weights which did not learn, and an output layer with

learning connections. But this is seen as a extreme learning machine [4] but not a

deep learning network. Although this early form of MLP was not considered a deep
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Despite the long-standing success of Multilayer Perceptrons (MLPs) across diverse applica-

tions, increasing their depth often introduces over�tting and gradient degradation. To overcome

these limitations, this paper proposes a novel hybrid architecture that synergistically integrates

MLPs with Residual Networks (ResNet). Speci�cally, MLPs serve as nonlinear mapping functions

within ResNet blocks, while skip connections preserve gradient �ow to enable stable training in

deeper networks. The model is optimized using the Adam algorithm for its rapid convergence and

further enhanced through systematic hyperparameter tuning via grid search. Comprehensive eval-

uations are performed on three critical energy forecasting domains: electricity demand, petroleum

products, and renewable energy generation, with comparisons against 10 state-of-the-art models.

The proposed framework demonstrates superior predictive accuracy, achieving a mean absolute

percentage error (MAPE) of 4.495% in petroleum demand forecasting, signi�cantly outperforming

all baseline methods. These results underscore the model's robustness and practical relevance for

real-world energy forecasting applications.



learning network, it laid the groundwork for subsequent advancements. In 1965, Alexey

Grigorevich Ivakhnenko and Valentin Lapa published the �rst deep-learning feedforward

network, known as the Group Method of Data Handling, which did not yet utilize

stochastic gradient descent [5] [6]. Two years later, Shun'ichi Amari introduced a deep-

learning network capable of classifying non-linearly separable pattern classes, marking

the �rst use of stochastic gradient descent in such networks [7]. And his team also

built a �ve-layered feedforward network, demonstrating the feasibility of deep learning

architectures. The modern backpropagation method, a crucial component of MLP

training, was �rst published in 1970 by Seppo Linnainmaa [8]. This e�cient application

of a chain-rule-based supervised learning approach revolutionized the training of neural

networks by enabling the propagation of errors through the network to update the model

parameters. Subsequent improvements to the backpropagation algorithm, including its

standardization by Paul Werbos in 1982 [9], and experimental analyses conducted by

David E. Rumelhart et al. in 1985 [10], further solidi�ed its importance in the �eld of

deep learning.

So far, The MLP model and its variants have been widely used in many �elds ,

such as �nance [11], bioinformatics [12], transportation [13], agricultur [14], medical [15]

and etc.. The MLP especially plays an important role in time series analysis including

regression and classi�cation. In 2023, FINANNISA ZHAFIRA and etc. combine LSTM

and MLP to establish a model that can e�ectively reduce training costs [16]. In the

same year, Si-An Chen and etc. present Time-Series Mixer (TSMixer) which is a novel

architecture designed by stacking multi-layer perceptrons (MLPs) and prove its surpe-

rior performance on a real-world retail dataset [17]. Sujan Ghimire and etc. propose an

novel hybrid method which integrates convolutional neural network (CNN) with MLP

and forecasts global solar radiation (GSR) successfully [18].

However, the depth of the MLP model is limited by the vanishing gradient problem,

making it di�cult to train deeper networks. To solve the problem of vanishing gradient,

in 1991, Sepp Hochreiter introduced skip connections or residual connections in the

long short-term memory (LSTM) recurrent neural network to solve this problem [19].

Subsequently, in 2015, the concept of Highway Networks was proposed, applying the

concept of forget gates in LSTM to the feedforward neural network, allowing information

to spread in the network and alleviating the vanishing gradient problem [20]. Then,

based on Highway Networks, ResNet further simpli�es the structure, removes forget

gates, and uses simple skip connections directly, so that signals can be propagated

directly without the intervention of the gating mechanism. This structure has proven

to be very e�ective in training very deep neural networks [21].

Building upon the aforementioned research, this paper presents an innovative inte-

gration of ResNet with MLP for forecasting across three distinct types of energy data.

Speci�cally, the MLP is employed as the mapping function within the ResNet archi-

tecture. To further optimize model performance, we develop a dual-phase optimization

strategy combining Adam optimizer with GridSearchCV, which signi�cantly enhances

the predictive capability of our model. The main contributions of this work can be

summarized as follows:
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� This work propose a hybrid MLP-ResNet framework that utilizes MLP as resid-

ual mapping functions, e�ectively combining skip connections with original inputs.

This innovative architecture maintains MLP's powerful feature extraction capabil-

ities while inherently addressing gradient-related challenges, thereby signi�cantly

enhancing model generalization.

� Our approach integrates the Adam optimization algorithm for adaptive learning

rate adjustment with systematic hyperparameter optimization via GridSearchCV.

This dual optimization strategy ensures both computational e�ciency and model

performance maximization.

� Through comprehensive experiments across three distinct energy domains - equip-

ment monitoring (transformer oil temperature), energy trade (crude oil imports),

and renewable generation (wind power) - and comparison with 10 state-of-the-

art baseline models, this work demonstrate the superior performance and robust

generalizability of our approach.

In the rest of the paper, the theory of MLP-ResNet and its solution will be shown

in Section 2; applications in 3 real-world cases in energy �eld will be represented in

Section 3; the conclusion of this paper is shown in Secton 4.

2 Theoretical Framework

2.1 Knowledge Background

2.1.1 Multiple Layer Perceptron (MLP)

Formally, an MLP consists of an input layer, one or more hidden layers, and an

output layer. Each layer is composed of numerous arti�cial neurons, also referred to

as perceptrons or nodes, interconnected via weighted connections [22]. The primary

function of the MLP is to transform input data through successive layers of nonlinear

transformations, ultimately producing an output prediction. A simple mlp network

structure with one-hidden-layer is shown in Fig.(1).
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Fig. 1. Simple mlp network structure (single hidden layer)
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Mathematically, the forward propagation process of an MLP can be expressed as

follows: for each layer l, the output x(l) is computed as the application of a nonlinear

activation function σ to the linear transformation of the previous layer's output x(l−1),

incorporating weights W(l) and biases b(l) :

z(l) = W(l)x(l−1) + b(l)

x(l) = σ
(
z(l)

) (1)

During training, the parameters (weights and biases) of the MLP are optimized to

minimize a prede�ned loss function, typically through backpropagation and gradient-

based optimization techniques. Backpropagation involves the systematic calculation of

gradients with respect to the parameters of the network, facilitating parameter updates

in the direction that reduces the loss [23].

MLPs are characterized by their universal approximation capabilities, enabling

them to approximate arbitrary functions with su�cient capacity and data. However,

their e�ectiveness is contingent upon various factors, including network architecture

design, activation functions, optimization algorithms, and hyperparameter tuning.

2.1.2 Residual Network (ResNet)

Recent advancements in the �eld of image recognition have underscored the crit-

ical role of network depth, particularly in Convolutional Neural Networks (CNNs), as

elucidated by recent studies [24]. However, the e�cacy of deeper networks is marred

by a phenomenon termed degradation, wherein the accuracy of the model plateaus and

subsequently declines rapidly with increasing depth. Notably, this degradation does not

stem from over�tting but rather from optimization challenges.

Addressing this inherent limitation, ResNet (Residual Network) presents a pioneer-

ing solution by introducing a residual learning framework. Unlike conventional CNNs

where each layer aims to directly learn the underlying target function H(x) [25], ResNet

adopts a distinctive learning objective de�ned as F (x) := H(x) − x. This formulation

epitomizes residual learning, where the network endeavors to learn the residual informa-

tion of x in H(x). Distinguishing between the architectural setups of conventional CNN

blocks and ResNet blocks is shown in Fig.(2). By reframing the learning task in terms

of residual functions, ResNet facilitates more e�cient optimization, as it is inherently

easier to learn residuals than to directly learn complex target functions. This approach

enables ResNet to navigate around the degradation issue by traversing a detour through

residual learning pathways [26].
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Fig. 2. Distinguishing between the architectural setups of conventional CNN blocks

and ResNet blocks.

The core architectural feature of ResNet is the incorporation of "shortcut connec-

tions" or "skip connections," which facilitate identity mapping. Through these connec-

tions, the original input x is added directly to the output of the stacked layers, thereby

enabling the �ow of information without signi�cant alteration. This mechanism not only

fosters smoother gradient �ow during backpropagation but also mitigates the vanishing

gradient problem commonly encountered in deep networks [27].

2.2 The proposed MLP-ResNet model

2.2.1 The representation of MLP-ResNet model and its solution

As we mentioned before, it's apparent that the most existing machine learning

models including MLP often face degradation phenomenon which means the accuracy

of the model declines rapidly when increasing depth. In order to better forecast and

enhance the MLP's versatility, we propose the model which combines the MLP and

the ResNet which is called MLP-ResNet (MLPRS) in this paper. The structure of the

MLPRS is shown in Fig.(3) and the ⃝ with number means the neuron index in each

layer. The number of MLPRS BLOCK depends on the depth of MLPRS.
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Fig. 3. Structure of MLPRS
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Suppose (X, y) is the input data of the model which X has n1 features, it is

composed of (Xt, yt)(t = 1, 2, · · · , n) and we constuct the MLPRS model with k depth.

The MLP in the proposed model has one-hidden-layer, we could obtain the output of

MLPRS as follows:

h0 = W (1)X + b(1), (2)

where h0 is the output of ResNet's input layer.

When it come to the �rst MLPRS BLOCK, we could write the mathematical

expression as follows:

h1 = W (2)h0 + b(2),

h2 = δ(h1),

h3 = W (3)h2 + b(3),

h4 = W
(4)
1 h3 + h0,

(3)

where h1, h2, h3 are the state of the nerurons in MLP model (the input layer, hidden

layer and output layer of MLP respectively), and h4 is the output of the �rst block.

δ(·) is the activation function of the MLP model.

Similar to the �rst block, the formula of the second block could be written as

follows:
h5 = W (2)h4 + b(2),

h6 = δ(h5),

h7 = W (3)h6 + b(3),

h8 = W
(4)
2 h7 + h4,

(4)

After the iteration of k depth, the k-th block's output h4k could be obtained:

h4k = W
(4)
k h4n−1 + h4n−4. (5)

Finally, we could calculate the output ŷ of the ResNet:

ŷ = W (5)h4n + b(5) (6)

In Eq.(2)(3)(4)(5)(6), W (i)(i = 1, 2, 3, 4, 5) and b(j)(j = 1, 2, 3, 5) are the parame-

ters of neural network in MLPRS. W
(4)
p (p = 1, 2, · · · , k) is the k-th element in W (4).The

speci�c shape of the parameter matrix are shown in Tab.1.

Table 1: The speci�c shape of the parameter matrix.

parameter W (1) W (2) W (3) W (4) W (5)

shape (n1, n2) (n2, n3) (n3, n2) (1, k) (n2, 1)

parameter b(1) b(2) b(3) b(5)

shape (1, n2) (1, n3) (1, n2) (1, 1)

The activation function has a variety of choices which depends on speci�c applica-

tion scenarios, here we use Tanh as the activation function of MLPRS. The output range
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of the Tanh function is within [−1, 1], which helps to reduce the problem of vanishing

gradients and helps the network converge. The Tanh function δ(·) could be express as

follows:

δ(x) =
ex − e−x

ex + e−x
(7)

2.2.2 Adam algorithm for training the MLP-ResNet model

Normally, the neural network could not obtain an analytical solution, and the

proposed MLPRS model in this paper is no exception. So we need to use optimization

algorithms to get its solution such as Gradient Descent [28], Stochastic Gradient Descent

[29], Adam [30]. In this paper, we introduce the Adam algorithm to train the proposed

model due to its e�ciency, robustness, and adaptability.

First, we need to de�ne the training error et at each point (Xt, yt):

et = yt − (W (5)h4n + b(5)), (8)

Thus, we could obtain the sum of training error:

E(W , b) =
1

n

n∑
t=1

e2t = eT e, (9)

where W is composed of W (i) and b is composed of b(j). W and b are the parameters

whcih need to be solved by Adam.

Then, in order to complete Adam, we need to �nish the gradient descent. So we

have to get the gradient of E(W , b):

L = [
∂E

∂W
,
∂E

∂b
], (10)

where L is the gradient.

Di�erent with ordinary gradient descent, it introduces the concept of the modi�ed

bias-corrected �rst moment estimate m̂t and bias-corrected second raw moment estimate

v̂t to speed up convergence, their mathematical expressions are as follows:

mt = µ1 ·mt−1 + (1− µ1) ·L, (11)

vt = µ2 · vt−1 + (1− µ2) ·L2, (12)

m̂t =
mt

1− µt
1

, (13)

v̂t =
vt

1− µt
2

, (14)

where µ1 and µ2 mean decay rates which are used to control the decay speed of the

�rst and second moments of the gradients, respectively.

Finally, we can obtain the iterative formula:[
W t+1

bt+1

]
=

[
W t

bt

]
− l1 ·

m̂t√
v̂t + ϵ

. (15)

where l1 is the learning rate of Adam and ϵ is a small constant. The complete algorithm

of Adam is shown in Algorithm 1:
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Algorithm 1: The complete process of Adam training MLPRS

Input: E(W , b) (Eq.(9)), Learning rate l1, max_epochs

Initialize: [W , b]← random();

µ1 ← 0.9; µ2 ← 0.999;

m0 ← 0; v0 ← 0;

epoch← 0;

1 while epoch < max_epochs do

2 ephoch = ephoch + 1 ;

3 L← Eq.(10);

4 m̂t, v̂t ← Eq.(13)(14);

5

[
W t+1

bt+1

]
← Eq.(15);

6 end

7 return [W , b]

2.2.3 Optimal Model Parameter Selection Using Gridsearch algorithm

In Section 2.2.2, we obtain the parameter set [W , b] through Adam algorithm, but

the depth k, learning rate l2 and the number of nunber of neurons nr(r = 2, 3) are still

need to be tuned. Here we introduce the Gridsearch algorithm to tune the parameters.

The basic principle of GridSearch is to exhaustively search all possible parameter

combinations in the parameter space, then perform cross-validation on each parameter

combination, and select the parameter combination with the best performance [31].

Suppose we have a model parameter space Θ, where each parameter combina-

tion can be represented by a vector θ which consisting of k, l2, n2, n3. Our goal is to

�nd the best parameter combination θ∗ given the training data set Dtrain, so that the

model can perform better on the validation data set Dval for optimal performance. Its

mathematical principle can be expressed as follows [32]:

θ∗ = argmin
θ∈Θ

f(θ, Dtrain, Dval), (16)

where the term f(θ, Dtrain, Dval) represents the performance metric obtained by training

the model with parameter combination θ on the validation set Dval. Here we use

Negative mean square error (NMSE) to calculate the metric:

f(θ, Dtrain, Dval) = −
1

|Dval|
∑

i∈Dval

(yi − ŷi)
2 (17)

3 Applications

To verify the applicability and stability of the proposed model, we use 3-real-world

data in energy �eld. The data set has important practical signi�cance and it will be

discussed further in later context. Moreover, min-max mapping is used to prevent

over�ow here. The MAPE metric are used to measure the performance of the model
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and its mathematical expression is as follows:

1

s

∑
k∈U

|ŷ(t)− y(t)|
|y(t)|

(18)

where U is the training or testing set and s is the length of U .

10 models are used to compare, and the information is shown in Tab.2.

Table 2: Information of models used for comparison

Full Name Abbreviation Reference Year

Gated Recurrent Unit gru [33] 2017

Random Forest Regression rf [34] 2001

Extreme Gradient Boosting xgb [35] 2015

Long Short-Term Memory lstm [36] 2000

Support Vector Regression svr [37] 1996

Convolution Neural Network cnn [38] 2015

Multilayer Perceptron mlp [39] 2009

CNN-LSTM cnnlstm [40] 2019

Convolutional LSTM convlstm [41] 2017

General Regression Neural Network grnn [42] 2004

3.1 Case 1:Electricity Transformer Oil Temperature

In power distribution problems, the accuracy of voltage distribution is crucial [43].

The distribution of electricity needs to be adjusted according to the needs of di�erent

regions, and this adjustment often depends on the continuous use of electricity. How-

ever, predicting future demand in a speci�c region is a di�cult task as it is a�ected by

various factors such as working days, holidays, seasons, weather, temperature, etc. Any

incorrect prediction may damage the operation of the electrical transformer. As a result,

there is currently no very e�ective way to predict future electricity usage, and managers

are forced to make decisions based on empirical numbers, which are often higher than

actual demand. This results in unnecessary waste and depreciation of electricity and

equipment.

The transformer oil temperature can re�ect the operating status of the electrical

transformer, so in this article we use oil temperature prediction to better solve the

voltage distribution problem to avoid unnecessary waste [44].

In this paper, we collect hourly transformer oil temperature data from 1:00 on June

1, 2018 to 19:00 on June 26, 2018 from the website https://github.com/zhouhaoyi/ETDataset.

The �rst 496 points are used to train and the rest 124 points are used to test. The

training plot is shown in Fig.4 and the testing plot is shown in Fig.5. The MAPE value

of all the models are presented in Table 3.

As shown in Fig. 4, most models demonstrate strong performance for in-sample pre-

dictions, with di�erences among them not readily discernible from the comparison plots.
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However, a contrasting pattern emerges on the test set, as illustrated in Fig. 5. Specif-

ically, the MAPE results presented in Table 3 indicate that the MLP-ResNet model

achieves the best performance, with a MAPE of 5.132%, outperforming the majority of

competing models. In contrast, the traditional MLP exhibits the poorest performance,

recording a MAPE of 7.058%, which further con�rms the degradation issues discussed

earlier and highlights the superiority of the MLP-ResNet architecture. Furthermore, the

Random Forest (RF) model attains the lowest MAPE of 1.620% on the training set but

fails to sustain this performance on the test set, where the MAPE increases to 6.57%,

suggesting potential over�tting. These results underscore the signi�cant advantages

of incorporating residual structures in improving model generalization and stability,

thereby providing robust technical support for energy forecasting applications.
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Fig. 4. Prediction values of Electricity Transformer Oil Temperature training set
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Fig. 5. Prediction values of Electricity Transformer Oil Temperature testing set

Table 3: MAPE for training and testing of all the models in Case-1

Model MLP-ResNet gru rf xgb lstm svr cnn mlp cnnlstm convlstm grnn

Train 3.623 3.684 1.620 3.509 3.800 4.038 4.190 5.744 3.649 3.695 3.221

Test 5.132 5.155 6.570 5.966 5.240 5.217 6.609 7.058 6.440 5.538 5.862

3.2 Case 2:U.S. Imports of Crude Oil and Petroleum Products

Petroleum and its products are a key component of the global economy and have

profound impacts on energy markets, trade balances and geopolitics [45]. Therefore,

accurate forecasts and analysis of U.S. crude oil and petroleum product imports are

critical to the stability of international energy markets and the development of the

global economy [46].

In this paper, we collect the monthly data from January 15, 1981 to June 15, 2023,

and the data comes from the U.S. Energy Information Administration. For convenience
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of expression, we called the data as ICOP. The �rst 408 points are used for training

and the last 102 points are used for testing. The training and testing plot are shown in

Fig.6 and Fig.7. The MAPE value are shown in Tab.4.

Based on the performance observed on both in-sample and out-of-sample data, it

is evident that the majority of models demonstrate excellent results, indicating their

strong suitability for this dataset. Among them, the MLP-ResNet model leads with a

MAPE of 4.495%. Notably, deep learning�based models such as MLP-ResNet, CNN,

and LSTM exhibit signi�cantly better results on the test set compared to the training

set. For instance, the CNN model’s MAPE reaches as high as 9.070% on the training

set but remains at a much lower 4.709% on the test set. This clearly re�ects the robust

generalization capability of these neural network models, enabling them to maintain

satisfactory performance even when training results appear suboptimal.
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Fig. 6. Prediction values of ICOP training set
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Fig. 7. Prediction values of ICOP testing set

Table 4: MAPE for training and testing of all the models in Case-2

Model MLP-Resnet gru rf xgb lstm svr cnn mlp cnnlstm convlstm grnn

Train 6.144 6.169 3.842 3.704 6.516 5.705 9.070 5.941 5.074 5.453 4.922

Test 4.495 4.580 4.818 4.637 4.531 4.754 4.709 4.748 4.996 4.514 4.528

3.3 Case 3:Inland Wind Turbine Power Generation

Wind energy is of great signi�cance to combat climate change, reduce carbon emis-

sions, and achieve sustainable energy development. Forecasts of inland wind turbine

power generation can unveil the potential and feasibility of wind power generation in

the region [47]. Similarly, comprehending the power generation of individual turbines

in inland wind farms aids in optimizing energy production and supply.

Here, we use this hourly Inland Wind Turbine Power Generation data (IWTPG)

which is from September 11 to October 7, 2015, and the data is found from the website
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https://zenodo.org/records/5516539. We use the �rst 420 points to train and the last

105 points to test. The training and testing plot are shown in Fig.8 and Fig.9. The

performance of the models are shown in Tab.5.

From the comparison plots and the �nal tabulated results, it is evident that this

dataset poses signi�cant challenges for the models, with most exhibiting poor pre-

dictive performance. This indicates that the models fail to capture deeper latent in-

formation within the data, suggesting the need for more samples or additional fea-

tures to achieve better results. Nevertheless, the MLP-ResNet model remains the best-

performing model, achieving a MAPE of 34.914%, while the GRU model performs the

worst, with a MAPE of 59.740%. Additionally, the MLP-ResNetx model outperforms

the traditional MLP and shows better results on the test set than on the training set,

further demonstrating the superiority of the MLP-ResNet architecture.

Fig. 8. Prediction values of IWTPG training set
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Fig. 9. Prediction values of IWTPG testing set

Table 5: MAPE for training and testing of all the models in Case-3

Model MLP-ResNet gru rf xgb lstm svr cnn mlp cnnlstm convlstm grnn

Train 36.594 42.239 28.035 33.121 33.447 37.276 41.900 38.910 43.282 36.758 37.357

Test 34.914 59.740 44.011 38.140 69.743 39.190 50.164 36.553 53.151 44.628 39.438

3.4 Disscusion

Clearly, the proposed MLP-ResNet model performance on the training set is not

outstanding, but it performs the best in testing in 3 cases and the prediction curve of

MLP-ResNet is very close to the raw curve. This shows that it has strong generalization

ability and prediction accuracy. This result shows the reliability and stability of the

model in real scenarios. Meanwhile, the rf model achieves the best training MAPE

value, but it frequently performs worse in testing. The reason for this may be that the

model is not complex enough or over�tting occurs.
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4 Conclusions

In this paper, we introduce the MLP-ResNet model, presenting a comprehensive

theoretical framework, model training methodology, and parameter tuning approach.

Moreover, according to 3 cases in Sec.3, it shows that the proposed model often performs

best in testing and has good versatility. The way combines the ResNet and MLP could

e�ectively improve the prediction accuracy and applicability. We believe that this kind

of approach could have deeper research in the future.
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