
A Note on the Polynomial Dv

t
(G,x)

Abstract

In various practical scenarios, especially in communication networks, sensor grids, and surveillance

systems, it becomes essential to ensure that certain critical nodes (vertices) are included in every

total dominating set of a graph. A total dominating set is a subset of vertices in a graph such

that every vertex is adjacent to at least one vertex in this set. However, in specific applications,

some nodes may serve as vital control hubs, data aggregators or monitoring stations that must be

active or functional in any dominating configuration. In this paper the total domination polynomial

Dv
t (G, x), in which a particular vertex v of G is present in every TD-set of G is determined for certain

classes of graphs.
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1 Introduction

Graph theory is one of the most relevant and fastest growing branches of mathematics. Graph theory

has granted a plethora of indispensable tools in the design and analysis of communication networks,

mobile computing and social networks to mention a few. In fact, the varied applications of Graph

theory in Engineering, Social science, Biological science etc. have immensely contributed to the

progress and popularity of mathematics in general and Graph theory in particular.

One of the prime concerns of Graph theory today is the study of graph polynomials. For a graph

G, dominating set of a given cardinality may not be unique. S. Alikhani’s [Ref: Alikhani, 2009] research

in this field explored the concept of domination polynomial in graphs. Subsequently, S. Sanalkumar

and A. Vijayan [Ref: Kumar and Vijayan, 2012]introduced the concept of total domination polynomial

in graphs. The inclusion of a particular vertex in every total dominating set of a graph is important in

the study of total domination polynomials. In this paper, the polynomial Dv
t (G, x) is determined for

some graphs.
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2 Preliminaries

A graph is an ordered pair G = (V (G), E(G)), where V (G) is a finite non-empty set and E(G) is a

collection of unordered pairs of vertices called edges. If u and v are two vertices of a graph and if

the unordered pair {u, v} is an edge denoted by e, we say that e is an edge between u and v. We

write the edge {u, v} as uv. An edge of the form uu is known as a loop. The open neighbourhood of

a vertex v ∈ V (G) is NG(v) = {u ∈ V |uv ∈ E(G)}. If the graph G is clear from the context, we write

N(v) rather than NG(v). Notations and definitions not given here can be found in [Ref: Balakrishnan

and Ranganathan, 2012, Berge and Minieka, 1973 or Henning and Yeo, 2008 ]. A hypergraph H =
(V,E) is a finite nonempty set V = V (H) of elements called vertices, together with a finite multi set

E = E(H) of subsets of V, called hyper edges or simply edges. The order and size of H are |V |
and |E|, respectively. A k-edge in H is an edge of size k. The hypergraph H is said to be k-uniform

if every edge of H is a k-edge. Every simple graph is a 2-uniform hypergraph. In a hypergraph, an

edge Ei with |Ei| = 2, is drawn as a curve connecting its two vertices. An edge Ei with |Ei| = 1,

is drawn as a loop as in a graph. A subset T of vertices in a hypergraph H is a transversal(also

called vertex cover ) if T has a nonempty intersection with every edge of H. The transversal number

τ(H) of H is the minimum size of a transversal in H. For further information on hypergraphs refer

[Ref: Berge and Minieka, 1973 or Voloshin, 2009]. Let C(H, i) be the family of vertex covering

sets of H with cardinality i and let c(H, i) = |C(H, i)|. The polynomial C(H, x) =

|V (H)|
∑

i=τ(H)

c(H, i)xi
is

defined as vertex cover polynomial of H. For a graph G = (V,E), the ONH(G) or HG is the open

neighbourhood hypergraph of G; HG = (V,C) is the hypergraph with vertex set V (HG) = V and

with edge set E(HG) = C = {NG(x)|x ∈ V }, consisting of the open neighbourhoods of vertices of

V in G. A total dominating set, abbreviated TD-set, of a graph G = (V,E) with no isolated vertex is

set S of vertices of G such that every vertex of G is adjacent to a vertex in S. The total domination

number of G, denoted by γt(G), is the minimum cardinality of a TD-set of G. Let Dt(G, i) be the

family of total dominating sets of G with cardinality i and let dt(G, i) = |Dt(G, i)|. The polynomial

Dt(G, x) =

|V (G)|
∑

i=γt(G)

dt(G, i)xi
is defined as total domination polynomial of G [Ref: Vijayan and Kumar,

2012].

Definition 2.1 (Ref:Alikhani and Jafari, 2017). Let G be a graph and v be a vertex of G. Let Dv
t (G, i)

be the family of all total dominating sets of G of cardinality i containing the vertex v. If dvt (G, i) =

|Dv
t (G, i)|, the polynomial Dv

t (G, x) is defined as Dv
t (G, x) =

|V (G)|
∑

i=1

dvt (G, i)xi.

Definition 2.2 (Ref:Latheesh kumar, 2018). Let G be a graph and v be a vertex of G. Let dtv (G, i) =
|Dtv (G, i)|, where Dtv (G, i) = {S ⊆ V (G) : v /∈ S, N(S) = V (G), | S |= i}. Then the polynomial

Dtv (G, x) is defined as Dtv (G, x) =

|V (G)|
∑

i=1

dtv (G, i)xi.

Definition 2.3 (Ref:Latheesh kumar, 2018). Let G be a graph and v be a vertex of G. Let Cv(G, i) be

the family of all vertex covering sets of G of cardinality i containing the vertex v. If cv(G, i) = |Cv(G, i)|,

the polynomial Cv(G, x) is defined as Cv(G, x) =

|V (G)|
∑

i=1

cv(G, i)xi.

Theorem 2.1 (Ref:Dong et al., 2002). Let G = G1 ∪G2 be the union of two graphs G1 and G2. Then

C(G, x) = C(G1, x)C(G2, x).
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Theorem 2.2 (Ref: Dong et al., 2002). For the path graph Pn, where n ≥ 2, we have

C(Pn, x) =

n
∑

i=0

(

i+ 1

n− i

)

xi.

3 Main Results

Theorem 3.1. Let G be a graph and v ∈ V (G). Then Dv
t (G, x) = Cv(HG, x).

Proof. Let S be a subset of V (G). It is clear that a total dominating set of a graph G is a vertex

covering set of the open neighborhood hypergraph, HG of G and vice versa. Therefore, a set S is

a total dominating set containing v if and only if S is a vertex covering set of HG containing v. This

completes the proof.

Theorem 3.2. Let G be a graph and v ∈ V (G). Then Cv(G, x) = xC(G− v, x).

Proof. Let S ⊆ V (G) be a vertex covering set of G of cardinality i containing the vertex v. Then S\{v}
is a vertex covering set of G−v of cardinality i−1. So for i = 1, 2, . . . , |V (G)|, c(G, i) = c(G−v, i−1).
This proves the result.

Theorem 3.3. If u is a vertex of the cycle graph C2n+1, then

Du
t (C2n+1, x) =

2n
∑

i=0

(

i+ 1

2n− i

)

xi+1.

Proof. Let HC2n+1
be the open neighborhood hypergraph of the cycle C2n+1. Clearly, HC2n+1

is

isomorphic to C2n+1. Then from Theorems 3.1 and 3.2 we have, Du
t (C2n+1, x) = Cu(HC2n+1

, x) =
Cu(C2n+1, x) = xC(C2n+1 − u, x) = xC(P2n, x). Then the result follows from Theorem 2.2.

Theorem 3.4. If u is a vertex of the cycle graph C2n, then

Du
t (C2n, x) = xC(Cn, x)C(Pn−1, x).

Proof. Let (X,Y ) be the bipartition of C2n. Assume that u ∈ X. Note that the components HX , HY

of ONH(C2n) are cycles of length n. Then, from Theorems 2.1, 3.1 and 3.2 we have, Du
t (C2n, x) =

Cu(HC2n
, x) = Cu(HX , x)C(HY , x) = xC(HX−u, x)C(HY , x) = xC(Pn−1, x)C(Cn, x). This completes

the proof.

For Theorems 3.5 and 3.6 we take the path graph as Pn = (1, 2, . . . , n).

Theorem 3.5. For the path P2n = (1, 2, . . . , 2n), we have

(i) D1
t (P2n, x) = x3C(Pn−1, x)C(Pn−2, x),

(ii) For 1 ≤ r ≤ n− 2, D2r+1
t (P2n, x) = x3C(Pn−1, x)C(Pr, x)C(Pn−r−2, x).

Proof. Let X = {1, 3, . . . , 2n − 1} and Y = {2, 4, . . . , 2n} be the bipartition of P2n. Let HX and HY

(shown in figure 1) be the components of ONH(P2n) corresponding to X and Y respectively.
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1 3 2r − 1 2r + 1 2r + 3 2n− 1 2n+ 1

HY :

HX :

2 2n− 2 2n2r − 2 2r 2r + 24

X and HY

1 3 2r − 1 2r + 1 2r + 3 2n− 3 2n− 1

HY :

HX :
2 4 6 2n− 2 2n

X and HY

(i) Using Theorems 2.1, 3.1 and 3.2 we have, D1
t (P2n, x) = C1(HP2n

, x)
= C(HX , x)C1(HY , x) = C(HX , x) x C(HY − 1, x) = x3C(Pn−1, x)C(Pn−2, x).

(ii) From Theorems 2.1 and 3.2 we have, C(HX , x) = xC(Pn−1, x) and C2r+1(HY , x) = xC(HY −
(2r+1), x) = x2C(Pr, x)C(Pn−r−2, x). Applying Theorem 3.1, D2r+1

t (P2n, x) = C2r+1(HP2n
, x) =

C(HX , x)C2r+1(HY , x).

Thus the result follows.

Remark 3.1. Since f : V (P2n) → V (P2n) defined by f(k) = 2n− (k−1) is an isomorphism, we have

D2n
t (P2n, x) = D1

t (P2n, x) and D2r
t (P2n, x) = D2r+1

t (P2n, x).

Theorem 3.6. For the path P2n+1 = (1, 2, . . . , 2n+ 1), we have

(i) D1
t (P2n+1, x) = x3C(Pn, x)C(Pn−2, x),

(ii) For 1 ≤ r ≤ n− 1, D2r
t (P2n+1, x) = x3C(Pr−2, x)C(Pn−r−1, x)C(Pn+1, x),

(iii) For 1 ≤ r ≤ n− 2, D2r+1
t (P2n+1, x) = x3C(Pn−2, x)C(Pr, x)C(Pn−r, x).

Proof. Let X = {1, 3, . . . , 2n + 1} and Y = {2, 4, . . . , 2n} be the bipartition of P2n+1. Let HX and

HY (shown in figure 2) be the components of ONH(P2n+1) corresponding to X and Y respectively.

Then from Theorems 2.1, 3.1 and 3.2 we have,

(i) C(HX , x) = x2C(Pn−2, x) and C1(HY , x) = xC(HY − 1, x) = xC(Pn, x). Since D1
t (P2n+1, x) =

C1(HP2n+1
, x) = C(HX , x)C1(HY , x), the proof follows.
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(ii) D2r
t (P2n+1, x) = C2r(HP2n+1

, x) = C2r(HX , x)C(HY , x). Since C2r(HX , x)
= xC(HX−(2r), x) = x3C(Pr−2, x)C(Pn−r−1, x) and C(HY , x) = C(Pn+1, x), the proof follows.

(iii) Proceeding as above, we get D2r+1
t (P2n+1, x) = C(HX , x)C2r+1(HY , x) = x2C(Pn−2, x)xC(HY −

(2r + 1), x) = x3C(Pn−2, x)C(Pr, x)C(Pn−r, x).

The following results can be easily derived from the definition of Dv
t (G, x).

Theorem 3.7. For any vertex v of Kn, D
v
t (Kn, x) = x

[

(1 + x)n−1 − 1
]

.

Theorem 3.8. For v ∈ V (Kn,n), D
v
t (Kn,n, x) = x(1 + x)n−1 [(1 + x)n − 1] .

Theorem 3.9. If K
(k)
n+1 denotes the one point union of k copies of the complete graph Kn+1, then

Dt(K
(k)
n+1, x) = x

[

(1 + x)nk − 1
]

[(1 + x)n − 1− nx]k .

Proof. Let u be the vertex common to the k copies of Kn+1. Let S be a total dominating set of K
(k)
n+1.

Then we have two possibilities. Either u ∈ S or u /∈ S.

Case i: If u ∈ S, then for any vertex v 6= u of K
(k)
n+1, the set {u, v} is a total dominating set. Since

there are nk vertices in K
(k)
n+1 − u, the number of total dominating sets of K

(k)
n+1 containing the

vertex u of cardinality i is
(

nk

i−1

)

. Therefore,

Du
t (K

(k)
n+1, x) = x

[(

nk

1

)

x+

(

nk

2

)

x2 + . . .+

(

nk

nk

)

xnk

]

= x
[

(1 + x)nk − 1
]

.

Case ii: Let u /∈ S. Let V1, V2, . . . , Vk be the sets of vertices of the components of K
(k)
n+1 − u. Then

| S ∩ Vi |≥ 2. In other words, a set containing at least two vertices from each and every

component of K
(k)
n+1 − u forms a total dominating set. Since we can select i vertices from the

set Vj in
(

n

i

)

ways,

Dtu(K
(k)
n+1, x) =

[(

n

2

)

x2 +

(

n

3

)

x3 + . . .+

(

n

n

)

xn

]k

= [(1 + x)n − 1− nx]k .

The proof then follows from Dt(K
(k)
n+1, x) = Du

t (K
(k)
n+1, x) +Dtu(K

(k)
n+1, x).

4 Conclusion

In wireless sensor networks, central base stations or power-rich gateway nodes often serve as

indispensable components of the monitoring infrastructure and must be included in every active

configuration. Similarly, in security systems, high-value checkpoints or control hubs require uninterrupted

surveillance, necessitating their inclusion in every total dominating set of the corresponding network

graph. Recognizing such application-driven constraints, this paper presents a systematic approach

to compute the total domination polynomial Dv
t (G, x), under the condition that a specified vertex is

included in every total dominating set of the graph G. This formulation not only captures essential

structural properties but also enables precise modeling of real-world networks with critical node

dependencies.
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