Original Research Article Global convergence in non-relativistic limits for the non-isentropic Euler-Maxwell system near non-constant equilibrium Abstract. This work establishes the global-in-time convergence when the light speed $c \to \infty$ ($\nu = \frac{1}{c} \to 0$), demonstrating how the non-isentropic Euler-Maxwell system reduces to the Euler-Poisson system near non-constant equilibria. The non-isentropic setting introduces new challenges due to temperature effects and energy coupling, complicating dissipation estimates for the electric field E. A div-curl decomposition is required, disrupting the systems anti-symmetric structure and L^2 -estimates. By constructing a tailored strictly convex entropy functional and employing refined induction arguments, we establish global convergence. Key to our analysis is the non-singularity of E under non-relativistic scaling, alongside novel estimates for thermal-electromagnetic interactions. **Keywords.** Euler-Maxwell system; global-in-time convergence; non-constant equilibrium state; non-relativistic limit. #### 1 Introduction This study investigates the convergence rate in the non-relativistic limit for a compressible, non-isentropic one-fluid Euler-Maxwell system describing electron dynamics around non-uniform equilibrium states. $$\begin{cases} \partial_{t}\rho + \operatorname{div}(\rho u) = 0, \\ \partial_{t}(\rho u) + \operatorname{div}(\rho u \otimes u) + \nabla p = -\rho(E + \nu u \times B) - \rho u, \\ \rho \partial_{t}\theta + \rho u \cdot \nabla \theta + \frac{2}{3}p \operatorname{div} u - \frac{2}{3}\Delta \theta = \frac{1}{3}\rho|u|^{2} - \rho(\theta - 1), \\ \nu \partial_{t}E - \nabla \times B = \nu \rho u, \quad \operatorname{div} E = b(x) - \rho, \\ \nu \partial_{t}B + \nabla \times E = 0, \quad \operatorname{div} B = 0, \\ t = 0, (\rho, u, E, B) = (\rho_{0}, u_{0}, E_{0}, B_{0}). \end{cases}$$ $$(1.1)$$ We denote $\rho, u = (u_1, u_2, u_3)^T$ the density and velocity of the fluid, and E, B the electric and magnetic field, respectively. They are all functions of the time t > 0 and the position $x = (x_1, x_2, x_3)^T$. The physical parameter c > 0 is the speed of light. We denote its reciprocal as ν . The functions b = b(x), and $p = \rho\theta$ are doping profile, and the pressure, respectively. The periodic problem of the Euler-Maxwell system then reads [1, 2, 3] due to the fact that $$\partial_t b = \partial_t \operatorname{div} E^{\nu} + \partial_t \rho^{\nu} = \operatorname{div}(\rho^{\nu} u^{\nu}) - \operatorname{div}(\rho^{\nu} u^{\nu}) = 0.$$ Now we consider the non-constant steady state of (1.1) with zero velocity. Let $W_s = (\rho_s, 0, 1, E_s, B_s)$ be the steady solution to system (1.1) satisfying $$\begin{cases} \nabla \rho_s = \rho_s \nabla \phi_s, & E_s = -\nabla \phi_s, \\ \nabla \times B_s = 0, & \operatorname{div} E_s = b(x) - \rho_s, \\ \nabla \times E_s = 0, & \operatorname{div} B_s = 0. \end{cases}$$ (1.2) with $$\lim_{|x| \to \infty} \rho_s(x) = 1, \qquad \lim_{|x| \to \infty} \phi_s = 0. \tag{1.3}$$ The existence and uniqueness of solutions of (1.2)-(1.3) can be easily obtained (cf. [4, 5]). Here we learn that B_s is a constant vector. **Proposition 1.1.** Let b(x) > 0, $b(x) \in C^{k+1}(\mathbb{R}^3)$, $\nabla b(x) \in H^k(\mathbb{R}^3)$, $k \geq 3$ when $\rho_s - b \in H^{k+1}(\mathbb{R}^3)$, the system (1.2)-(1.3) has a unique classical solution (ρ_s, ϕ_s) which satisfies $$0 < \inf_{x \in \mathbb{R}^3} b(x) \le \rho_s(x) \le \sup_{x \in \mathbb{R}^3} b(x) < \infty,$$ and $$\|(\nabla \rho_s, \nabla \phi_s)\|_{H^k(\mathbb{R}^3)} \le C,$$ where C depends on $\|\nabla b\|_{H^k(\mathbb{R}^3)}$. The well-developed theory of Euler-Maxwell systems establishes that when the density $\rho > 0$, system (1.1) constitutes a first-order symmetric hyperbolic system, guaranteeing local-in-time existence and uniqueness of smooth solutions through classical results by Lax [20] and Kato [18] (see also [19, 24]). For global-in-time solutions, existing research covers various scenarios: constant background velocities [25, 26], small perturbations from constant vectors [23], isentropic systems with generalized irrotational constraints $B + \nabla \times u$ [16, 17], and more general cases involving non-constant background velocities [14, 15, 21, 30]. It should be noted that these cited results typically assume the spatial domain is either a torus or the whole of space, and often set $\nu = 1$ for simplicity. Besides, Y, Wang and Zhao [28] study the global-in-time convergence of non-relativistic limits from Euler-Maxwell systems to Euler-Poisson systems near non-constant equilibrium states by letting the reciprocal of the speed of light $\nu := \frac{1}{c} \to 0$. This paper primarily investigates the global convergence behavior of the non-relativistic limit $(v \to 0)$ in the vicinity of a general non-constant equilibrium state $\mathcal{W}s$, where $\mathcal{W}s$ is not required to be a small perturbation of a constant vector. Our analysis begins with a formal derivation of the limiting equations. By considering $(\bar{n}, \bar{u}, \bar{\theta}, \bar{E}, \bar{B})$ as the limiting values of (ρ, u, θ, E, B) and taking the formal limit $v \to 0$ in system (1.1), we obtain $$\begin{cases} \partial_t \bar{\rho} + \operatorname{div}(\bar{\rho}\bar{u}) = 0, \\ \partial_t(\bar{\rho}\bar{u}) + \operatorname{div}(\bar{\rho}\bar{u} \otimes \bar{u}) + \nabla p(\bar{\rho}) = -\bar{\rho}\bar{E} - \bar{\rho}\bar{u}, \\ \partial_t \bar{\theta} + \bar{u} \cdot \nabla \bar{\theta} + \frac{2}{3}\bar{\theta}\operatorname{div}\bar{u} - \frac{2}{3\bar{\rho}}\Delta\bar{\theta} = \frac{|\bar{u}|^2}{3} - (\bar{\theta} - 1), \\ \nabla \times \bar{B} = 0, \quad \operatorname{div}\bar{E} = b(x) - \bar{\rho}, \\ \nabla \times \bar{E} = 0, \quad \operatorname{div}\bar{B} = 0, \end{cases}$$ From the previous analysis, we deduce that \bar{B} remains a constant vector field. Given that the curl of \bar{E} vanishes $(\nabla \times \bar{E} = 0)$, we can express \bar{E} as the negative gradient of a scalar potential $\bar{\varphi}$, i.e., $\bar{E} = -\nabla \bar{\varphi}$. By inserting this relationship into equation (1.4), we arrive at the Euler-Poisson system of equations $$\begin{cases} \partial_{t}\bar{\rho} + \operatorname{div}(\bar{\rho}\bar{u}) = 0, \\ \partial_{t}(\bar{\rho}\bar{u}) + \operatorname{div}(\bar{\rho}\bar{u} \otimes \bar{u}) + \nabla p(\bar{\rho}) = \bar{\rho}\nabla\bar{\phi} - \bar{\rho}\bar{u}, \\ \partial_{t}\bar{\theta} + \bar{u} \cdot \nabla\bar{\theta} + \frac{2}{3}\bar{\theta}\operatorname{div}\bar{u} - \frac{2}{3\bar{\rho}}\Delta\bar{\theta} = \frac{|\bar{u}|^{2}}{3} - (\bar{\theta} - 1), \\ \Delta\bar{\varphi} = \bar{\rho} - b(x). \end{cases}$$ (1.5) ### 2 Preliminaries and main results ### 2.1 Notations and inequalities For later purpose, we introduce the following notations. For multi-indices $\alpha = (\alpha_1, \alpha_2, \alpha_3) \in \mathbb{N}^3$, we denote $$\partial_x^{\alpha} = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \partial x_3^{\alpha_3}}, \quad |\alpha| = \alpha_1 + \alpha_2 + \alpha_3.$$ Throughout this paper, the positive general constants C and c can be different in different lines. The inequality $f \lesssim g$ means that there is a constant C such that $f \leq Cg$. The constant C_{η} denotes constants that depend on η . Here and follows the notes $\int f := \int_{\mathbb{R}^3} f dx$, $\|\cdot\| := \|\cdot\|_{L^2(\mathbb{R}^3)}$, $\|\cdot\|_k := \|\cdot\|_{H^k(\mathbb{R}^3)}$, and $\|\cdot\|_{L^p} := \|\cdot\|_{L^p(\mathbb{R}^3)}$ will be used. For the convenience, we introduce the hybrid spaces M_k^n , T_m and M_k whose norms are denoted as $$\|f\|_{M_k^n}^2 := \sum_{j=1}^n \|\nabla^{k-j} \partial_t^j f\|^2,$$ $$||f||_{T_m}^2 := \sum_{j=1}^m ||\partial_t^j f||^2,$$ and $$||f||_{M_k}^2 := ||f||^2 + ||\nabla^k f||^2 + ||f||_{M_*^{k-1}}^2 + ||f||_{T_k}^2.$$ For any given time T > 0, let us introduce the Banach space $$B_{s,T} = \bigcap_{k=0}^{s} C^{k}([0,T]; H^{s-k}),$$ for all t in [0, T] with the norm $$|||f(t,\cdot)|||^2 = \sum_{\ell+|\alpha| \le k} ||\nabla^{\alpha}\partial_t^{\ell} f(t,\cdot)||^2.$$ The Euler-Maxwell system constitutes a first-order quasilinear system of hyperbolic type that admits symmetrization. As a consequence, applying the well-established existence theory for such systems (cf. [6, 7]), we obtain the local-in-time existence of smooth solutions to the initial value problem. **Proposition 2.1.** (Local existence of classical solutions to (1.1) [29]) Let $s \geq 3$ be an integer and $(\rho_0 - \rho_s, u_0, \theta_0 - 1, E_0 - E_s, B_0 - B_s) \in H^s$ with $\rho_0 \geq 2\underline{\rho}$ for some positive constant $\underline{\rho}$. Then there exists $T_{\nu} > 0$ such that system (1.1) has a unique smooth solution (ρ, u, θ, E, B) satisfying $$(\rho - \rho_s, u, \theta - 1, E - E_s, B - B_s) \in B_{s, T_{\nu}}, \quad \rho \ge \rho.$$ Next, we introduce the Moser-type calculus inequalities, which will be frequently used in later proof. For details, we refer to [8, 9]. **Lemma 2.1** (Moser-type inequality [10, 11]). Let $k \geq 1$ be an integer. Suppose $u \in H^k$, $\nabla u \in L^{\infty}$, and $v \in H^{k-1} \cap L^{\infty}$. Then for every $\alpha \in \mathbb{N}^3$ with $|\alpha| \leq k$, it holds $\partial^{\alpha}(uv) - u\partial^{\alpha}v \in L^2$, and $$\|\partial^{\alpha}(uv) - u\partial^{\alpha}v\| \le C_k \left(\|\nabla u\|_{\infty} \|D^{k-1}v\| + \|D^ku\| \|v\|_{\infty} \right),$$ where C_k denotes a constant only depending on k, and $$\left\| D^k u \right\| = \sum_{|\alpha|=k} \|\partial^\alpha u\|.$$ In particular, when $k \geq 3$, the Sobolev inequality yields $$\|\partial^{\alpha}(uv) - u\partial^{\alpha}v\| \le C_k \|\nabla u\|_{k-1} \|v\|_{k-1}.$$ **Lemma 2.2**[Commutator Estimates, [12]] Let $l \geq 1$ be an integer, and define the commutator $$[\nabla^l, g]h = \nabla^l(gh) - g\nabla^lh.$$ If $p_0, p_1, p_2, p_3, p_4 \in [1, +\infty]$ satisfy $$\frac{1}{p_0} = \frac{1}{p_1} + \frac{1}{p_2} = \frac{1}{p_3} + \frac{1}{p_4},$$ then $$\left\| [\nabla^l, g] h \right\|_{L^{p_0}} \lesssim \|\nabla g\|_{L^{p_1}} \left\| \nabla^{l-1} h \right\|_{L^{p_2}} + \left\| \nabla^l g \right\|_{L^{p_3}} \|h\|_{L^{p_4}}.$$ In addition, for $l \geq 0$, $$\left\| \nabla^l (gh) \right\|_{L^{p_0}} \lesssim \|g\|_{L^{p_1}} \left\| \nabla^l h \right\|_{L^{p_2}} + \left\| \nabla^l g \right\|_{L^{p_3}} \|h\|_{L^{p_4}}.$$ #### 2.2 Main results The main results of the paper are as follows. To make the proof more clearer, we define $\mathcal{E}(t)$ for $k \geq 3$ as follows: $$\mathcal{E}_{1}(t) := \|(\rho - \rho_{s}, u, \theta - 1, \nabla(\phi - \phi_{s}), B - B_{s})\|^{2}, \quad \mathcal{E}_{2}(t) := \|\nabla^{k}(\rho - \rho_{s}, u, \theta - 1, B - B_{s})\|^{2},$$ $$\mathcal{E}_{3}(t) := \|(\rho, u, \theta)\|_{M_{k}^{k-1}}^{2}, \quad \mathcal{E}_{4}(t) := \|(\rho, u, \theta)\|_{T_{k}}^{2}, \quad \mathcal{E}(t) := \sum_{i=1}^{4} \mathcal{E}_{i}(t).$$ The main purpose is to derive a key prior estimate of (ρ, u, θ, ϕ) , which is independent of time t. We will always assume $\delta < 1$ in this section. **Theorem 2.1.** For given constant $\varepsilon_0 > 0$, assume the initial data satisfy $$\mathcal{E}(0) \leq \varepsilon_0$$. Then there exist positive numbers $\bar{\rho}$ and $\underline{\rho}$ such that if (ρ, u, θ, ϕ) is a smooth solution of problem (1.2)-(1.3) satisfying $$\mathcal{E}(t) \leq 2\delta$$, the following estimate is valid $$\mathcal{E}(t) + \int_0^t \mathcal{E}(\tau)d\tau \le C\mathcal{E}(0). \tag{2.1}$$ **Theorem 2.2.** (The non-relativistic limit) Let the conditions in Theorem 2.1 hold. Let (ρ, u, θ, E, B) be the global solution obtained in Theorem 2.1. Assume that as $\nu \to 0$, $$(\rho_0 - \rho_s, u_0, \theta_0 - 1) \to (\bar{\rho}_0 - \rho_s, \bar{u}_0, \bar{\theta}_0 - 1), \text{ weakly in } H^s,$$ then there exist functions $(\bar{\rho}, \bar{u}, \bar{\varphi})$ satisfying $$(\bar{\rho} - \rho_s, \bar{u}, \nabla \bar{\varphi} - \nabla \phi_s) \in L^{\infty}(\mathbb{R}^+; H^s),$$ and as $\nu \to 0$, up to subsequences, $$(\rho - \rho_s, u, \theta - 1, E - E_s, B - B_s) \stackrel{*}{\to} (\bar{\rho} - \rho_s, \bar{u}, \bar{\theta} - 1, \nabla \varphi - \nabla \phi_s, 0), \text{ weakly-} *inL^{\infty}(\mathbb{R}^+; H^s),$$ in which $(\bar{\rho}, \bar{u}, \bar{\theta}, \nabla \bar{\varphi})$ is the global smooth solution to Euler-Poisson system (1.5) near non-constant equilibrium $(\rho_s, 0, \theta_s, \nabla \phi_s)$. ## 3 Uniform energy estimates #### 3.1 Global existence of solutions Here, in this subsection, we demonstrate that the non-isentropic Euler-Maxwell system (1.1) admits global solutions uniformly for ν . **Lemma 3.1.** $(L^2$ -estimate) For all $t \in [0, T]$, it holds $$\mathcal{E}_1(t) + \int_0^t \|(u, \theta - 1, \nabla \theta)\|^2 d\tau \le C(\underline{\rho}, \overline{\rho}) \mathcal{E}_1(0).$$ *Proof.* Dotting $(1.1)_2$ and $(1.1)_3$ with $\frac{2}{3}u$ and $(1-\theta^{-1})$ in L^2 , respectively, we obtain $$\frac{d}{dt} \int \left[\rho(\theta - \ln \theta - 1) + \frac{2}{3} \rho_s \left(\frac{\rho}{\rho_s} \ln \frac{\rho}{\rho_s} - \frac{\rho}{\rho_s} + 1 \right) + \frac{1}{3} \rho |u|^2 \right] + \int \left(\frac{1}{3} (1 + \theta^{-1}) \rho |u|^2 + \rho \theta^{-1} (\theta - 1)^2 + \frac{2}{3} \frac{|\nabla \theta|^2}{\theta^2} \right) = -\frac{2}{3} (\rho u E - \rho u E_s).$$ (3.1) By $(1.1)_4$, $(1.1)_5$, and (1.2) we can obtain $$\partial_t \left(\frac{1}{2} |F|^2 + \frac{1}{2} |G|^2 \right) + \frac{1}{\nu} \operatorname{div}(F \times G) = \rho u F = \rho u E - \rho u E_s, \tag{3.2}$$ notice that $$F = E - E_s$$, $G = B - B_s$. Then we can obtain $$\frac{d}{dt} \int \left[\rho(\theta - \ln \theta - 1) + \frac{2}{3} \rho_s \left(\frac{\rho}{\rho_s} \ln \frac{\rho}{\rho_s} - \frac{\rho}{\rho_s} + 1 \right) + \frac{1}{3} \rho |u|^2 + \frac{1}{3} |F|^2 + \frac{1}{3} |G|^2 \right] + \int \left(\frac{1}{3} (1 + \theta^{-1}) \rho |u|^2 + \rho \theta^{-1} (\theta - 1)^2 + \frac{2}{3} \frac{|\nabla \theta|^2}{\theta^2} \right) = 0.$$ We deduce $$\rho_s\left(\frac{\rho}{\rho_s}\ln\frac{\rho}{\rho_s} - \frac{\rho}{\rho_s} + 1\right) = \left(\frac{\rho}{\rho_s} - 1\right)^2 \int_0^1 \frac{1 - \xi}{\xi(\frac{\rho}{\rho_s} - 1) + 1} d\xi \ge C(\overline{\rho})(\rho - \rho_s)^2,$$ and $$\theta - \ln \theta - 1 = (\theta - 1)^2 \int_0^1 \frac{\xi}{\xi(\theta - 1) + 1} d\xi \ge C(\theta - 1)^2.$$ Then, integrate (3.1) and (3.2) with respect to time over [0, t], one has $$\|(\rho - \rho_s, u, \theta - 1, E - E_s, B - B_s)(t)\|^2 + \int_0^t \|(u, \theta - 1, \nabla \theta)\|^2 d\tau \le C(\underline{\rho}, \overline{\rho}) \mathcal{E}_1(0).$$ Next, we will derive the higher-order derivative estimates. In order to get them easily, we transform (1.1) into the following form: $$\begin{cases} \partial_{t}\rho = -\rho \operatorname{div} u - u \cdot \nabla \rho, \\ u_{t} + u \cdot \nabla u + \nabla(\theta - 1) + u + \nabla \rho_{s}(\rho_{s} - \rho)(\rho \rho_{s})^{-1} + (\theta - 1)\rho^{-1}\nabla \rho \\ + \rho^{-1}\nabla(\rho - \rho_{s}) = \nabla(\phi - \phi_{s}) - \nu u \times (B - B_{s}) - \nu u \times B_{s}, \\ \theta_{t} + u \cdot \nabla \theta + \frac{2}{3}\theta \operatorname{div} u - \frac{2}{3}\rho^{-1}\Delta \theta = \frac{1}{3}u^{2} - (\theta - 1), \\ \Delta(\phi - \phi_{s}) = \rho - \rho_{s}. \end{cases} (3.3)$$ **Lemma 3.2.** Let (ρ, u, θ, ϕ) be a smooth solution of (1.1) on $\mathbb{R}^3 \times (0, T]$. Then under the conditions of Proposition 2.1, there exists a constant C depending on $\overline{\rho}$ and ρ , such that $$\frac{d}{dt} \int \left(\rho^{-1} \theta |\nabla^{k} (\rho - \rho_{s})|^{2} + \rho |\nabla^{k} u|^{2} + \frac{3}{2} \rho \theta^{-1} |\nabla^{k} \theta|^{2} + |\nabla^{k-1} (\rho - \rho_{s})|^{2} \right) + (c - \eta - C\delta) \int \left(|\nabla^{k} u|^{2} + |\nabla^{k} \theta|^{2} + |\nabla^{k+1} \theta|^{2} \right) \leqslant C_{\eta} \|(\nabla \theta, \nabla^{k} (\rho - \rho_{s}))\|^{2} + (\eta + C\delta) \|(u, \rho - \rho_{s})\|^{2} + \delta \|\nabla^{k-1} \partial_{t} E\|^{2},$$ where the suitable small positive constants η and δ will be determined later. *Proof.* Applying ∇^k to $(3.3)_1$ - $(3.3)_3$ and multiplying it by $\rho^{-1}\theta\nabla^k(\rho-\rho_s)$, $\rho\nabla^k u$, and $\frac{3}{2}\rho\theta^{-1}\nabla^k(\theta-1)$ in L^2 , respectively, then $$\frac{d}{dt} \int \left(\rho^{-1} \theta |\nabla^k (\rho - \rho_s)|^2 + \rho |\nabla^k u|^2 + \frac{3}{2} \rho \theta^{-1} |\nabla^k \theta|^2 \right) + \int \left(2\rho |\nabla^k u|^2 + 3\rho \theta^{-1} |\nabla^k \theta|^2 \right) = \sum_{i=1}^9 I_i,$$ (3.4) where $$\begin{split} I_1 &:= \int \rho^{-1}\theta_t |\nabla^k(\rho - \rho_s)|^2 - \rho^{-2}\rho_t \theta |\nabla^k(\rho - \rho_s)|^2 + \rho_t |\nabla^k u|^2 + \frac{3}{2}(\rho_t \theta^{-1} - \rho \theta^{-2}\theta_t) |\nabla^k \theta|^2, \\ I_2 &:= 2 \int \rho \nabla^k \nabla (\phi - \phi_s) \nabla^k u, \qquad I_3 := -2 \int \rho \nabla^k [(\rho \rho_s)^{-1} \nabla \rho_s (\rho_s - \rho)] \nabla^k u, \\ I_4 &:= -2 \int \rho^{-1} \theta \nabla^k (u \cdot \nabla \rho) \nabla^k (\rho - \rho_s) + \rho \nabla^k (u \cdot \nabla u) \nabla^k u, \\ I_5 &:= -3 \int \rho \theta^{-1} \nabla^k (u \cdot \nabla \theta) \nabla^k \theta, \qquad I_6 := 2 \int \rho \theta^{-1} \nabla^k (\rho^{-1} \Delta \theta + \frac{1}{2} |u|^2) \nabla^k \theta, \\ I_7 &:= -2 \int \rho^{-1} \theta \nabla^k (\rho \operatorname{div} u) \nabla^k (\rho - \rho_s) + \rho \nabla^k [\rho^{-1} \nabla (\rho - \rho_s)] \nabla^k u + \rho \nabla^k [\rho^{-1} \nabla \rho (\theta - 1)] \nabla^k u, \\ I_8 &:= -2 \int \rho \theta^{-1} \nabla^k \theta \nabla^k (\theta \operatorname{div} u) + \rho \nabla^k \nabla \theta \nabla^k u \\ I_9 &:= 2 \int \nu \rho \nabla^k [u \times (B - B_s)] \nabla^k u, \qquad . \end{split}$$ By the similar way as that in Lemma 2.3 of [28], lemma 2.1, and lemma 2.2, we can obtain $$I_1 \lesssim \delta \|\nabla^k(u, \theta, \rho - \rho_s)\|^2. \tag{3.5}$$ $$I_{2} \leq -\frac{d}{dt} \int |\nabla^{k} \nabla(\phi - \phi_{s})|^{2} + C_{\eta} \|\nabla^{k} (\rho - \rho_{s})\|^{2} + \eta \|(u, \nabla^{k} u, \rho - \rho_{s})\|^{2}.$$ (3.6) $$I_3 \lesssim \|\nabla^k u\| \|\nabla^k (\rho - \rho_s)\| + \|\nabla^k u\| \|\rho - \rho_s\|_{L^{\infty}} \leq C_{\eta} \|\nabla^k (\rho - \rho_s)\|^2 + \eta \|(\nabla^k u, \rho - \rho_s)\|^2.$$ $$I_4 \le C_\eta \|\nabla^k (\rho - \rho_s)\|^2 + \eta \|u\|^2 + (\eta + C\delta) \|\nabla^k u\|^2.$$ (3.7) (3.8) $$I_5 \lesssim \delta \|\nabla^k(u, \theta, \nabla \theta)\|^2. \tag{3.9}$$ $$I_{6} \leq -2 \int \theta^{-1} |\nabla^{k} \nabla \theta|^{2} + (\eta + C\delta) \|\nabla^{k} (u, \nabla \theta)\|^{2} + C_{\eta} \|\nabla \theta\|^{2}.$$ (3.10) $$I_{7} \leq (\eta + C\delta) \|(u, \nabla^{k}u, \nabla^{k+1}\theta, \rho - \rho_{s})\|^{2} + C_{\eta} \|(\nabla^{k}(\rho - \rho_{s}), \nabla\theta)\|^{2}.$$ $$I_{8} \leq C_{\eta} \|\nabla\theta\|^{2} + \eta \|\nabla^{k}(u, \nabla\theta)\|^{2}.$$ (3.11) Applying ∇^{k-1} to $(1.1)_4$ and then multiplying the resulting identities by $\nabla^k B$ then integrating in \mathbb{R}^3 , we obtain $$\|\nabla \times (B - B_s)\|_{k-1}^2 \le \|(\nu \nabla^{k-1} \partial_t E - \nu \nabla^{k-1} (\rho u))\| \|\nabla \times (B - B_s)\|_{k-1}$$ $$\le \delta \|\nabla^{k-1} (\partial_t E, u)\|^2.$$ (3.12) By Hölder's and Cauchy's inequalities, we obtain $$I_{9} \leq \|\nabla^{k} u\|(\|B - B_{s}\|_{L^{\infty}} \|\nabla^{k} u\| + \|u\|_{L^{\infty}} \|\nabla^{k} (B - B_{s})\|)$$ $$\leq \delta \|\nabla^{k} (u, B - B_{s})\|^{2} \leq \delta \|\nabla^{k-1} (\partial_{t} E, u, \nabla u)\|^{2}.$$ (3.13) Plugging (3.5), (3.6)-(3.7), (3.8)-(3.9), (3.10), and (3.11)-(3.13) into (3.4), the proof the Lemma 3.2 can be completed. Next, we will derive the higher-order estimate of density. **Lemma 3.3.** Let (ρ, u, θ, ϕ) be a solution of (1.1) on $\mathbb{R}^3 \times (0, T]$, it hold $$(c - \eta - C\delta) \|\nabla^{k}(\rho - \rho_{s})\|^{2} + \|\nabla^{k-1}(\rho - \rho_{s})\|^{2}$$ $$\leq C_{\eta} \|\nabla^{k-1}u_{t}\|^{2} + C_{\eta} \|(u, \nabla\theta, \rho - \rho_{s})\|^{2}$$ $$+ (\eta + C\delta) \|\nabla^{k}(u, \nabla\theta)\|^{2} + \delta \|\nabla^{k-1}\partial_{t}E\|^{2} + \delta \|B - B_{s}\|^{2},$$ (3.14) where the suitable small positive constants η and δ will be determined later. *Proof.* Applying ∇^{k-1} to $(3.3)_2$ and then multiplying the resulting identities by $\nabla^{k-1}\nabla(\rho - \rho_s)$ then integrating in \mathbb{R}^3 , we obtain $$\int \rho^{-1} |\nabla^{k-1} \nabla (\rho - \rho_s)|^2 + \|\nabla^{k-1} (\rho - \rho_s)\|^2 = \sum_{i=1}^7 II_i,$$ (3.15) where $$II_{1} := \int [\nabla^{k-1}, \rho^{-1}] \nabla(\rho - \rho_{s}) \nabla^{k-1} \nabla(\rho - \rho_{s}), \qquad II_{2} := \int \nabla^{k-1} (u \cdot \nabla u) \nabla^{k-1} \nabla(\rho - \rho_{s}),$$ $$II_{3} := \int \nabla^{k-1} u \nabla^{k-1} \nabla(\rho - \rho_{s}), \qquad II_{4} := \int \nabla^{k-1} [\nabla \rho_{s} (\rho_{s} - \rho)(\rho \rho_{s})^{-1}] \nabla^{k-1} \nabla(\rho - \rho_{s}),$$ $$II_{5} := \int \nabla^{k-1} u_{t} \nabla^{k-1} \nabla(\rho - \rho_{s}), \qquad II_{6} := \int \nabla^{k-1} \nabla(\theta - 1) \nabla^{k-1} \nabla(\rho - \rho_{s}),$$ $$II_{7} := \int \nabla^{k-1} [(\theta - 1)\rho^{-1} \nabla \rho] \nabla^{k-1} \nabla(\rho - \rho_{s}),$$ $$II_{8} := \int \nabla^{k-1} [-\nu u \times (B - B_{s}) - \nu u \times B_{s}] \nabla^{k-1} \nabla(\rho - \rho_{s}).$$ By the similar way as that in Lemma 2.4 of [28], we can obtain $$II_{1} \leq C_{\eta} \|\rho - \rho_{s}\|^{2} + \eta \|\nabla^{k}(\rho - \rho_{s})\|^{2}, \qquad II_{2} \lesssim \delta \|\nabla^{k}(u, \rho - \rho_{s})\|^{2} + \delta \|u\|^{2},$$ $$II_{3} \leq C_{\eta} \|u\|^{2} + \eta \|\nabla^{k}(\rho - \rho_{s}, u)\|^{2}, \qquad II_{4} \leq \eta \|\nabla^{k}(\rho - \rho_{s})\|^{2} + C_{\eta} \|\rho - \rho_{s}\|^{2},$$ $$II_{5} \leq \eta \|\nabla^{k}(\rho - \rho_{s})\|^{2} + C_{\eta} \|\nabla^{k-1}u_{t}\|^{2}, \qquad II_{6} \leq \eta \|\nabla^{k}(\rho - \rho_{s}, \nabla\theta)\|^{2} + C_{\eta} \|\nabla\theta\|^{2},$$ $$II_{7} \leq \eta \|\nabla^{k}(\rho - \rho_{s}, \nabla\theta)\|^{2} + C_{\eta} \|\nabla\theta\|^{2}.$$ $$(3.16)$$ It follows from Hölder's, Gagliardo-Nirenberg's, and Cauchy's inequalities that $$II_{8} \leq \delta \|\nabla^{k-1}(u, B - B_{s})\|^{2} + \delta \|\nabla^{k}(\rho - \rho_{s})\|^{2}$$ $$\leq \delta \|\nabla^{k-1}(u, \nabla(\rho - \rho_{s}), \nabla(B - B_{s}))\|^{2} + \delta \|B - B_{s}\|^{2}.$$ (3.17) Plugging (3.16)-(3.17) into (3.15), we can prove (3.14). **Lemma 3.4.** Let (ρ, u, θ, ϕ) be a solution of (1.1) on $\mathbb{R}^3 \times (0, T]$. Then under the conditions of Proposition 2.1, there exists constants C and c depending on $\overline{\rho}$ and ρ , such that for $1 \leq r \leq k-1$, $$\frac{1}{2} \frac{d}{dt} \int \left(\rho^{-1} \theta |\nabla^{k-r} \partial_t^r \rho|^2 + \rho |\nabla^{k-r} \partial_t^r u|^2 + \frac{3}{2} \rho \theta^{-1} |\nabla^{k-r} \partial_t^r \theta|^2 \right) + (c - C\delta) \int \left(|\nabla^{k-r} \partial_t^r u|^2 + |\nabla^{k-r} \partial_t^r \theta|^2 + |\nabla^{k-r} \partial_t^r \nabla \theta|^2 \right) \leq C \|\nabla^{k-r} \partial_t^r \rho\|^2 + C \|(\rho, u, \theta, \nabla \theta)\|_{T_{k-1}}^2 + C\delta \|(\rho - \rho_s, \theta - 1)\|^2 + C\delta \|\rho, u, \theta, \nabla \theta\|_{M_s^{k-2}}^2 + C\delta \|\nabla^k (\rho - \rho_s, \nabla \theta)\|^2,$$ (3.18) where the suitable small positive constant δ will be determined later. *Proof.* Applying $\nabla^{k-r}\partial_t^r$ to $(3.3)_1$ - $(3.3)_3$, multiplying it by $\rho^{-1}\theta\nabla^{k-r}\partial_t^r\rho$, $\rho\nabla^{k-r}\partial_t^r u$, and $\frac{3}{2}\rho\theta^{-1}\nabla^{k-r}\partial_t^r\theta$ in L^2 , respectively, we deduce $$\frac{1}{2} \frac{d}{dt} \int \left[\rho^{-1} \theta |\nabla^{k-r} \partial_t^r \rho|^2 + \rho |\nabla^{k-r} \partial_t^r u|^2 + \frac{3}{2} \rho \theta^{-1} |\nabla^{k-r} \partial_t^r \theta|^2 \right] + \int \left[\rho |\nabla^{k-r} \partial_t^r u|^2 + \frac{3}{2} \rho \theta^{-1} |\nabla^{k-r} \partial_t^r \theta|^2 \right] = \sum_{i=1}^8 J_i,$$ (3.19) where J_i , $i = 1, \dots, 8$ are defined as $$J_{1} := \frac{1}{2} \int \left[(\rho^{-1}\theta)_{t} | \nabla^{k-r}\partial_{t}^{r} \rho |^{2} + \rho_{t} | \nabla^{k-r}\partial_{t}^{r} u |^{2} + (\rho\theta^{-1})_{t} | \nabla^{k-r}\partial_{t}^{r} \theta |^{2} \right],$$ $$J_{2} := \int \left[\rho \nabla^{k-r}\partial_{t}^{r} \nabla (\phi - \phi_{s}) \nabla^{k-r}\partial_{t}^{r} u \right],$$ $$J_{3} := -\int \left[\rho \nabla^{k-r}\partial_{t}^{r} [\nabla \rho_{s}(\rho_{s} - \rho)(\rho\rho_{s})^{-1}] \nabla^{k-r}\partial_{t}^{r} u \right],$$ $$J_{4} := -\int \left[\rho^{-1}\theta \nabla^{k-r}\partial_{t}^{r} (u \cdot \nabla \rho) \nabla^{k-r}\partial_{t}^{r} \rho + \rho \nabla^{k-r}\partial_{t}^{r} (u \cdot \nabla u) \nabla^{k-r}\partial_{t}^{r} u \right],$$ $$J_{5} := -\int \left[\frac{3}{2}\rho\theta^{-1}\nabla^{k-r}\partial_{t}^{r} (u \cdot \nabla \theta) \nabla^{k-r}\partial_{t}^{r} \theta \right],$$ $$J_{6} := \int \left[\rho\theta^{-1}\nabla^{k-r}\partial_{t}^{r} (\rho^{-1}\Delta\theta) \nabla^{k-r}\partial_{t}^{r} \theta + \frac{1}{2}\rho\theta^{-1}\nabla^{k-r}\partial_{t}^{r} |u|^{2}\nabla^{k-r}\partial_{t}^{r} \theta \right],$$ $$J_{7} := -\int \left[\rho\nabla^{k-r}\partial_{t}^{r} \nabla (\theta - 1) \nabla^{k-r}\partial_{t}^{r} u + \rho\theta^{-1}\nabla^{k-r}\partial_{t}^{r} (\theta \operatorname{div} u) \nabla^{k-r}\partial_{t}^{r} \theta \right],$$ $$J_{8} := -\int \left[\rho\nabla^{k-r}\partial_{t}^{r} (\rho^{-1}\nabla (\rho - \rho_{s}) + (\theta - 1)\rho^{-1}\nabla \rho) \nabla^{k-r}\partial_{t}^{r} u + \rho^{-1}\theta\nabla^{k-r}\partial_{t}^{r} (\rho \operatorname{div} u) \nabla^{k-r}\partial_{t}^{r} \rho \right],$$ $$J_{9} := -\int \rho\nabla^{k-r}\partial_{t}^{r} (\rho \operatorname{div} u) \nabla^{k-r}\partial_{t}^{r} \rho \right]$$ $$J_{9} := -\int \rho\nabla^{k-r}\partial_{t}^{r} (\rho \operatorname{div} u) \nabla^{k-r}\partial_{t}^{r} [\nu u \times (B - B_{s}) + \nu u \times B_{s}].$$ By the similar way as that in Lemma 2.5 of [28], we can obtain $$J_{1} \lesssim \delta \|\nabla^{k-r}\partial_{t}^{r}(\rho, u, \theta)\|^{2}, \qquad J_{2} \leq C_{\eta} \|\rho\|_{T_{k-1}}^{2} + \eta \|\nabla^{k-r}\partial_{t}^{r}(u, \rho)\|^{2},$$ $$J_{3} \leq (\eta + C\delta) \|\nabla^{k-r}\partial_{t}^{r}u\|^{2} + C_{\eta} \|\nabla^{k-r}\partial_{t}^{r}\rho\|^{2} + C_{\eta} \|\rho\|_{T_{k-1}}^{2} + C\delta \left(\|\rho\|_{M_{k}^{k-2}}^{2} + \|\rho - \rho_{s}\|_{k}^{2}\right),$$ $$J_{4} \leq C_{\eta} \|\nabla^{k-r}\partial_{t}^{r}\rho\|^{2} + (C\delta + \eta) \|(u, \rho)\|_{M_{k}^{k-1}}^{2} + C_{\eta} \|u\|_{T_{k-1}}^{2},$$ $$J_{5} \lesssim \delta \|\nabla^{k-r}\partial_{t}^{r}(\theta, \nabla\theta, u)\|^{2} + \delta \|(u, \nabla\theta)\|_{M_{k}^{k-1}}^{2} + \delta \|(u, \nabla\theta)\|_{T_{k-1}}^{2}.$$ $$(3.20)$$ and $$J_{6} \leq -\int \theta^{-1} |\nabla^{k-r} \partial_{t}^{r} \nabla \theta|^{2} + (\eta + C\delta) \|\nabla^{k-r} \partial_{t}^{r} \nabla \theta\|^{2} + (\eta + C\delta) \|(\rho, u, \nabla \theta)\|_{M_{k}^{k-1}}^{2} + C\delta \|(\nabla^{k} \nabla \theta, \nabla \theta)\|^{2} + C_{\eta} \|(\rho, u, \theta, \nabla \theta)\|_{T_{k-1}}^{2}.$$ (3.21) and $$J_7 \le (\eta + C\delta) \|\nabla^{k-r} \partial_t^r(u, \theta, \nabla \theta)\|^2 + C_\eta \|(u, \theta)\|_{T_{k-1}}^2 + C\delta \|(u, \theta - 1)\|_k^2 + C\delta \|u\|_{M_t^{k-1}}.$$ (3.22) and $$J_{8} \leq (\eta + C\delta) \|\nabla^{k-r} \partial_{t}^{r} u\|^{2} + C_{\eta} \|\nabla^{k-r} \partial_{t}^{r} \rho\|^{2} + C_{\eta} \|(\rho, u, \theta, \nabla \theta)\|_{T_{k-1}}^{2} + (C\delta + \eta) \|(\rho, \theta, \nabla \theta)\|_{M_{k}^{k-1}}^{2} + C\delta \|\rho - \rho_{s}\|_{2}^{2}.$$ With the help of $(1.1)_5$, we can obtain $$\nabla \times (B - B_s) = \nu \partial_t E - \nu \rho u.$$ Then we can obtain (see[29]) $$\||\nabla \times G\||_{k-1} = \||\nu \nabla F - \nu \rho u\||_{k-1} \le C_1 \||F\||_k + C_2 \||u\||_{k-1}. \tag{3.23}$$ So we have $$J_9 \le C_\eta \|\nabla^{k-r}\partial_t^r \rho\|^2 + (C\delta + \eta)\|(u, \rho)\|_{M_t^{k-1}}^2 + C_\eta \|u\|_{T_{k-1}}^2, \tag{3.24}$$ Finally, putting (3.20), (3.21), (3.22), and (3.24) into (3.19), we can complete the proof of (3.18). \Box From the result of Lemma 3.4, we still need to estimate the mixed derivative of density as follows. **Lemma 3.5.** Let (ρ, u, θ, ϕ) be a solution of (1.1) on $\mathbb{R}^3 \times (0, T]$, then under the conditions of Proposition 2.1, there exists constants C and c depending on $\overline{\rho}$ and ρ , such that $$\int |\nabla^{k-r-1} \partial_t^r \rho|^2 + (c - \eta - C\delta) \int |\nabla^{k-r} \partial_t^r \rho|^2 \leq C_{\eta} \|\nabla^{k-r-1} \partial_t^{r+1} u\|^2 + C_{\eta} \|(\rho, u, \theta)\|_{T_{k-1}}^2 + (\eta + C\delta) \|(\rho, u)\|_{M_k^{k-1}}^2 + C\delta \|\nabla^k (\rho - \rho_s, u)\|^2 + C\delta \|(\rho - \rho_s, u)\|^2 + \eta \|\nabla^{k-r} \partial_t^r (u, \theta, \nabla \theta)\|^2,$$ where the suitable small positive constants η and δ will be determined later. *Proof.* Applying $\nabla^{k-r-1}\partial_t^r$ to the $(3.3)_2$ and multiplying it by $\nabla^{k-r}\partial_t^r\rho$ in L^2 , we arrive at $$\int |\nabla^{k-r-1}\partial_t^r \rho|^2 = -\int \nabla^{k-r-1}\partial_t^r u_t \nabla^{k-r}\partial_t^r \rho - \int \nabla^{k-r-1}\partial_t^r (u \cdot \nabla u) \nabla^{k-r}\partial_t^r \rho - \int \nabla^{k-r-1}\partial_t^r u \nabla^{k-r}\partial_t^r \rho - \int \nabla^{k-r-1}\partial_t^r [\rho^{-1}\nabla(\rho - \rho_s)] \nabla^{k-r}\partial_t^r \rho - \int \nabla^{k-r-1}\partial_t^r \nabla \theta \nabla^{k-r}\partial_t^r \rho - \int \nabla^{k-r-1}\partial_t^r [\nabla \rho_s(\rho_s - \rho)(\rho\rho_s)^{-1}] \nabla^{k-r}\partial_t^r \rho - \int \nabla^{k-r-1}\partial_t^r [(\theta - 1)\rho^{-1}\nabla \rho] \nabla^{k-r}\partial_t^r \rho - \int \nabla^{k-r}\partial_t^r \rho \nabla^{k-r-1}\partial_t^r [\nu u \times (B - B_s) + \nu u \times B_s] := \sum_{i=1}^8 P_i.$$ (3.25) It is easily to deduce by [28] that $$\begin{split} P_{1} &\leq C_{\eta} \|\nabla^{k-r-1}\partial_{t}^{r+1}u\|^{2} + \eta \|\nabla^{k-r}\partial_{t}^{r}\rho\|^{2}, \quad P_{2} &\leq C\delta\|(\rho,u)\|_{M_{k}^{k-1}}^{2} + C\delta\|u\|_{k}^{2}, \\ P_{3} &\leq C_{\eta} \|\nabla^{k-r-1}\partial_{t}^{r}u\|^{2} + \eta \|\nabla^{k-r}\partial_{t}^{r}\rho\|^{2} \leq \eta \|\nabla^{k-r}\partial_{t}^{r}(\rho,u)\|^{2} + C_{\eta} \|u\|_{T_{k-1}}, \\ P_{4} &\leq -\int \rho^{-1} |\nabla^{k-r}\partial_{t}^{r}\rho|^{2} + (\eta + C\delta)\|\rho\|_{M_{k}^{k-1}}^{2} + C_{\eta}\|\rho\|_{T_{k-1}}^{2}, \\ P_{5} &+ P_{6} + P_{7} &\leq \eta \|\nabla^{k-r}\partial_{t}^{r}(\rho,\theta,\nabla\theta)\|^{2} + C\delta\|\rho\|_{M_{k}^{k-1}}^{2} + C_{\eta}\|(\rho,\theta)\|_{T_{k-1}}^{2} + C\delta\|(\rho - \rho_{s})\|_{k-2}^{2}. \end{split} \tag{3.26}$$ By means of Cauchy's inequality and (3.23), one can deduce that $$P_8 \le \delta \|\nabla^{k-r-1}\partial_t^r(\nabla \rho, u)\|^2. \tag{3.27}$$ Inserting (3.26) and (3.27) into (3.25), the proof of Lemma 3.5 is complete. **Lemma 3.6.** Let (ρ, u, θ, ϕ) be a solution of (1.1) on $\mathbb{R}^3 \times (0, T]$, $1 \leq r \leq k$. Then under the conditions of Proposition 2.1, there exists constants C and c depending on $\overline{\rho}$ and ρ , such that $$\frac{1}{2} \frac{d}{dt} \int \left(\rho^{-1} \theta |\partial_t^r \rho|^2 + \rho |\partial_t^r u|^2 + \frac{3}{2} \rho \theta^{-1} |\partial_t^r \theta|^2 \right) + (c - \eta - C\delta) \|(\partial_t^r u, \partial_t^r \theta, \partial_t^r \nabla \theta)\|^2 \\ \leq C_{\eta} \|(\partial_t^r \rho, \partial_t^r \theta, \partial_t^{r-1} u, u)\|^2 + C\delta \|(\rho, u, \theta)\|_{T_k}^2 + C\delta \|(\rho, u, \theta)\|_{M_k^{k-1}}^2 + \eta \|\nabla^k u\|^2.$$ where the suitable small positive constants η and δ will be determined later. *Proof.* Applying ∂_t^r to the first three equations in system (3.3) and then multiplying the resulting identities by $\rho^{-1}\theta\partial_t^r(\rho-\rho_s)$, $\rho\partial_t^r u$, and $\frac{3}{2}\rho\theta^{-1}\partial_t^r(\theta-1)$, respectively, summing them up and then integrating in \mathbb{R}^3 , we derive $$\frac{1}{2}\frac{d}{dt}\int \rho^{-1}\theta |\partial_t^r \rho|^2 + \rho |\partial_t^r u|^2 + \frac{3}{2}\rho\theta^{-1}|\partial_t^r \theta|^2 dx + \int \rho |\partial_t^r u|^2 + \frac{3}{2}\rho\theta^{-1}|\partial_t^r \theta|^2 = \sum_{i=1}^8 V_i, \quad (3.28)$$ It is easily to deduce by the lemma 2.7 of [28] $$V_{1} = \frac{1}{2} \int (\rho^{-1}\theta)_{t} |\partial_{t}^{r}\rho|^{2} + \rho_{t} |\partial_{t}^{r}u|^{2} + (\rho\theta^{-1})_{t} |\partial_{t}^{r}\theta|^{2},$$ $$V_{2} = \int \rho \partial_{t}^{r} \nabla (\phi - \phi_{s}) \partial_{t}^{r}u, \qquad V_{3} = -\int \rho \partial_{t}^{r} \left[\nabla \rho_{s} (\rho_{s} - \rho)(\rho\rho_{s})^{-1} \right] \partial_{t}^{r}u,$$ $$V_{4} = -\int \rho \partial_{t}^{r} (u \cdot \nabla u) \partial_{t}^{r}u + \rho^{-1}\theta \partial_{t}^{r} (u \cdot \nabla \rho) \partial_{t}^{r}\rho,$$ $$V_{5} = -\frac{3}{2} \int \rho \theta^{-1} \partial_{t}^{r} (u \cdot \nabla \theta) \partial_{t}^{r}\theta, \quad V_{6} = -\int \rho \theta^{-1} \partial_{t}^{r} (\operatorname{div}u\theta) \partial_{t}^{r}\theta + \rho \partial_{t}^{r} \nabla \theta \partial_{t}^{r}u,$$ $$V_{7} = \int \rho \theta^{-1} \partial_{t}^{r} (\rho^{-1}\Delta\theta) \partial_{t}^{r}\theta + \frac{1}{2} \rho \theta^{-1} \partial_{t}^{r} |u|^{2} \partial_{t}^{r}\theta,$$ $$V_{8} = -\int \rho^{-1}\theta \partial_{t}^{r} (\rho \operatorname{div}u) \partial_{t}^{r}\rho + \rho \partial_{t}^{r} [\rho^{-1} \nabla (\rho - \rho_{s})] \partial_{t}^{r}u + \rho \partial_{t}^{r} [(\theta - 1)\rho^{-1} \nabla \rho] \partial_{t}^{r}u$$ $$V_{9} = -\int \rho \partial_{t}^{r}u \partial_{t}^{r} [\nu u \times (B - B_{s}) + \nu u \times B_{s}].$$ Notice that $$-\int \rho \partial_t^r u \partial_t^r (\nu u \times B_s) = 0.$$ and $$\nu \partial_t (B - B_s) = -\nabla \times (E - E_s),$$ then we can obtain $$\|\nu \partial_t^r (B - B_s)\| \le C \|\rho\|_{T_c}^2.$$ (3.29) So we have $$V_9 \le \delta \|(u.\rho)\|_{T_r}^2. \tag{3.30}$$ By the similar way as that in Lemma 2.7 of [28] and (3.30), we can prove the Lemma 4.10. We omit it for the sake of simplicity. **Lemma 3.7.** Let (ρ, u, θ, ϕ) be a solution of (1.1) on $\mathbb{R}^3 \times (0, T]$, $1 \leq r \leq k$. Then under the conditions of Proposition 2.1, there exists constants C and c depending on $\overline{\rho}$ and ρ , such that $$-\frac{d}{dt} \int \left[\partial_{t}^{r-1}(\rho u_{t}) \partial_{t}^{r-1}(\rho u) + \partial_{t}^{r-1}(\rho u \cdot \nabla u) \partial_{t}^{r-1}(\rho u) + \frac{1}{2} |\partial_{t}^{r-1}(\rho u)|^{2} \right]$$ $$+ (c - \eta - C\delta) \int \left(|\partial_{t}^{r} \rho|^{2} + |\partial_{t}^{r-1}(\rho u)|^{2} + |\partial_{t}^{r-1}(\rho u_{t})|^{2} \right)$$ $$\leq C_{\eta} \|(\partial_{t}^{r-1} u, u)\|^{2} + C\delta \|(\rho, u, \theta, \nabla \theta)\|_{T_{k-1}}^{2} + C\delta \|(\rho, u, \nabla \theta)\|_{M_{k}^{k-1}}$$ $$+ (\eta + C\delta) \|\partial_{t}^{r}(u, \theta, \nabla \theta)\|^{2} + \eta \|\nabla^{k} u\|^{2} + C\delta \|\rho - \rho_{s}\|_{2}^{2},$$ $$(3.31)$$ where the suitable small positive constants η and δ will be determined later. *Proof.* Multiplying $(3.3)_2$ by ρ and applying ∂_t^r to it, then dotting it by $\partial_t^{r-1}(\rho u)$ in L^2 , we arrive at $$-\frac{1}{2}\frac{d}{dt}\int |\partial_t^{r-1}(\rho u)|^2 + \int |\partial_t^k \rho|^2 = \int \partial_t^k (\rho u_t)\partial_t^{k-1}(\rho u) + \int \partial_t^k (\rho u \cdot \nabla u)\partial_t^{k-1}(\rho u)$$ $$-\int \partial_t^k (\rho \nabla \phi)\partial_t^{k-1}(\rho u) + \int \partial_t^k [\rho \nabla (\theta - 1)]\partial_t^{k-1}(\rho u)$$ $$+\int \partial_t^k [\rho^{-1}\nabla \rho_s(\rho_s - \rho)]\partial_t^{k-1}(\rho u) + \int \partial_t^k [\nabla \rho(\theta - 1)]\partial_t^{k-1}(\rho u)$$ $$-\int \partial_t^k [\nu \rho u \times (B - B_s) + \nu \rho u \times B_s]\partial_t^{k-1}(\rho u) := \sum_{i=1}^7 X_i.$$ Based on integration by parts and (3.29), we can obtain $$X_7 \le \delta \| (u.\rho) \|_{T_b}^2. \tag{3.32}$$ By the similar way as that in Lemma 2.8 of [28] and (3.32), we can prove the (3.31). We omit it for the sake of simplicity. Time derivatives cannot be bounded by Gagliardo-Nirenberg's inequality under L^2 -norms in space. Therefore, we derive the time integral estimate of the higher-order derivative of temperature through the relaxation effect of (3.3). **Lemma 3.8.** Let (ρ, u, θ, ϕ) be a solution of (1.1) on $\mathbb{R}^3 \times (0, T]$, $1 \leq r \leq k$. Then under the conditions of Proposition (2.1), there exists constants C and c depending on $\overline{\rho}$ and ρ , such that $$\frac{1}{2} \frac{d}{dt} \int \left(|\partial_t^{r-1}(\theta - 1)|^2 + \rho^{-1} |\partial_t^{r-1} \nabla \theta|^2 \right) + (c - C\delta) \int |\partial_t^r \theta|^2 \leq C\delta \|(u, \theta, \nabla \theta)\|_{T_k}^2 + C\delta \|\nabla \theta\|_2^2 + C\|\partial_t^{r-1}(u, \nabla \theta)\|^2,$$ where the suitable small positive constant δ will be determined later. By the similar way as that in Lemma 2.8 of [28] and (3.30), we can prove the Lemma 4.10. We omit it for the sake of simplicity. **Lemma 3.9.** Let $G = B - B_e$, it holds: $$\frac{d}{dt} \left(\|\partial^{\alpha} E\|^{2} + \|\partial^{\alpha} G\|^{2} \right) \leq \delta \|\partial^{\alpha} (u, E - E_{s})\|^{2}.$$ *Proof.* Start with the fifth equation in system (1.3): $$\partial_t(E - E_s) - \frac{1}{\varepsilon}\operatorname{curl}(G) = \rho u.$$ Apply ∂^{α} and take the inner product with $\partial^{\alpha}(E-E_s)$: $$\frac{d}{dt} \|\partial^{\alpha}(E - E_s)\|^2 - \frac{2}{\varepsilon} \left(\operatorname{curl}(\partial^{\alpha} G), \partial^{\alpha}(E - E_s) \right) = 2 \left(\partial^{\alpha}(\rho u), \partial^{\alpha}(E - E_s) \right).$$ Next, take the fourth equation in (1.3): $$\partial_t G + \frac{1}{\varepsilon} \operatorname{curl}(E - E_s) = 0.$$ Apply ∂^{α} and take the inner product with $\partial^{\alpha}G$: $$\frac{d}{dt} \|\partial^{\alpha} G\|^{2} + \frac{2}{\varepsilon} \left(\operatorname{curl}(\partial^{\alpha} (E - E_{s})), \partial^{\alpha} G \right) = 0.$$ By using the vector identity $\mathbf{a} \cdot \text{curl}(\mathbf{b}) + \mathbf{b} \cdot \text{curl}(\mathbf{a}) = \text{div}(\mathbf{a} \times \mathbf{b})$, $$\frac{d}{dt} (\|\partial^{\alpha} E\|^{2} + \|\partial^{\alpha} G\|^{2}) = 2 (\partial^{\alpha} (\rho u), \partial^{\alpha} (E - E_{s}))$$ $$\leq \delta \|\partial^{\alpha} (u, E - E_{s})\|^{2}.$$ Proof of Theorem 1.1. Theorem 2.1. follows by combining Lemma 3.1 - Lemma 3.9. **Proof of Theorem 2.2.** Recall that $$N = \rho - \rho_s$$, $\Theta = \theta - 1$, $F = E - E_s$, $G = B - B_s$. We initially observe that the tuple (N, u, Θ, F, G) satisfies the following coupled system of equations: $$\begin{cases} \partial_{t}N + u \cdot \nabla N + (N + \rho_{s})\operatorname{div}u + u \cdot \nabla \rho_{s} = 0, \\ u_{t} + u \cdot \nabla u + \nabla \Theta + u + \nabla \rho_{s}N(\rho\rho_{s})^{-1} + \Theta\rho^{-1}\nabla \rho \\ + \rho^{-1}\nabla N = -F - \nu u \times G - \nu u \times B_{s}, \\ \theta_{t} + u \cdot \nabla \theta + \frac{2}{3}\theta\operatorname{div}u - \frac{2}{3}\rho^{-1}\Delta\theta = \frac{1}{3}u^{2} - (\theta - 1), \\ \nu\partial_{t}F - \nabla \times G = \nu n u, \quad \operatorname{div}F = -N, \\ \nu\partial_{t}G + \nabla \times F = 0, \quad \operatorname{div}G = 0. \end{cases}$$ $$(3.33)$$ The uniform bound given in (2.1) shows that the family $(N_{\nu}, u_{\nu}, F_{\nu}, G_{\nu})\nu > 0$ is uniformly bounded in the space $L^{\infty}(\mathbb{R}^+; H^s)$. Consequently, we can extract subsequences (still denoted by the same symbols) and find limit functions $(\bar{N}, \bar{u}, \bar{F}, \bar{G})$ belonging to $L^{\infty}(\mathbb{R}^+; H^s)$ such that $(N\nu, u_{\nu}, F_{\nu}, G_{\nu}) \rightharpoonup (\bar{N}, \bar{u}, \bar{F}, \bar{G})$ in the weak-* topology as $\nu \to 0^+$. $$(N, u, F, G) \stackrel{*}{\to} (\bar{N}, \bar{u}, \bar{F}, \bar{G}), \text{ weakly-* in } L^{\infty}(\mathbb{R}^+; H^s).$$ Furthermore, in the limit as ν approaches zero, the convergence holds in the distributional sense, $$\nu(u \times B) \to 0, \quad \nu \partial_t G \to 0,$$ $$\nu \rho u \to 0, \quad \nu \partial_t F \to 0.$$ These results suffice for taking the limit in the Maxwell equations given in (3.33), allowing us to conclude that $$\begin{cases} \nabla \times \bar{G} = 0, & \operatorname{div}\bar{F} = -\bar{N}, \\ \nabla \times \bar{F} = 0, & \operatorname{div}\bar{G} = 0. \end{cases}$$ (3.34) Notice that ρ_s and b(x) is independent of ν . Let $$\bar{n} := \bar{N} + \rho_s, \quad \bar{E} := \bar{F} + E_s, \quad \bar{B} := \bar{G} + B_s.$$ Then one obtains from (1.2) that (\bar{E}, \bar{B}) satisfies $$\begin{cases} \nabla \times \bar{B} = 0, & \operatorname{div}\bar{E} = b(x) - \bar{n}, \\ \nabla \times \bar{E} = 0, & \operatorname{div}\bar{B} = 0, \end{cases}$$ (3.35) The analysis reveals that \bar{B} is time-independent and spatially uniform. The curl-free condition $\nabla \times \bar{E} = 0$ implies the existence of an electric potential ϕ satisfying $\bar{E} = -\nabla \phi$. Under these conditions, equation (3.35) reduces to $$\Delta \phi = b(x) - \bar{n}, \quad \bar{E} = -\nabla \phi. \tag{3.36}$$ Furthermore, the uniform estimate (2.1) also implies that sequence $\{(\partial_t N, \partial_t u)\}_{\nu>0}$ is bounded in $L^2([0,T];H^{s-1})$ for any T>0. By the classical compactness theories (See for instance [13]), sequences $(N)_{\nu>0}$ and $(u)_{\nu>0}$ are bounded in $C([0,T];H^{s'})$ for any $s'\in[0,s)$, which yields that up to subsequence, (N,u) converges strongly to (\bar{N},\bar{u}) by the uniqueness of the limit. These are sufficient for us to pass to the limit $\nu\to 0$ in the first two equations in (3.33) to obtain $$\begin{cases} \partial_{t}\bar{N} + \bar{u} \cdot \nabla \bar{N} + (\bar{N} + n_{e})\operatorname{div}\bar{u} + \bar{u} \cdot \nabla n_{e} = 0, \\ \partial_{t}(\bar{\rho}\bar{u}) + \operatorname{div}(\bar{\rho}\bar{u} \otimes \bar{u}) + \nabla p(\bar{\rho}) = -\bar{\rho}\bar{E} - \bar{\rho}\bar{u}, \\ \partial_{t}\bar{\theta} + \bar{u} \cdot \nabla \bar{\theta} + \frac{2}{3}\bar{\theta}\operatorname{div}\bar{u} - \frac{2}{3\bar{\rho}}\Delta\bar{\theta} = \frac{|\bar{u}|^{2}}{3} - (\bar{\theta} - 1). \end{cases}$$ $$(3.37)$$ Similarly, noticing (1.2) and (3.36), one obtains that (3.37) together with (3.36) can be rewritten into $$\begin{cases} \partial_t \bar{n} + \bar{u} \cdot \nabla \bar{n} + \bar{n} \operatorname{div} \bar{u} = 0, \\ \partial_t \bar{u} + (\bar{u} \cdot \nabla) \bar{u} + \nabla (\bar{\rho} \bar{\theta}) = \nabla \phi - \bar{u}, \\ \partial_t \bar{\theta} + \bar{u} \cdot \nabla \bar{\theta} + \frac{2}{3} \bar{\theta} \operatorname{div} \bar{u} - \frac{2}{3\bar{\rho}} \Delta \bar{\theta} = \frac{|\bar{u}|^2}{3} - (\bar{\theta} - 1) \\ \Delta \phi = \bar{\rho} - b(x), \end{cases}$$ which is exactly the compressible Euler-Poisson equations (1.5). Then Theorem 2.2 is proofed. ### 4 conclusion In the next step, we aim to calculate the concrete decay speed. # References - [1] C. Besse, P. Degond, F. Deluzet, J. Claudel, G. Gallice, C. Tessieras, A model hierarchy for ionospheric plasma modeling, Math. Models Methods Appl. Sci. 14 (3) (2004) 393-415. - [2] F. Chen, Introduction to Plasma Physics and Controlled Fusion, vol. 1, Plenum Press, 1984. - [3] G.-Q. Chen, J.W. Jerome, D. Wang, *Compressible Euler-Maxwell equations*, Transp. Theory Stat. Phys. 29 (3-5) (2000) 311-331. - [4] L. Hsiao, Q.C. Ju, S. Wang, The asymptotic behaviour of global smooth solutions to the multidimensional hydrodynamic model for semiconductors, *Math. Methods Appl. Sci.*, 2003, **26**(14): 1187-1210. - [5] Z. Tan, Y.J. Wang, Y. Wang, Stability of steady states of the Navier-Stokes-Poisson equations with non-flat doping profile, SIAM J. Math. Anal., 2015, 47(1): 179-209. - [6] T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ration. Mech. Anal. 58 (3) (1975) 181–205. - [7] P.D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, SIAM Regional Conf. Lecture, vol. 11, Philadelphia, 1973. - [8] A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, vol. 53, Springer-Verlag, New York, 1984. - [9] Y.-J. Peng, Stability of non-constant equilibrium solutions for Euler-Maxwell equations, J. Math. Pures Appl. (9) 103 (1) (2015) 39-67. - [10] S. Klainerman, A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, *Commun. Pure Appl. Math.* **34** (4) (1981) 481524. - [11] A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Applied Mathematical Sciences, vol. 53, Springer-Verlag, New York, 1984. - [12] A. J. Majda, A. L. Bertozzi, Vorticity and Incompressible Flow[M], Cambridge University Press, 2002. - [13] J. Simon, Compact sets in the space L^p(0, T; B), Ann. Mat. Pura Appl. **146**(4) (1987) 6596 - [14] Q. Liu, C. Zhu, Asymptotic stability of stationary solutions to the compressible Euler-Maxwell equations, Indiana Univ. Math. J. **62** (4) (2013) 1203–1235. - [15] A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, vol. 53, Springer-Verlag, New York, 1984. - [16] Y.-J. Peng, Stability of non-constant equilibrium solutions for Euler-Maxwell equations, J. Math. Pures Appl. (9) **103** (1) (2015) 39–67. - [17] Y.-J. Peng, S. Wang, Convergence of compressible Euler-Maxwell equations to compressible Euler-Poisson equations, Chin. Ann. Math., Ser. B 28 (5) (2007) 583–602. - [18] T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ration. Mech. Anal. **58** (3) (1975) 181–205. - [19] S. Klainerman, A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Commun. Pure Appl. Math. 34 (4) (1981) 481–524. - [20] P.D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, SIAM Regional Conf. Lecture, vol. 11, Philadelphia, 1973. - [21] C. Liu, Z. Guo, Y.-J. Peng, Global stability of large steady-states for an isentropic Euler-Maxwell system in \mathbb{R}^3 , Commun. Math. Sci. 17 (7) (2019) 1841–1860. - [22] C. Liu, Y.-J. Peng, Stability of periodic steady-state solutions to a non-isentropic Euler-Maxwell system, Z. Angew. Math. Phys. **68** (5) (2017) 105, 17. - [23] Q. Liu, C. Zhu, Asymptotic stability of stationary solutions to the compressible Euler-Maxwell equations, Indiana Univ. Math. J. **62** (4) (2013) 1203–1235. - [24] A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, vol. 53, Springer-Verlag, New York, 1984. - [25] R. Duan, Global smooth flows for the compressible Euler-Maxwell system. The relaxation case, J. Hyperbolic Differ. Equ. 8 (2) (2011) 375–413. - [26] Y. Deng, A.D. Ionescu, B. Pausader, The Euler-Maxwell system for electrons: global solutions in 2D, Arch. Ration. Mech. Anal. 225 (2) (2017) 771–871. - [27] Y.J. Peng, Stability of non-constant equilibrium solutions for Euler-Maxwell equations, J. Math. Pures Appl. (9) **103** (1) (2015) 39–67. - [28] T, T. L., B, Q. Y., X, K. Zh. (2025). Asymptotic stability of a 3D thermal hydrodynamic model for semiconductors with large and non-flat doping profile. [preprint] Journal of Evolution Equations. - [29] Y. Li, C. Wang and L. Zhao, Global convergence in non-relativistic limits for Euler-Maxwell system near non-constant equilibrium, J. Differential Equations 377 (2023), 297–331; - [30] Peng, Global solutions for the relativistic Euler-Maxwell system in 3D. (2021)