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Experimentation of a New Approach Based on Ensemble Learning Estimator to Maximize Accuracy
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1. Abstract
In this article, we introduce a novel approach based on an ensemble learning estimator specifically designed to optimize the predictive accuracy of supervised classification models. This contribution, both theoretical and methodological, relies on the strategic combination of multiple heterogeneous learning algorithms (decision trees, boosting methods, SVMs, etc.) orchestrated through a meta-model. The resulting architecture, named MaxEnsForest, is aimed at enhancing the robustness, accuracy, and generalization capacity of traditional models.
Within this framework, we present the results of an extensive series of experiments conducted on several benchmark datasets to evaluate the performance of MaxEnsForest under diverse conditions. The study highlights the individual contributions of each component within the architecture, as well as the impact of integrated optimization strategies such as GridSearchCV, feature importance analysis, and performance visualization through robust evaluation metrics.
This work seeks to establish a rigorous transition from theoretical design to solid experimental validation, empirically demonstrating the relevance and superiority of MaxEnsForest compared to conventional ensemble learning techniques.
Moreover, this research proposes an optimized ensemble learning architecture centered around a Grand Estimator, designed to maximize prediction accuracy while ensuring stability, robustness, and resilience to data variability.
Keywords:Ensemble learning, Ensemble estimator, Meta-model, Predictive accuracy, Generalization performance, , Hyperparameters, MaxEnsForest.
[bookmark: _Toc199419595]2. Introduction
Ensemble learning has demonstrated its ability to improve the performance of individual models by combining multiple base learners. However, optimizing predictive accuracy remains a challenge, particularly in the face of model variance and data heterogeneity. As highlighted in our previous work, we introduce MaxEnsForest, a novel hybrid approach that leverages the strengths of multiple supervised algorithms, integrated through a meta-model structured as a lightweight neural network.
Ensemble methods such as Random Forest, AdaBoost, Gradient Boosting, and Extremely Randomized Trees have become standard approaches for solving complex supervised classification problems. Their success is largely attributed to their ability to combine multiple base models (weak learners) to reduce variance, mitigate bias, and improve the overall robustness of the final model.
Nevertheless, despite their empirically strong performance, these methods have several notable limitations :
· The prediction aggregation strategy is often fixed (e.g., majority vote, weighted average), limiting adaptability.
· They frequently fail to fully exploit the complementarity and diversity among models.
· Hyperparameter tuning is commonly performed manually or through random search, which may lead to suboptimal configurations and hinder generalization.
· Most ensemble methods struggle to integrate heterogeneous algorithms such as SVMs or neural networks due to structural differences in prediction outputs.
· The increasing volume and complexity of modern datasets often render traditional learning methods insufficient for achieving reliable and generalizable predictions.
· Existing ensemble techniques, though effective, still exhibit limitations in terms of accuracy, stability, and sensitivity to hyperparameters particularly when dealing with imbalanced classes or noisy data.
No method, to date, guarantees consistently optimal predictive accuracy. MaxEnsForest is proposed as a dynamic solution that combines multiple strategies to address these limitations, with a central focus on accuracy optimization.
In light of these observations, several key research questions arise :
· How can we design an ensemble architecture that is both flexible and adaptive, capable of adjusting to various data types and classification tasks ?
· What mechanisms can effectively leverage the complementarity of heterogeneous models within an ensemble framework ?
· How can we ensure both the stability and interpretability of predictions generated by an ensemble model ?
· What optimization strategy can be implemented to efficiently tune both hyperparameters and the meta-model ?
· How does MaxEnsForest perform across different datasets compared to conventional ensemble methods such as Random Forest, AdaBoost, and Gradient Boosting ?
· What tools and techniques can be employed to evaluate and interpret the results, in order to demonstrate the generalization capabilities and overall effectiveness of the MaxEnsForest model ?
These questions form the foundation of our study, which aims to explore a new ensemble learning approach MaxEnsForest that integrates various base learners (Decision Trees, Boosting methods, SVMs, etc.) under the supervision of a neural network-based hyper-model.
[bookmark: _Toc199419596]3. Proposed Methodology
The methodology adopted for the development and evaluation of MaxEnsForest follows a structured approach, organized into several complementary phases.
Initially, a synthetic dataset was generated using the make_classification function from the scikit-learn library. This dataset allows for controlled complexity by including informative and redundant features, as well as imbalanced classes, in order to simulate a realistic environment for supervised learning.
The second phase involves designing the architecture of the MaxEnsForest algorithm. This model is a heterogeneous ensemble that combines several base classifiers (Random Forest, SVM, AdaBoost, Gradient Boosting, etc.), whose outputs are aggregated through a meta-model. The meta-model may consist of either a lightweight neural network or a linear model. This aggregation strategy aims to maximize diversity while minimizing overall error.
Subsequently, fine-tuning of hyperparameters is conducted using exhaustive grid search (GridSearchCV), both for the base learners and the meta-model.
Finally, the model’s performance is assessed using multiple, complementary evaluation metrics, including accuracy, weighted precision, F1-score, and the confusion matrix, in order to provide a comprehensive view of the model’s behavior.
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Fig 1- An optimized ensemble learning architecture referred to as a Grand Estimator named MaxEnsForest (Mabumbi et al.2025)

Symbol Interpretation:


	          
	: The different errors of each learning level.

	          
	: Large ensemble classifiers.

	
	: The different weights of the large ensemble estimators.


	
	: Mode predictions of homogeneous estimators.

	
	: Mode predictions of heterogeneous estimators.

	 
	: The different homogeneous and heterogeneous estimators.


	 
	: Meta-classifier prediction.


[bookmark: _Toc199419598]K-Fold1 and K-Fold2: The different parts of the DATASET divided into two to reduce over-fitting and under-fitting errors.
3.2 Algorithm Operation

    Algorithm : « MaxEnsForest »
Input :

· Training data : 
· (m ,…,M ) : The number of iterations
· P: The number of estimators
· : The different weights of the large ensemble classifiers
· : Excellent estimator of each training level.
· : Error of each training level.
Output : A set of estimators 
Step 1: Learn the homogeneous and heterogeneous classifiers
 
Learn a new estimator   based on the set D
 
Step 2: Learn the large classifiers
       
              Learn a new estimator based on its predictions 
1. Initialize the weights : = , i = 1 ,..., n

2. Calculate  
For m = 1 to M :
                Fit the weak rule on the sample of estimators   weighted by the weights ,..., resulting from this fit.

1. Calculate the error rate of  :



2. Calculate the weights of the resulting estimators :

3. Readjust the weights of the estimators: :

   
       Step 3 : Construct a new dataset D
   
The construction of a new dataset  will contain the predictions of the first level 
  
Step 4 : Repeat step (2)
Return
[bookmark: _Toc199419599]4. Experimentation
[bookmark: _Toc199419600]4.1 Datasets
The experimentation is conducted using standard datasets (make_classification, Breast Cancer) available in the scikit-learn library. These are supervised classification datasets commonly used for testing, training, and evaluating artificial intelligence algorithms in the field of machine learning. The datasets undergo preprocessing, including standardization and an 80/20 split into training and testing sets, depending on the dataset characteristics.
[bookmark: _Toc199419601]4.2 Implementation in the Anaconda Environment (Jupyter Notebook)
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Fig 2-Library Imports


[image: C:\Users\Ir_Lady\Pictures\cap_a2.PNG]
Fig 3- Dataset Generation, Splitting, and Definition of Base Models
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Fig 4-Optimization, Meta-Feature Initialization, and Cross-Validation
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Fig 5- Training and Evaluation of MaxEnsForest
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Fig 6- Visualization of Results in Graphical Form
[bookmark: _Toc199419606]4.3 Metrics

In the context of evaluating our approach, we employed a set of robust evaluation metrics to ensure a comprehensive analysis of the model’s performance. The selected indicators are as follows :

· Overall Accuracy: Measures the rate of correct predictions across all classes;
· Weighted Average Precision: Accounts for class imbalances by assigning a weight proportional to the frequency of each class;
· Confusion Matrix : Provides a detailed visualization of classification errors among different categories;
· Weighted F1-Score : Offers a balance between precision and recall, particularly useful in contexts where false positives and false negatives have critical implications. This combination of metrics allows us to finely evaluate not only the overall performance of the model but also its ability to maintain consistency on imbalanced or complex datasets.
[bookmark: _Toc199419607]4.4 Results
[bookmark: _Toc199419608]  a) Evaluation of the overall accuracy of the MaxEnsForest model with the make_classification dataset.

1. Weighted Average Precision

Summary of errors by model :
DecisionTree - Average error: 0.1200, Standard deviation : 0.0257
RandomForest - Average error: 0.0750, Standard deviation : 0.0079
GradientBoostingClassifier - Average error: 0.0750, Standard deviation : 0.0209
AdaBoost - Average error: 0.0925, Standard deviation : 0.0170
SVM - Average error: 0.1350, Standard deviation : 0.0215

Epoch 1/20

Fig 7 Accuracy of the MaxEnsForest model

25/25 ━━━━━━━━━━━━━━━━━━━━ 1s 4ms/step - accuracy: 0.8022 - loss: 0.5658
Epoch 2/20
25/25 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - accuracy: 0.9271 - loss: 0.2472
Epoch 3/20
25/25 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - accuracy: 0.9084 - loss: 0.2756
Epoch 4/20
25/25 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9373 - loss: 0.2204 
Epoch 5/20
25/25 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - accuracy: 0.9379 - loss: 0.2137
Epoch 6/20
25/25 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - accuracy: 0.9285 - loss: 0.2373
Epoch 7/20
25/25 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9245 - loss: 0.2335
Epoch 8/20
25/25 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - accuracy: 0.9406 - loss: 0.2195
Epoch 9/20
25/25 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - accuracy: 0.9363 - loss: 0.1973
Epoch 10/20
25/25 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9349 - loss: 0.2276 
Epoch 11/20
25/25 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - accuracy: 0.9438 - loss: 0.2119
Epoch 12/20
25/25 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9257 - loss: 0.2427
Epoch 13/20
25/25 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.9462 - loss: 0.2016
Epoch 14/20
25/25 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9259 - loss: 0.2363  
Epoch 15/20
25/25 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - accuracy: 0.9280 - loss: 0.2431
Epoch 16/20
25/25 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9293 - loss: 0.2355
Epoch 17/20
25/25 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9218 - loss: 0.2535 
Epoch 18/20
25/25 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9444 - loss: 0.2016
Epoch 19/20
25/25 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9392 - loss: 0.2101  
Epoch 20/20
25/25 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - accuracy: 0.9364 - loss: 0.2016 
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 21ms/step

Final prediction of MaxEnsForest : 0.9500
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Fig 8-Evaluation of the Overall Accuracy of the MaxEnsForest Model
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Fig 9- Confusion Matrix
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Fig 10-Calculation of the Error at Each Learning Level
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Fig 11- Error at Each Learning Level
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Fig 12-Calculation of the Error of Our MaxEnsForest Model
7. Approach Optimization
The effectiveness of the MaxEnsForest model relies not only on its heterogeneous ensemble structure, integrating multiple base estimators (decision trees, Random Forest, SVM, AdaBoost, GBT, etc.), but also on a rigorous optimization phase that enhances its robustness and generalization.
Initially, the dataset is split into multiple parts, referred to as K-Fold1, K-Fold2, K-Fold3, etc., and a hyperparameter search is performed using the GridSearchCV method. This search is applied hierarchically, first to the base models, then to the meta-model. This strategy allows exhaustive exploration of optimal parameter combinations for each sub-model while minimizing the risk of overfitting.
Next, a feature importance analysis is conducted to identify the most discriminative attributes. This step strengthens the model’s interpretability and reduces complexity by eliminating less relevant features using measures such as Gini importance, linear SVM coefficients, or SHAP (Shapley Additive Explanations) for advanced versions.
Finally, stratified cross-validation techniques are integrated throughout the pipeline to ensure reliable and balanced evaluation, especially in the presence of imbalanced classes. This interactive optimization approach, coupled with a modular architecture, makes MaxEnsForest a powerful, interpretable ensemble model suitable for complex classification use cases.
In summary, the approach is enhanced by :
· GridSearchCV: Automated hyperparameter optimization
optimized_models = {} 
for name, model in base_models.items():
       grid = GridSearchCV(model, param_grid[name], cv=3, scoring='accuracy', n_jobs=-1)
       grid.fit(x_train, y_train)
       print(f"Meilleurs paramètres pour {name}: {grid.best_params_}")
       optimized_models[name] = grid.best_estimator_

· Feature Importance : Selection of significant variables.


· Feature Importance
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Fig 13- Importance of variables (Random Forest)
[bookmark: _Toc199419609]b) Evaluation and Comparison of the Overall Accuracy of MaxEnsForest with Other Algorithms on the "Breast Cancer" Dataset.
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Fig 14- Evaluation and Comparison of MaxEnsForest
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Fig 15- Creation of the MaxEnsForest Class
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Fig 16 Importing Dataset and Base Models
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Fig 17 Data Normalisation
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Fig 18-Formatting Results
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Fig 19-Visualisation of Results
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Fig 20- Model Comparison
[bookmark: _Toc199419610]MaxEnsForest outperforms all baseline models, confirming the relevance of the combination via meta-learning.
8. Analysis and Discussion
MaxEnsForest fully leverages the synergy between the diversity of base models and the nonlinear learning capacity provided by the meta-learning neural network. The latter enables effective modeling of complex interactions among the outputs of different estimators, thereby enhancing the overall predictive power of the ensemble.
Experimental results demonstrate the robustness of MaxEnsForest on the make_classification dataset, achieving an overall accuracy of 95%. The weighted F1-score reflects an optimal balance between precision and recall, a critical metric in real-world scenarios where the impact of false positives and false negatives can be significant. The confusion matrix confirms a clear and distinct class separation, with minimal misclassifications for both majority and minority classes.
Compared to individual base models, MaxEnsForest exhibits superior stability and adaptability, resulting in a significant performance gain. This improvement validates the hypothesis that a structured and complementary combination of diverse algorithms can substantially optimize predictive performance.
Furthermore, in an evaluation conducted on the Breast Cancer dataset, MaxEnsForest outperforms not only all standalone base algorithms but also advanced stacking approaches that combine Random Forest and AdaBoost, as illustrated in the figure above.
[bookmark: _Toc199419611]9. Conclusion 
The MaxEnsForest approach represents a substantial advancement in machine learning by synergistically combining the strengths of heterogeneous ensemble methods within a modular and optimizable architecture.
Through the strategic integration of diverse base estimators including Random Forest, SVM, AdaBoost, among others and the deployment of a meta-aggregation model, MaxEnsForest demonstrates exceptional generalization capabilities, particularly in scenarios characterized by complex, noisy, or imbalanced data distributions.
Empirical evaluations on both synthetic and real-world datasets validate its superior accuracy, enhanced stability, and increased robustness to distributional shifts, outperforming traditional baseline models.
Moreover, interpretability is significantly enhanced through advanced techniques such as SHAP and feature importance analysis, making the model well-suited for industrial and safety-critical applications where transparency is paramount.
Consequently, the experimental validation of MaxEnsForest establishes it as a pivotal contribution to ensemble learning, facilitating the development of higher-performing predictive models while minimizing learning errors.
[bookmark: _Toc199419612]8. Perspectives
Looking ahead, several promising directions can be explored to further enhance the impact and applicability of the MaxEnsForest ensemble learning framework :
· Integration with distributed computing frameworks (such as Apache Spark, Dask, or Ray), to ensure scalability across large-scale datasets and meet the demands of big data environments;
· Automation of the learning pipeline using cutting-edge AutoML and meta-learning tools, enabling MaxEnsForest to autonomously adapt to diverse datasets, problem types, and hyperparameter configurations ;
· Hybridization with deep learning architectures, for instance by leveraging neural networks as meta-ensembles or incorporating pre-trained models to capture high-level feature representations ;
· Deployment in embedded or edge environments, through memory optimization and low-latency inference strategies, facilitating use in resource-constrained systems;
· Integration into intelligent decision-making systems (e.g., Industry 4.0, cybersecurity, predictive medicine, algorithmic finance), where high accuracy, robustness, and interpretability are non-negotiable.
As such, MaxEnsForest paves the way for a new generation of intelligent, adaptive, and explainable models capable of meeting the increasingly complex challenges posed by modern artificial intelligence systems.
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# Model. optimtzation
optinized_nodels = ()
for name, model. in base_sodels. itens():
§r1d = GridsearchCV(sodel, paran_gridinane], cv=3, scoring='accuracy’, n_jobs:
grid.fit(c_train, y_train)
Print(f"gest settings for (name): (grid.best_parans_
optinized_models(nane] = grid.best_estinstor_
# Initializing Meta-features
meta_features_train = np.zeros((x_train.shape(8], len(optinized_odels)))
meta_features_test = np. zeros((x_test.shape[8], len(optinized_sodels)))
# To store errors of each Level
fo1a_errors - (1
# Cross-vatidation for optimized models
K - KFold(n_splita-s, shuffle-True, randon_stste-42)
for 1, (name, model) in enuserate(optinized_sodels. itens()):
print("\nCross-validation for the model (nase]")
fo1ds_preds - np. zeros (x_train. zhapel01)
014 errors[nane] = 11
for fold, (train_idx, val idx) in enumerste(kf.split(x_traim):
x_tr, x.val = x_train. ilocltrain_idx], x_train. iloc[val_idx]
y_tr, yval = y_train.ilocitrain_idx], y_train.ilocival_idx]
model Fit(x_tr, y_tr)
val_preds = model. predict(x_val)
olds_predas[val_idx] = val_preds
# Classification error for this fold
accuracy_score(y_val, val_preds)
i

n

)

f01d_errons [nane] . sppend(err)
print(fFold (folde1} - Erveur: {err:.af)")
# Stacking predictions
meta_festures_train(:, 1) = folds_preds
meta_festures_test(:, i] = model.predict(x_test)
# Sumary of errors
print("\nsumsary of errors by sodel:")
for name, errors in fold_errors. itens():
print(+"(nane) - Average error: (np.mean(errors):.4f), Standard deviation : (np.std(errors):.af)")
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# Meta-modeL: MaxtnsForest
MaxensForest = Sequential(]
Input(shape=(neta_features_train.shapel1],)),
Dense(sé, activation="relu’),
Dense(1, activation="signoid’)

)

MaxEnsforest  conpi1e (optinizer-Adan(learning_rate-6.61), los:

# Maxtnsforest Training

“binary_crossentropy’, metrics

MaxEnsForest. £it(neta_features_train, y_train, epochs=26, batch_size=1s, verbose-1)

meta_preds.
accuracy - accuracy_score(y_test, meta_preds)
Print(F"\nFinal prediction of MaxEnsforest :

(ceuracy:

( WaxEnsForest. predict (eta_features_test) > 0.5).astype(int)

“aceuracy'1)
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# Confusion matrix
conf_matrix = confusion_matrix(y_test, meta_preds)

plt.Figure(figsize=(4,2))

sns.heatnap(conf_matrix, annot=True, fmt="d", cmap='Blues’, xticklabels=['Class @', 'Class 1'], yticklabels=['Class ', 'Class 1'])
plt.title("HaxEnsForest confusion matrix")
plt.xlabel("Predictions™)
plt.ylabel("Real classes”)

plt.show()

# Inportance of characteristics
Feature_importance = optimized models["RandomForest”].feature_importances_
plt.figure(figsize=(5, 5))

sns.barplot(x-feature_inportance, y=[fFeature(i}' for i in range(len(feature_importance))])
plt.title("Inportance of variables (Random Forest)")

plt.xlabel("Inportance™)

plt.ylabel("Features”)

plt.show()
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# To store errors of each level
Fold_errors = {}
# Cross-validation for optimized models
Kf = KFold(n_splits=5, shuffle=True, random_state=42)
for i, (name, model) in enumerate(optimized models.items()):
print(f"\nCross-validation for the model {name}")
folds_preds = np.zeros(x_train.shape[0])
fold_errors[name] = []
for fold, (train_idx, va
x_tr, x_val = x_trair
y_tr, y_val = y_trai
model. fit(x_tr, y_tr)
val_preds = model.predict(x_val)
folds_preds[val_idx] = val_preds
# Classification error for this fold
ccuracy_score(y_val, val_preds)

idx) in enumerate(kf.split(x_train)):
dx], x_train.iloc[val_idx]
dx], y_train.iloc[val_idx]

Fold_errors[name].append(err)
print(f'Fold {folds1} - Erreur: (err:.4f}")
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Cross-validation for the model DecisionTree

Fold 1 - Erreur: .1200
Fold 2 - Erreur: 2.1375
Fold 3 - Erreur: .1625
Fold 4 - Erreur: .1200

Fold 5 - Erreur: .1200

Cross-validation for the model RandomForest
Fold 1 - Erreur: 2.2625
Fold 2 - Erreur: 2.2750
Fold 3 - Erreur: 2.2875
Fold 4 - Erreur: .2750
Fold 5 - Erreur: 2.2750

Cross-validation for the model GradientBoostingClassifier
Fold 1 - Erreur: 2.2750
Fold 2 - Erreur: 2.2750
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0.0875

Cross-validation for the model SV
Fold 1 - Erreur: 2.1375
Fold 2 - Erreur: .1250
Fold 3 - Erreur: 2.1125
Fold 4 - Erreur: 2.1750
Fold 5 - Erreur: 2.1250

Summary of errors by mode:
DecisionTree - Average error: 0.1200, Standard deviation : 0.0257
RandonForest - Average error: 0.9759, Standard deviation : 0.0079
GradientBoostingClassifier - Average error: 0.750, Standard deviation : 0.0209
AdaBoost - Average error: .0925, Standard deviation : 0.0170

SVI - Average error: 0.1350, Standard deviation : .0215
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# Calculating the MaxEnsForest error
meta_preds = ( MaxEnsForest.predict(meta_features_test) > @.5).astype(int)
meta_error = 1 - accuracy_score(y_test, meta_preds)

print(f'Netanodel error (MaxEnsForest) : {meta_error:.4f}")
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Metamodel error (MaxEnsForest) : ©.0500
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Top models of algorithms compared to MaxEnsForest (sorted by Accuracy) :

Dataset Model Mean Score Accuracy Mesn Score FL \
1 Breast Cancer MaxEnsForest 0.9686 0.9666
@ Breast Cancer AdaBoost 0.9643 0.9647
2 Breast Cancer Neural Network 0.9631 0.9625
4 Breast Cancer Stacking (RF+AdaBoost) 0.9583 0.9541
3 Breast Cancer Randon Forest 0.9526 0.9524

Mean Score ROC_AUC Std Dev Accuracy Std Dev F1 Std Dev ROC_AUC

1 0.9627 0.0129 0.0129 0.0140
o 0.9605 0.0124 0.0125 0.0164
2 0.9573 0.0085 ©.0086 0.0114
a 0.0494 e.0128 0.0133 0.0208
H 0.3430 e.0131 0.0134 0.0195
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# === NaxEnsForest optimize
class MaxEnsForest(StackingClassifier):
def _init_(self):
base_estimators = [
('rf’, RandomForestClassifier(n_estimators=300, max_dept
(‘ada’, AdsBoostClassifier(n_estinators=200, learning rat
("svm', SVC(probability=True, kernel='rbf', C=10.0, gamn:

5, random_state=42)),
7, algorithn="SAMIE.R", random_state=:
scale’, random_state=42))

1

meta_learner = NLPClassifier(
hidden_layer_sizes=(100, 50), # Deeper
max_iter-3000,
carly_stopping=True,

learning_rate_inis
randon_state=42

.01,

)

super()._init_(
estimators-base_estimators,
final_estimator-meta_learner,
ev=s,
passthrough=True
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# === Loading datasets
datasets = {

“Breast Cancer™: load_breast_cancer(),

#'make classification” : make_classification()

# ===Compared models (optimized MaxEnsForest included)
models = {
“Random Forest": RandomForestClassifier(n_estimators=300, max_depth=15, random_state=42),
"AdaBoost”: AdaBoostClassifier(n_estimators=200, learning rate=0.7, algorithm="SAMIE.R", random_state=42),
“Neural Network”: NLPClassifier(hidden_layer_sizes=(100,50), max_iter=3000, early_stopping=True, learning rate_ini
“Stacking (RF+AdaBoost)": StackingClassifier(
[
('rf’, RandomForestClassifier(n_estimators=300, max_depth=15, random_state=42)),
(‘ada’, AdaBoostClassifier(n_estinators=268, learning rate=6.7, algorithm="SAMIE.R", random_state=42))

.01, random_state=42),

estimator:

1.
final_estimator=LogisticRegression(max_iter-1000)
s

“MaxEnsForest": MaxEnsForest()
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Stratified cross-validation + metrics
StratifiedkFold(n_splits=s, shuffle-True, random_state-42)
scorers = {

*Accuracy’: make_scorer(accuracy_score),

"F1': make_scorer(fl_score, average='weighted'),

*ROC_AUC' : make_scorer(roc_auc_score, average='weighted’, multi_clas:

¥
results = []
for dataset_name, dataset in datasets.items():
X, y = dataset.data, dataset.target
X = Standardscaler().fit_transform(X) # Standardization

for model_name, model in models.items():
for metric_name, scorer in scorers
try:
scores = cross_val_score(model, X, y, cv=cv, scorin
results.append({
ataset”: dataset_name,
"Model”: model_name,
metric_name,
"Mean Score™: np.mean(scores),
"Std Dev": np.std(scores)

tems():

scorer)

“Metric!

n
except Exception as

print(f'Error with {model_name} on {dataset_name} For (metric_name}
results. append({

"Dataset”: dataset_name,

"Model”: model_name,

"Metric”: metric_name,

"Mean Score™: np.nan,

BRG]
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: dataset_name,
model_name,
+ metric_name,
Mean Score”: np.nan,

: np.nan

# === Fornatting results
results_df = pd.DataFrame(results)
results_df_pivot = results_df.pivot_table(
“Dataset”, "Model"],
columns="tetric",

inde;

values=["Mean Score”, "Std Dev"]

)-round(4)

results_df_pivot.reset_index(inplace=True)

results_df_pivot.columns = [* '.join(col).strip() for col in results_df pivot.columns.values]

results_df_pivot.sort_values(by='Mean Score Accuracy’, ascending=False, inplaceTrue)

print("\nTop models of algorithms compared to MaxEnsForest (sorted by Accuracy) :\n")
print(results_df_pivot.head(15))
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results_df_pivot.reset_index(inplace=True)
results_df_pivot.columns = [* '.join(col).strip() for col in results_df pivot.columns.values]
results_df_pivot.sort_values(by='Mean Score Accuracy’, ascending=False, inplaceTrue)

print("\nTop models of algorithms compared to MaxEnsForest (sorted by Accuracy)
print(results_df_pivot.head(15))

n")

#
plt.figure(figsize=(6, 3))
sns.barplot(
data-results_df[results_df[‘Metric']
x='Dataset’,
y="Hean Score’,
hue="Hodel",
palette="tabl0’

Visualization

*Accuracy’ ],

plt.title("Comparaison des modiles - Accuracy moyenne par Algorithme”)
plt.ylabel("Accuracy moyenne (CV)")
plt.xlabel("Jeu de données™)

plt.ylin(o.1, 1.0)
plt.legend(title="Hodzle", bbox_to_anchor=
plt.tight_layout()

plt.show()

1.0, 1), loc="upper left')
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Model Comparison - Average Accuracy by Algorithm
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[

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

#rom sklearn.model_selection import KFold, train test_split, GridSearchCV

#rom sklearn.metrics import mean_squared_error, accuracy_score, confusion matrix, classification_report
#rom sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, AdaBoostClassifier
#rom sklearn.tree import DecisionTreeClassifier

#rom sklearn.svm import SVC

#rom sklearn.datasets import make_classification

#rom tensorflow.keras.models import Sequential

#rom tensorflow.keras.layers import Dense, Input

#rom tensorflow.keras.optimizers import Adam

# Inports relative to model comparison

#rom sklearn.datasets import load breast_cancer, load_wi
#rom sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier,StackingClassifier
#rom sklearn.neural_network import MLPClassifier

#rom sklearn.linear_model import LogisticRegression

#rom sklearn.model_selection import cross_val_score, StratifiedkFold

#rom sklearn.metrics import accuracy_score, f1_score, roc_auc_score, make_scorer

from sklearn.preprocessing import StandardScaler
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# Génération d'un dataset factice
X, y = make_classification(n_samples-500, n_feature:
df = pd.DataFrame(x, column:
df["target'] = y

=20, n_classes=2, random_state-42)
“Feature(i}' for i in range(x.shape[1])])

# Splitting data into train and test
x_train, x_test, y_train, y_test - train_test_split(df.iloc[:, :-1], df['target'], test_size-0.2, random_state-42)

# Definition of basic models and their hyperparameter grids
param_grid = {

“DecisionTree”: {'max_depth': [5, 10, 15]},
[50, 100], 'max_depth': [10, 100]},
“GradientBoostingClassifier”: {'n_estimators’: [50, 100], 'learning_rate
“AdaBoost”: {'n_estimators': [50, 100], 'algorithm’: ['SAMWIE']},
"SW": (C': [0.1, 1], ‘kernel': [linear’, 'rbf']}

“RandomForest”: {'n_estimators

: [0.05, 0.1},

3

base_models = {
“DecisionTree”: DecisionTreeClassifier(randon_state=42),
“RandomForest”: RandomForestClassifier(random_state=42),
“GradientBoostingClassifier”: GradientBoostingClassifier(random_state=42),
“AdaBoost”: AdaBoostClassifier(random_state-42),
“SWM": SVC(probability=True, random_state=42)





