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Global convergence in non-relativistic limits for the non-isentropic
Euler-Maxwell system near non-constant equilibrium

Abstract. This work establishes the global-in-time convergence when the light speed ¢ — oo

1
(v = = — 0), demonstrating how the non-isentropic Euler-Maxwell system reduces to the

Euler-Poisson system near non-constant equilibria. The non-isentropic setting introduces new
challenges due to temperature effects and energy coupling, complicating dissipation estimates for
the electric field E. A div-curl decomposition is required, disrupting the systems anti-symmetric
structure and L?-estimates. By constructing a tailored strictly convex entropy functional and
employing refined induction arguments, we establish global convergence. Key to our analysis
is the non-singularity of £ under non-relativistic scaling, alongside novel estimates for thermal-
electromagnetic interactions.

Keywords. Euler-Maxwell system; global-in-time convergence; non-constant equilibrium state;
non-relativistic limit.

1 Introduction

This study investigates the convergence rate in the non-relativistic limit for a compressible,
non-isentropic one-fluid Euler-Maxwell system describing electron dynamics around non-uniform
equilibrium states.

Op + div(pu) = 0,

O(pu) + div(pu ® u) + Vp = —p(E + vu x B) — pu,
pO0 + pu - VO + %pdivu - ;AH = %,0|u|2 —p(0—1),
vO,E —V x B=vpu, divE =b(z)—p,
vo:B+V xE =0, divB =0,

t =0,(p,u, E, B) = (po, uo, Eo, Bo)-

(1.1)

We denote p,u = (ur,us,u3)’ the density and velocity of the fluid, and E,B the electric
and magnetic field, respectively. They are all functions of the time ¢ > 0 and the position
x = (x1,72,23)7. The physical parameter ¢ > 0 is the speed of light. We denote its reciprocal




as v. The functions b = b(x), and p = pf are doping profile, and the pressure, respectively. The
periodic problem of the Euler-Maxwell system then reads [1, 2, 3] due to the fact that

O0tb = 0y div EY 4 0p” = div(p”u”) — div(p"u”) = 0.

Now we consider the non-constant steady state of (1.1) with zero velocity. Let Wy = (ps, 0, 1, Es, Bs)
be the steady solution to system (1.1) satisfying

Vps = psv¢5a Ey = -V,
V x By =0, divEs =b(x) — ps, (1.2)
VXxE;=0, divB;=0

with

lim ps(z) =1, lim ¢5 = 0. (1.3)
The existence and uniqueness of solutions of (1.2)-(1.3) can be easily obtained (cf. [4, 5]). Here
we learn that B is a constant vector.

Proposition 1.1. Let b(x) > 0, b(z) € C*Y(R3), Vb(x) € HF¥(R3), k > 3 when ps — b €
HF1(R3), the system (1.2)-(1.3) has a unique classical solution (ps, ¢s) which satisfies
0 < inf b(x) < ps(z) < sup b(z) < oo,
zER? z€R3
and
1(Vps, V¢S)‘|H’€(R3) <G,
where C' depends on |[Vb|[ i gs)-

The well-developed theory of Euler-Maxwell systems establishes that when the density
p > 0, system (1.1) constitutes a first-order symmetric hyperbolic system, guaranteeing local-in-
time existence and uniqueness of smooth solutions through classical results by Lax [20] and Kato
[18] (see also [19, 24]). For global-in-time solutions, existing research covers various scenarios:
constant background velocities [25, 26|, small perturbations from constant vectors [23], isentropic
systems with generalized irrotational constraints B + V x u [16, 17], and more general cases
involving non-constant background velocities [14, 15, 21, 30]. It should be noted that these cited
results typically assume the spatial domain is either a torus or the whole of space, and often set
v = 1 for simplicity. Besides, Y, Wang and Zhao [28] study the global-in-time convergence of
non-relativistic limits from Euler-Maxwell systems to Euler-Poisson systems near non-constant

1
equilibrium states by letting the reciprocal of the speed of light v := — — 0.

This paper primarily investigates the global convergence behavicor of the non-relativistic
limit (v — 0) in the vicinity of a general non-constant equilibrium state Ws, where Ws is not
required to be a small perturbation of a constant vector. Our analysis begins with a formal
derivation of the limiting equations. By considering (7, u,#, E, B) as the limiting values of
(p,u,0, F, B) and taking the formal limit v — 0 in system (1.1), we obtain

Op + div(pu) = 0,

0y (pu) + div(pu ® @) + Vp(p) = —pE — pu,
_ _ 9_ 2 _ i1l 2 _

VxB=0, divE =b(z)—p,

VxE=0, divB=0,




From the previous analysis, we deduce that B remains a constant vector field. Given that
the curl of E vanishes (V x E = 0), we can express E as the negative gradient of a scalar
potential @, i.e., E = —V@. By inserting this relationship into equation (1.4), we arrive at the
Euler-Poisson system of equations

Op + div(pu) = 0,
Oy (pu) + div(pa @ @) + Vp(p) = pVé — pu,
jal?

_ _ 2 _ 2 _ _
Ap = p—b(x).

(1.5)

2 Preliminaries and main results

2.1 Notations and inequalities

For later purpose, we introduce the following notations. For multi-indices o = (a1, a2, a3) € N3,
we denote o
8 «

8‘?26 ala aga a3’

Throughout this paper, the positive general constants C' and ¢ can be different in different lines.
The inequality f < ¢ means that there is a constant C' such that f < Cg. The constant C,

la] = a1 + ag + as.

denotes constants that depend on 7. Here and follows the notes / f= / fdz, ||| =[] | L2 (ms),
R3

|+ [& = [l [l % (m3y, and || - [[ e == || - || p(m3) Will be used. For the convenience, we introduce the
hybrid spaces M;’, T, and M}, whose norms are denoted as

IRy == D IVEIA £,

Jj=1

117, = > 1oL fI%,
j=1

and
1A Rs, == AP+ IS*FIZ 4 A1 o + 117,
k

For any given time T > 0, let us introduce the Banach space

BS,T = ﬂ Ck([ov T]a Hs_k)v
k=0
for all t in [0, T] with the norm

@I =D IVaf(t, )P

L+ a|<k

The Euler-Maxwell system constitutes a first-order quasilinear system of hyperbolic type
that admits symmetrization. As a consequence, applying the well-established existence theory
for such systems (cf. [6, 7]), we obtain the local-in-time existence of smooth solutions to the
initial value problem.



Proposition 2.1. (Local existence of classical solutions to (1.1) [29]) Let s > 3 be an integer
and (po — ps, uo, 00 — 1, By — Es, By — Bs) € H® with py > 2p for some positive constant p. Then
there exists T, > 0 such that system (1.1) has a unique smooth solution (p,u, 0, E, B) satisfying

(p_p87u70_17E_E87B_BS)GBS,Tyv pZB

Next, we introduce the Moser-type calculus inequalities, which will be frequently used in
later proof. For details, we refer to [8, 9].
Lemma 2.1 (Moser-type inequality [10, 11]). Let & > 1 be an integer. Suppose u € H”,
Vu € L™, and v € H*"1NL*®. Then for every o € N? with |a| < k, it holds 0% (uv) —ud®v € L?,
and
107 () = wdo] < Ci (IIVullo [ D* 20| + [ D2 1))

where C}, denotes a constant only depending on &, and

HDkuH =3 0%l

|laf=k

In particular, when k& > 3, the Sobolev inequality yields
10% (uv) — ud[| < Crl|Vullp—rlv]lp—1-
Lemma 2.2[Commutator Estimates, [12]] Let [ > 1 be an integer, and define the commutator
[V, g]h = V'(gh) = gV'h.

If po, p1,p2, 3, pa € [1,4+00] satisfy
1 1 1 1 1

)

bo b1 b2 p3s D4

then
S AVl e

LPo

oo

N P
LP2

o Bl

In addition, for [ > 0,

12l o -

N ||9||Lm s

v,

Vlh‘

+[v's

LP2

2.2 Main results

The main results of the paper are as follows.
To make the proof more clearer, we define £(t) for k > 3 as follows:

gl(t) = ||(p - p87u79 - 17V(¢ - ¢s)aB - Bs)||27 52(25) = ||Vk(p - ps>u70 - 1vB - BS)||27

Es(t) =l (o, )1} Ea(t) = || (p, w, O)IIT, . E(t) = Z&(t)-

The main purpose is to derive a key prior estimate of (p,u, 0, ¢), which is independent of
time t. We will always assume d < 1 in this section.



Theorem 2.1. For given constant €9 > 0, assume the initial data satisfy
8(0) < £0-
Then there exist positive numbers p and p such that if (p,u,0,¢) is a smooth solution of problem

(1.2)-(1.3) satisfying

the following estimate is valid
¢
E(t) +/ E(r)dr < C&(0). (2.1)
0

Theorem 2.2. (The non-relativistic limit) Let the conditions in Theorem 2.1 hold. Let (p,u,0, E, B)
be the global solution obtained in Theorem 2.1. Assume that as v — 0,

(po — ps, w0, 00 — 1) = (po — ps, o, 00 — 1),  weakly in H,
then there exist functions (p,u, @) satisfying
(P = ps, @, Vp = Vo) € L*(RY; H?),
and as v — 0, up to subsequences,

(p—pssu,0 — 1,E — Eg,B— By) > (p— ps, 0,0 — 1, Vip — Ve, 0), weakly-+ inL>®(RT; H),
in which (p,u,0,V@) is the global smooth solution to Euler-Poisson system (1.5) near non-
constant equilibrium (ps, 0,05, Vs).

3 Uniform energy estimates

3.1 Global existence of solutions

Here, in this subsection, we demonstrate that the non-isentropic Euler-Maxwell system (1.1)
admits global solutions uniformly for v.

Lemma 3.1. (L2-estimate)For all t € [0, T ], it holds
t
E(0)+ [ 0.0~ 1,90)|dr < Clp.p)E1(0)
0

2
Proof. Dotting (1.1), and (1.1), with U and (1 —671) in L?, respectively, we obtain

d 2 1
L lp0-m0 -1 +2p (LmZ — L 41 4 Zplu)?
dt 37\ps  ps ps 3
1 2 |Vo|? 2 (3:1)
-1 2 -1 2 _
+/<3(1+9 )plul® +p0~ (0 —1) +§ 02 > ——g(puE—puES).
By (1.1),,(1.1)5,and (1.2) we can obtain
1o 1.5\ 1.
O §|F| + §]G| + ;le(F x G) = puF = puFE — puEs, (3.2)
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notice that

Then we can obtain
d 2 (p.p P Lo Lo Lo
— 0 —1n6—1 — —In——--—+1 — —|F -G
o [,0( n )+3ps< n + +3p|uy +3| \+3| |

Ps Ps Ps
1 2 |V6|2
- / (3(1 + 0 Y plul> + p0 (O —1)* + 3%2)‘) =0

We deduce

1
(PP 1>:p_1z 1 s oo o)
p<psnps ot (ps )/Og(pp_lHlEZ () (p = ps)”,

and

o-mo-1-(@-12 [ & — 1)
n = (0-1) 05(9_1)+1d§20(0 1)2.

Then, integrate (3.1) and (3.2) with respect to time over [0, ¢], one has
t
6= povsd = L E = o 5= BYWIP+ [ 10,6~ 1,90) %dr < Clo. p1(0).
0

Next, we will derive the higher-order derivative estimates. In order to get them easily, we
transform (1.1) into the following form:

Op = —pdivu —u - Vp,
u+u-Vu+ V(0 —1)+u+ Vos(ps — p)(pps) L+ (0 —1)p~tVp
—|—p_1V(p - ps) = v(¢ - ¢s) —rvu X (B - Bs) —rvu X BSa (33)
0 +u-VO+ gedivu — %p_lAG = %uQ —(0-1),
A(g—¢s) = p—ps.

Lemma 3.2. Let (p,u,0,¢) be a smooth solution of (1.1) on R3 x (0,T]. Then under the
conditions of Proposition 2.1, there exists a constant C' depending on p and p, such that

_ 3 _

= (27 (o= p )2+ pI VR + S0~ VRO + [V o — o))
t(e—n— 05)/ <|Vku|2 +|VEG2 + \V’HHP)
< Cyll(VO, Y (p = p))I* + (0 + C8)|[(w, p = ps) |> + 8|V BB,
where the suitable small positive constants n and & will be determined later.

Proof. Applying V* to (3.3)1-(3.3)3 and multiplying it by p~'0V*(p — ps), pV*u, and
3
5,09_1Vk(9 —1) in L?, respectively, then

_ 3
(P71 01V (0 = po) 2+ oIV ul? + S0 V0

. (3.4)
+/ <2p|Vku|2 + 3p9—1|vk9\2) =31,
=1

dt
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where
I = /p‘lOtIV’“(p — ps)|2 = p 20|V (p — ps) | + pe| VFul? + gw‘l — 0720,V 0|,
Bi=2 [pVV6-6)e B2 [ 09 6n) Vado - oIV,
I, := —Q/p_lﬁvk(u V)V (p = ps) + pVF(u - Vu)VFu,
Iy = —3/p9_lvk(u-V0)Vk9, Is == Q/pe_lvk(p_lAH—I— %W)v’%),
I = -2 / p L OVF (pdivu) VE(p — ps) + pV 7V (p — ps) IV u+ pV ¥~ V(6 — 1)]VFu,
Ig = —2 / PO IVFOVE (Odivu) + pVFVOVEL
Iy:=2 / vpVFu x (B — B,)|VFu,

By the similar way as that in Lemma 2.3 of [28], lemma 2.1, and lemma2.2, we can obtain

I S 6)IVF(u,0,p = ps)|1*. (3.5)
d

L<—— / VEV (6 = 6)* + Cyl VE(p = po) I* + i (w, VEu, p = ps) 1 (3.6)

L S IVRullIV*(p = po)ll + IV ullllp = psllzee < CyllV*(p = po)lIP +nll (VFu, p = ps) I
(3.7)
L < CylIV¥(p = ps)I” + nllull® + (7 + CO)||V*ul*. (3.8)
I5 S 61V (u, 0, V0) 1. (3.9)
I < —2/91\vkvay2 + (n+ COIVH(w, VO + C, [ VO] 2. (3.10)
I <(n+ CO)[|(u, VFu, V¥4, p— po) |7 + Cyll(V* (0 = ps), VO) > (3.11)

Is < Cy|IVO)1* + |V (u, VO)||.

Applying VF~1 to (1.1), and then multiplying the resulting identities by V*B then integrating
in R3, we obtain

IV % (B = By)llioy < WV 1OE — vV (pu) IV x (B = Bs)llk—1

3.12
< S|IVEHOE, u) |2 1)

By Holder’s and Cauchy’s inequalities, we obtain
Iy < | V*ull(B = Bsllz= |V ul| + [|ull Lo [|V* (B = By)ll) (3.13)

< 8||V¥(u, B — By)||* < 8|V YO E, u, Vu)||?.

Plugging (3.5), (3.6)-(3.7), (3.8)-(3.9), (3.10), and (3.11)-(3.13) into (3.4), the proof the
Lemma 3.2 can be completed.
Next, we will derive the higher-order estimate of density.



Lemma 3.3. Let (p,u,0,¢) be a solution of (1.1) on R3 x (0,T), it hold

(c=n—=CO)V*(p = p)I> + IV* " (p— ps)II
< Gyl V¥ w® + Gyl (w, VO, p = po)|1? (3.14)
+ (1 + CO)IV* (u, VO)|* + 6| V* 10, B || + 6]| B — Bs|?,
where the suitable small positive constants n and & will be determined later.

Proof. Applying V*~! to (3.3), and then multiplying the resulting identities by V¥~V (p—
ps) then integrating in R, we obtain

[ IV o= g IV = ) = Zm, (3.15)
where
M= [V 9= p )V Vo= g Ihi= [ 94w VTV ),
I3 := /V’“_luv’“_lv(p—ps% I = /Vk‘l[Vps(ps—p)(pps)‘lle_lv(p—ps),
II5 := /Vk_lutvk_IV(p—ps), Il := /V’HV(G— DVFIV(p — ps),
1= [ V(0 - 0 VAV V(- po),
IIg = /Vk_l[—yu x (B — B,) — vu x BVF 1V (p — py).

By the similar way as that in Lemma 2.4 of [28], we can obtain

I < Cyllp = plP +0lIV*(p = p)I? T2 S 6IVF(u, p = ps) > + 6]ul?,
I3 < Cyllull® + 9l V*(p = ps,w)lI?, IL <0l VE(p = po) 1> + Cyllp — psl|?,

_ (3.16)
15 <V (p = ps)IIP + ColV* Yl IIs <[V (p — ps, VO I? + Gyl V1%,
1T < l|V*(p = ps, VO)|I* + Cy || VO,
It follows from Holder’s, Gagliardo-Nirenberg’s, and Cauchy’s inequalities that
ITg < 6||V* " (u, B — By)||* + 8|V (p — ps)|?
s < 0V I+ 81V (o= po)] )

< 8|V, V(p — ps), V(B = By))|I> + 6| B — Bs|”.
Plugging (3.16)-(3.17) into (3.15), we can prove (3.14). O

Lemma 3.4. Let (p,u,0,¢) be a solution of (1.1) on R x (0,T]. Then under the conditions of
Proposition 2.1, there exists constants C and c depending on p and p, such that for1 <r < k-1,

1d
2dt

+(c— C9) / (1Y%~ 0pul? + [V*=r o0 + |94~ o; vo?)

— —rar —rar 3 —rAar
[ (o701 eg o + IV opup + oo v opoP)

(3.18)
< CIV*orpl? + Cll(p,u, 0,V 0) |3, + C6[|(p — ps, 0 — 1)
+ C6llp,u, 0, V0|2 iz + COl[VF(p — ps, VO,
k

where the suitable small positive constant & will be determined later.



Proof. Applying VF=707 to (3.3)1-(3.3)3, multiplying it by p~ 0V =07 p, pV*¥~"07 u, and
5 ,OG_IV’“_T&{ 6 in L?, respectively, we deduce

1d 3
¥ [plﬁlv’”@{plz + | VET 0wl + 2001|V'”9[9!2}
3 8 (3.19)
k—rqr, |2 —1lyxvk—raqrpl2| _ :
+/ [p|V O ul® + Sp0~ VT 0]0) ] —ng,
where J;, i =1,---,8 are defined as

1 — —rar —rar - -ror
S 122/[(%} L0)IVET O pl? + pu VE Ol + (08 )i VT O] 6P

Jy = / [pvk*Ta[V(gb— ¢s)v’“*’“a;u} ,

Jy = / [V 9 [V pis(ps — p)(pps) 1 IVF " 0]

Jy = /[ “19VR=T A (u - Vp)VET O p + pVE T (u - V) VT }
Js = /Bp@ LTk (u - VO)VFTor }

Jg = {pﬁ Ik ar (p~tA0)VFTare + p9 LR or jul?VE - Ta’“e}

Jom / [0V 7079 (0~ 1)VF 0w+ o0 R0 (Bdiva) V076
Jg = —/ [PV 1O (p7 IV (p = ps) + (0 = 1)p~ ' Vp) VET O] u

+ p_lﬁvk_rﬁf(pdivu)Vk_Tafp]
Jo = — / PVRT O PR [vu x (B — By) + vu x Bi).

By the similar way as that in Lemma 2.5 of [28], we can obtain
Ji S OIVETO (p,w, ), 2 < CyllpllE,_, + 0l VT (w, 0))?
~ s Wy ) = 1 ) )
Js < (+ CO)T* ol + CylI V0ol + Collolf,, + O3 (ol + 1o — 7).

(3.20)
Jo < Cyl|V*7 8] pl|? + (Co + n)ll(u,p)ll{@:fl +Cyllullg,
Js S OlIV 707 (8, V0, )| + 6| (u, V9)II?W:71 + 6| (u, VO)I7, _,
and
Jo < — /HIIVI“"@?WF + (1 + COIV* TV + (n + CO)| (p, u, V9)||Mk Y1)

+ CO|[(VFVO,VO)|* + Cyll(p,u, 6, VO) |7, -
and

Jr <(n+ CO)|[VE0; (u, 0, VO)|* + Cyl (u, 017, _, + Coll(u, 6 = D[ + Colfull . (3.22)



and
Jg <(n+ CO)IV* 70l + Cyl|V* 78] p||* + Cyll (o, w, 0, VO) |17,

(O )00, VO 1+ Cllp — sl
With the help of (1.1)5,we can obtain
V x (B — Bs) = vO:E — vpu.

Then we can obtain (see[29])

[V x Gll[k-1 = I[VVF —vpull[g-1 < C1[[|F[|[x + Co[|ul|[k-1- (3.23)
So we have
Jo < CylIV* 07 pl? + (C6 + )| (u, p)\@:—l + CyllullF, (3.24)

Finally, putting (3.20), (3.21), (3.22), and (3.24) into (3.19), we can complete the proof of (3.18).
(]

From the result of Lemma 3.4, we still need to estimate the mixed derivative of density as
follows.

Lemma 3.5. Let (p,u,0,$) be a solution of (1.1) on R3 x (0,T], then under the conditions of
Proposition 2.1, there exists constants C' and c¢ depending on p and p, such that

[ IV 3o (e == ) [ 195 o
< GylIVET Aol + Gl w O3, + (1 OO (o, )l
OBV (p — p )|+ O30 — )| + 0] 3} (.0, 8)

where the suitable small positive constants n and & will be determined later.

Proof. Applying V¥~"107 to the (3.3), and multiplying it by V*~"9}p in L?, we arrive
at

/ ‘karflatrp|2 - _ / karflaz“utkaragp _ /vkrlaz"(u . Vu)kara{p
- / VAT oru vy p — / VR TN (p = p) VO
_ / \VARE A /A vl e / VRO [V ps(ps — p)(pps) T IVETTO)p

- /V’“""‘lé’f[(ﬁ ~D)p~ VI VET O p — /V’“‘Té’fpv'“""”@{[vu x (B — Bs) +vu x By
8
= ZPl
i=1

It is easily to deduce by [28] that
Py < Gl 4+l VT30l Py < Ol u) g + Clul,

(3.25)

Py < CyIVF A 0pull + VO < 0 (o, )2 + Gyl

Po< = [ 5 VRO 4 (1 Ol s + Colll

Py-+ Po-+ Py < 0l 9707 (6,0, V)| + Collol 1 + G0, O, + 00 — )2
(3.26)
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By means of Cauchy’s inequality and (3.23), one can deduce that
Py < §||VF 100 (Vp, )12 (3.27)
Inserting (3.26) and (3.27) into (3.25), the proof of Lemma 3.5 is complete. O

Lemma 3.6. Let (p,u,0,¢) be a solution of (1.1) on R3 x (0,T], 1 <r < k. Then under the
conditions of Proposition 2.1, there exists constants C' and ¢ depending on p and p, such that

Vd [ o NP B o
s | (77 0106 + ploful? + Sp0~0[0) + (e = = CO) (0w, 70, 0 V)
< ol p, 70, 07w, ) |+ 510, 0, 0) B + OBl (11, O s -+ 9

where the suitable small positive constants n and & will be determined later.

Proof. Applying 0] to the first three equations in system (3.3) and then multiplying the
resulting identities by p~007 (p — ps), pOiu, and %p9_18[(9 — 1), respectively, summing them
up and then integrating in R3, we derive

1d

8
— r I 3 — I I 3 — T
sai | ° 19|8t/)|2+/7‘8t“’2+§/)9 1‘at9‘2d33+/ﬂ‘at“’2+2/)9 1‘at0‘2:z‘/i7 (3.28)
i=1

It is easily to deduce by the lemma 2.7 of [28]

V=g [ 000roP + puiopul + ot loroP

Vo= [ oV -0 0 Vo= [ 00 [Voulo.— p)lon) ] O,
Vi~ [ o0 (- Vu)ofut o163} (- V)i,

Vs = —; / 07107 (u- V)L, Vo= — / P00y (divub)dr o + pdy Vo u,

1
Vo= [ o707 (07 20)070 + 07 3 a0,
Vs =— / p~ 1007 (pdivu)d] p + pd} [p~ 'V (p — ps)|0fu + pdf [(0 — 1)p~ ' Vpldju

Vo = —/p@[u@tr[uu X (B — Bs) + vu x Bs].

Notice that
- / PO ud] (v x Bs) = 0.

and
vdy(B — Bs) = =V x (E — Ey),

then we can obtain

w0 (B — By)|| < Cllpllz,. (3.29)
So we have
Vo < d|(wp)7,- (3.30)

By the similar way as that in Lemma 2.7 of [28] and (3.30), we can prove the Lemma 4.10. We
omit it for the sake of simplicity.

11



Lemma 3.7. Let (p,u,0,¢) be a solution of (1.1) on R3 x (0,T], 1 <r < k. Then under the
conditions of Proposition 2.1, there exists constants C' and ¢ depending on p and p, such that

d - T — 7 — T — 1 T —
-2 / [8: o) (pu) + 07 (- V)] () + 5105 ()

+(e=n=C0) [ (08P +10 (o) + 107 (pu)P) (331)
< Cyll@f~ u, w)l* + Call(p, u. 0, VO |7, _, + Cdll(p, u, V)| 01
+ (n+ CO)I; (u, 0, VO)* + 0| V*ul|* + Collp - psI3,
where the suitable small positive constants n and & will be determined later.

Proof. Multiplying (3.3), by p and applying 9] to it, then dotting it by 9] “Y(pu) in L2
we arrive at

1d [, .. - -
g [ e+ [10ke? = [ okpu)ot o)+ [ ok ou- Vu)ofpu)

- / oK (97 6)0F (pu) + / OEpY (0 — 1)]0F (pu)

+ [ Ok Vo — o0k (o) + [ 017016~ 10k o)

7
— /af[upu X (B — Bs) + vpu x Bs}af’l(pu) = ZX"'
i=1
Based on integration by parts and (3.29), we can obtain
X7 < 8l (wp)l, (3.32)

By the similar way as that in Lemma 2.8 of [28] and (3.32), we can prove the (3.31). We omit
it for the sake of simplicity. Time derivatives cannot be bounded by Gagliardo-Nirenberg’s
inequality under L?-norms in space. Therefore, we derive the time integral estimate of the
higher-order derivative of temperature through the relaxation effect of (3.3).

Lemma 3.8. Let (p,u,0,¢) be a solution of (1.1) on R3 x (0,T], 1 <r < k. Then under the
conditions of Proposition (2.1), there exists constants C and c depending on p and p, such that

1 d T — — T — s
51 | (0716 = DP +5710,71967) + (e~ €3) [ |oyeP

< C6l|(u, 8, V)7, + CO||VOI[3 + Cl10;~ (u, VO)|I?,
where the suitable small positive constant & will be determined later.

By the similar way as that in Lemma 2.8 of [28] and (3.30), we can prove the Lemma 4.10.
We omit it for the sake of simplicity.

Lemma 3.9. Let G = B — B, it holds:

d e} (63 6]
(10 EI? + 0°GI1) < 807 (u, E — B
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Proof. Start with the fifth equation in system (1.3):

O(E — E;) — écurl(G) = pu.

Apply 0% and take the inner product with 0%(E — Ej):

Dor (2~ B~ (eunl(@°6), 0°(B ~ E.)) = 25" (ow), 0" (E ~ B,)).

Next, take the fourth equation in (1.3):

1
oG + z curl(E — E5) = 0.

Apply 0% and take the inner product with 0“G:

2107617 + 2 (unl(0(E  B.)),9°G) = 0.

By using the vector identity a - curl(b) + b - curl(a) = div(a x b),

d
7 (10°BIP +110°G|]*) = 2(6%(pu), 0°(E — Ey))
< 8]10%(u, E — E,)|*

Proof of Theorem 1.1. Theorem 2.1. follows by combining Lemma 3.1 - Lemma 3.9.
Proof of Theorem 2.2. Recall that

N=p—p,, ©=0-1, F=E—-E,, G=B-B,.

We initially observe that the tuple (N, u, ©, F, G) satisfies the following coupled system of

equations:

IN +u-VN + (N + ps)divu + u - Vps =0,

ur +u-Vu—+ VO +u+ VpsN(pps) L +0p~1Vp
+p VN = —F —vu x G — vu x B,

Oy +u-VO+ §9divu — %pflAH = %uQ —(0—-1),

voF —V x G =vnu, divF =-—N,

vo,G+V x F=0, divG=0.

(3.33)

The uniform bound given in (2.1) shows that the family (V,,u,, F,, G,)v > 0 is uniformly
bounded in the space L>®(R*; H*). Consequently, we can extract subsequences (still denoted
by the same symbols) and find limit functions (N, 4, F, G) belonging to L>(R*; H®) such that
(Nv,u,,F,,G,) — (N,u, F,G) in the weak-* topology as v — 07.

N,u,F,G) 5 (N,a, F,G), weakly-* in L®(RT; H®).
( y

Furthermore, in the limit as v approaches zero, the convergence holds in the distributional

sense,

viux B) =0, vo,G— 0,

13



vou — 0, voF — 0.

These results suffice for taking the limit in the Maxwell equations given in (3.33), allowing
us to conclude that

VxG=0, divF =—N,
7 v (3.34)
VxF=0, divG=0.
Notice that ps and b(x) is independent of v. Let
ﬁ::N—I—ps, E:=F+FE,, B:=G+B,.
Then one obtains from (1.2) that (E, B) satisfies
VxB=0, divE = b(z) — 7,
> VE = b(z) —n (3.35)
VxE=0, divB=0,

The analysis reveals that B is time-independent and spatially uniform. The curl-free condition
V x E = 0 implies the existence of an electric potential ¢ satisfying £ = —V¢. Under these
conditions, equation (3.35) reduces to

Ap=b(z) —n, E=-Vo¢. (3.36)

Furthermore, the uniform estimate (2.1) also implies that sequence {(9:N,diu)} >0 is
bounded in L2([0,T]; H5~!) for any T > 0. By the classical compactness theories (See for
instance [13]), sequences (N),~o and (u),~o are bounded in C([0,T]; H*) for any s’ € [0,s),
which yields that up to subsequence, (N, u) converges strongly to (N, #%) by the uniqueness of
the limit. These are sufficient for us to pass to the limit v — 0 in the first two equations in
(3.33) to obtain

N + i -VN + (N + ne)diva + @ - Vn, = 0,

dy(pu) + div(pu ® @) + Vp(p) = —ﬁEQ— p, (3.37)
_ _ 92_ 2 _ i _

Similarly, noticing (1.2) and (3.36), one obtains that (3.37) together with (3.36) can be
rewritten into
on+u - Vn + ndiva = 0,
du+ (u-V)u+V(pd) = Vo —a,
0+ Y0+ 20divi— —A0 =
3 3p

which is exactly the compressible Euler-Poisson equations (1.5). Then Theorem 2.2 is proofed.

4 conclusion

In the next step, we aim to calculate the concrete decay speed.
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