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Abstract

The exceptional properties of graphene have sparked intense research interest necessitating
a deeper understanding of its molecular architecture and chemical behavior. Degree-based
topological indices are mathematical descriptors used in theoretical chemistry and materials
science to quantify the structural properties of molecules and materials. This study explores the
application of some degree-based topological indices and the M-polynomial to unravel graphene’s
chemical properties. Our investigation of some novel topological indices, offers unique insights
into the structure-property relationships governing graphene’s behavior. These findings highlight
the versatility of degree-based topological methods in advancing materials science research
and facilitating the development of graphene-based technologies. By harnessing the power of
mathematical modeling, this work will help future material design and engineering initiatives.
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1 Introduction

Chemical Graph Theory is an interdisciplinary field in which the molecular structure of a chemical
compound is analyzed as a mathematical graph and related mathematical questions are investigated
through graph theoretical and computational techniques. One of the most important ideas employed
in Chemical Graph Theory is the concept of Chemical Indices, also known as Topological Indices.
Topological indices are numerical values associated with the graph structure of a chemical compound.
For this reason, topological indices are generally considered as descriptors of chemical structures.
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Topological indices include distance-based indices, degree-based indices and spectral-based indices
(12; 13; 21). They play an important role in the Quantitative Structure Activity Relationship (QSAR)
and the Quantitative Structure Property Relationship (QSPR) (6; 12; 21). Many degree-based topological
indices that correspond to chemical properties of the material under investigation are generated by
M-polynomials.

A graph G (16) is an ordered triple (V(G),E(G),¥ ) consisting of a nonempty set V(G) of vertices,
a set E(G) of edges, disjoint from V(G) and an incident function ¥ which associates to each edge
of G, an unordered pair, not necessarily distinct, of vertices of G. If no confusion arises, we write V,
E, and ¥ respectively instead of V(G), E(G) and ¥¢.

Vg U1
U3 Uy

Fig. 1 An undirected graph G with four vertices and three edges

If an edge e joins two vertices u & v of G, we say that u & v are adjacent and also e is incident
with u and v. In this case, we write uv € E or u~v. The number of edges incident with a vertex u of a
graph G is denoted by d¢(u) or simply d(u) (16). In Fig. 1, vy and v, are adjacent while v, and vs are
not.

Graphene is a two dimensional material derived from graphite, composed entirely of carbon
atoms arranged in a hexagonal lattice. As a fundamental element in nature, carbon is ubiquitous
in everyday materials, including the graphite found in pencil leads. Graphene is recognized as the
world’s thinnest, strongest, and most electrically and thermally conductive material. It is notable
for its exceptional combination of toughness, flexibility, lightness, and high tensile strength. Studies
estimate that graphene is approximately 200 times stronger than steel and five times lighter than
aluminium. Because of these remarkable properties, it has a wide range of applications, including
sensors, batteries, and carbon nanotubes. In addition, carbon-based materials such as carbon fibres
play a critical role in the construction of modern aircrafts due to their strength-to-weight efficiency.

2 Literature Review and Motivation

Chemical graph theory has long been a powerful tool for modeling molecular structures using the
principles of discrete mathematics. Among its most prominent tools are degree-based topological
indices, which translate the connectivity of molecular graphs into numerical descriptors that correlate
with physical and chemical properties (6).

In 2014, Gutman et al. (11) introduced the concept of the M-polynomial as a unifying method to
compute a wide range of degree-based indices such as the Randi¢, Zagreb, GA, and ABC indices.
This algebraic framework enables symbolic derivation of these indices once the edge distribution by
vertex degrees is known. Since then several researchers have extended the M-polynomial method
to model nanostructures. Murtaza et al. (19) applied it to graphene oxide, while Javaid et al. (17)
analyzed graphene-like nanoribbons. Rafique et al. (20) demonstrated its applicability to silicate
and hexagonal networks. These studies affirm the M-polynomial’s flexibility and predictive power in
capturing molecular behavior.

However, many of these works focus on specific classes of hydrocarbons, lattices, or chemically
modified graphene derivatives. There remains a gap in the systematic application of M-polynomials to
pure finite graphene structures, particularly with the aim of linking calculated indices to key molecular
properties such as surface area, strain energy, and stability.
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The exceptional electrical, thermal, and mechanical properties of Graphene are closely tied to
its molecular structure. Topological descriptors offer a computationally inexpensive and structurally
informative approach to approximating important physicochemical properties of molecular systems,
making them valuable tools in theoretical chemistry and materials science. Motivated by this, the
present work explores how the M-polynomials derived from degree-based indices can characterize
finite graphene structures and correlate with their physicochemical behavior. By analyzing edge types
and computing relevant indices, we hope that this study will contribute to the theoretical understanding
of graphene and supports its application in materials science and nanotechnology.

3 Basic Definitions

In this section, we summarize several classical degree-based topological indices that are utilized
in our analysis. These indices serve as mathematical descriptors of molecular structures and are
extensively applied in chemical graph theory, particularly in the modeling of physicochemical properties
through QSAR/QSPR studies.

1. Randi¢ Index: Introduced by Milan Randi¢ in 1975 (13), the Randi¢ index of a graph G,
denoted by R(G), is defined as

R@&= 3 ¢le

wveE(G) “

where d, and d, denote the degrees of vertices « and v, respectively.

2. Zagreb Indices: Proposed by Trinajsti¢ and Gutman in 1972 (12), the first and second Zagreb
indices are given by:

Mi(G)= D (du+tdy), Mx(G)= > du-d

wweE(G) weE(G)

3. Augmented Zagreb Index (AZl): Defined by Furtula et al. in 2010 (9), the AZI index is
expressed as:

dud ’
azi@)= [l

uwveE(G)

4. Geometric—Arithmetic Index (GA): Introduced by Vukicevi¢ and Furtula in 2009 (22), the GA
index is defined as:

Vdudy
GAG) = > Tl 1 L)
weB(G) 2V ¢ v

5. Harmonic Index (H): Proposed by Zhong in 2012 (25), the harmonic index is defined as:

6. Atom-Bond Connectivity Index (ABC): Introduced by Estrada et al. in 1998 (7), the ABC

index is defined as:
Z [dy +dy — 2

uveEE(G)

Definition 3.1. M-polynomial of a graph G (5; 11)
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Let G = (V, E) be a graph. Fori,j > 1, let m; ; denotes the number of edges e = uv € E(G)
such that {d.(G),d.(G)} = {i,j}, where d.(G) is the degree of vertex « in G. The M-polynomial of
G is denoted by M(G; x, y) and is defined as

M(Gsw,y) =Y maisz'y’

1<j

The M-polynomial encodes information about edge-degree distributions in G. Also, it is useful for
computing various degree-based topological indices of chemical graphs.

In this article, we used edge partition approach, where the edges of a graphene structure are
divided into various groups according to the degrees of the end vertices of edges. We begin with
two hexagons joined each other at an edge (Fig. 2). This is taken as a single unit of graphene.
Each vertex represents a carbon atom, and each edge a covalent bond. This structure is used as the
building block in larger finite graphene graphs.

Fig.2 Basic unit of graphene represented as two fused hexagons sharing a
common edge

The process is continued to form an (m, n) chain (m rows & n columns) of each unit of graphene (Fig.
3 ). Let us call this a graphene with dimension mn.
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Fig. 3 A finite graphene nanostructure composed of m x n hexagonal units

3.1 Degree Distribution in Graphene

In an ideal infinite graphene sheet, every carbon atom is bonded to three others, forming a regular
hexagonal tiling. Thus alll vertices have degree 3 and all edges connect two degree 3 vertices.
Therefore, the M-polynomial of an infinite sheet of graphene is

M(G;z,y) =mss -y’

3.2 Edge Types in Graphene Structure

Table 1: Classification of Edge Types in Graphene Molecular Graphs

Edge Type | Description Type of the graphene
(3,3) Internal edge between two degree- Infinite and finite
3 carbon atoms
(2,3) Edge between boundary vertex and Finite only
interior vertex
(2,2) Edge between two boundary | Finite only (typically corners)

(degree-2) vertices
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Thus the edges of a finite graphene are partitioned into (2, 2), (2,3) & (3,3) groups as follows.

Table 2: Edge partition in a finite (m,n) graphene

Edge Partition (2, 2) (2, 3) (3,3)
m= 1 6 8n-4 2n -1
m > 1 m+ 4 2m +8n-4 émn-4n-m-1

In all the discussions below we assume that G is a finite (m, n) chain of graphene. Using table
2, we define the M-polynomial of such a graphene as below.

Definition 3.2. M-polynomial of a finite (m, n) chain of graphene
The M-polynomial of an (m, n) chain of Graphene G is given by

622y + (8n — 4)x?y> + (2n — 1)z3y® form =1,

M(G,m,n) = .
( ) {(m +4)zy? + (2m + 8n — 4)zy® + (6mn — 4n —m — 1)2%y®  form > 1.

4 Main Results

Result 1. The M-polynomial corresponding to the Randic Index is given by

(24 +2/6)n 4 8v/6 — 12

ifm=1,
R(G) = m+4 2%71@871—4 6bmn —4n—mn—1
5 + NG + 3 if m > 1.
1
Proof. R(G):ZMGEm
Whenm =1
R(G) = 6 4 8n— 4§ (2n—1)——
:3+8n74+2n71
V6 3
_ 9v6+3(8n—4)+ (2n—1)V6
B 3v6
(24 +2V6)n +8v6 — 12
B 3v6
When m > 1

1 (6mn —4n —m — 1)
_|_

R(G) = (m + 4)—— + (2m + 8n — 4)

V2.2 V2.3 V3.3
m+4 2m+8n—4 6mn—4n—mn—1
= + +
2 NG 3
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Fig 4 Surface Plot of R
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Result 2. The M-polynomial corresponding to the first Zagreb Index of G,

My(G) = 26(2n — 1) form =1,
T ) 8m o4 160 4 36mn — 10 form > 1.

Proof. Mi(G) = >>(dy + d)

Whenm =1
Mi(G)=6(2+2)4+B8n—4)(2+3)+ (2n—1)(3+3)
=24+40m — 20+ 12n —6
= 52n — 26
=26(2n —1)
When m > 1

Mi(G)=(m+4)(2+2)+ (2m + 8n —4)(2+ 3) + (6mn —4n — m — 1)(3 + 3)
=4m + 16 + 10m + 40n — 20 + 36mn — 24n — 6m — 6
= 8m + 16m + 36mn — 10
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Surface Plot of M1

Fig 5
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Result 3. The M-polynomial corresponding to the second Zagreb Index of G,
M(G) = 66n — 9 !fmzl,
Tm + 12n + 54mn — 17 ifm > 1.

Proof. M3(G) = > (du.dy)

Whenm =1
Mo (G) = 6(2.2) + (8n — 4)(2.3) + (2n. — 1)(3.3)
=24448n —24+18n—9
=66n—9
Whenm > 1

Mo(G) = (m+4)(2.2) + (2m + 8n — 4)(2.3) + (6mn — 4n — m — 1)(3.3)
=4m+ 16 + 12m + 48n — 24 + 50mn — 36n — 9m — 9

=Tm+ 12n + 54mn — 17
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Surface Plot of M2

Fig 6
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Result 4. The M-polynomial corresponding to the Augmented Zagreb Index of G is

82n +7 .
7 ifm=1,
Zm—}— n—|—?mn—Z ITm > 1.
dud 3
Proof. AZI(G) =>" {m}
Whenm =1,
22 1° 23 1° 33 71°
AZI =6|— —4)|—== m—-1)—22
@) 6[2+272} + (8n ){2+372} +(2n )[3+372}

_82n+7
T4
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Whenm > 1,
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Surface Plot of AZI

Fig 7
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Result 5. The M-polynomial corresponding to the Geometric Arithmetic Index of G is

% [(16v6 + 10)n + (25 — 8v6)]  ifm =1,

GA(G) = _
{4\5/67714— 16\/(7;720n+6mn+3 ifm > 1.

Proof. GA(G) = Eu’uEE 1

10
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Whenm = 1,
GA(G)—6£+(8 —4)£+(2 —1)2\[
:6+2\Tf8 742\—f+(2 -1
- % [(16V/6 + 10)n + (25 — 8v6)
When m > 1,

GAG) = (m+4) + (2m + 8n — 4 )2\—f+(6mn74n7m71)

4\f 16\f 86

4 1 2
:gm-l-#—k&nn-i-?)

Fig 8 Surface Plot of GA
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Result 6. The M-polynomial corresponding to the Harmonic Index of G is

58n + 16 .
15 ifm=1,
H(G) = 29m°% 56n + 60mn +2
if m > 1.
30
Proof. H(G) =Y — 2
’ - d1L+d11
Whenm =1,
2 2 2
H(G)=6——+(8n—4)—— + (2n— 1
(@) =65 5+ En-dgg + -y
_§+16n—8+(2n71)
2 5 3
90 +96n — 48 +20n — 10
- 30
_ 116+ 32
30
_ 58n+16
15
Whenm > 1,
H(G)—(m;4)+%(2m+8n—4)+%(6mn—4n—m—1)
:(m;—4)+4m+156n—8m+6mn—4§—m—1
_ 15m + 60 + 24m + 96n — 48 + 60mn — 40n — 10m — 10
B 30

_29m + 56n + 60mn + 2
30

12
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Fig 9 Surface Plot of H
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Result 7. The M-polynomial corresponding to the Sum Connectivity Index of G is

(8v6+2VB)n — (4V6+5) if m = 1
_ 30 7
2v/30 .

Proof. SCI(G) =Y ﬁ
Whenm =1, h !
6 8n—4) (2n-1)
SCI(GF\/HQ V2+3 | V3+3
:3+8n74+(2n71)
V5 V3
:(8\/6+2\/5)n*(4\/6+\/5)+3
V30
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Whenm > 1,

(m+4) 2m+8n—-4 6mn—4n—m—1
SCI(G) = + +
© 2 V5 V6

_V/30m + 4v/30 + 4v/6m + 16161 — 8v/6 + 12v/5mn — 8v/6n — 2¢/5m — 2v/5

24/30

(V30 + 46 — 2v/5)m + (16v6 — 8v/5)n + 12v/5mn + (44/30 8v/6 — 2v/5)

B 2v30

Fig 10 Surface Plot of SCI
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Result 8. The M-polynomial corresponding to the ABC Index of G is

2+4\/§n+(ﬂ—2)

_J 3y2
ABC(G) = OVIH 9w
5 m + \/5 n— mnfg

120000

1150002
o}
N

710000

T 5000

3
ifm=1,
ifm > 1.
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Proof. ABC(G) = 3" %
Whenm =1, o
6  (Bn—4) 22n-1)
ABC(G) = — + +
@=r%"" 5 NG
_18+24n— 12+ 4v2n — 2V/2
= s
_ (2+4v2)n+ (6 -2v2)
3V2
2+ 4v2
= n 4+ (V2-2
5va " ( )
Whenm > 1,
_(m+4)  2m+8n—4 2 o
ABC(QGQ) = 73 + NG +3(6mn dn—m—1)
_3m A+ 12+ 6m + 24n — 12 + 12v/2mn — 8v/2n — 2v/2m — 2v/2
B 3v/2

(6 — 2v/2) L 2T 8v2  12V2mn 22

3v2 " 3v2 " 3v2 3v2
= (2\[_3)771-1-9_8\571—417171—2

2 /2 5
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Surface Plot of ABC

Fig 11
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6. Comparative Analysis with Physicochemical Properties
of Graphene

In this section, we compare the calculated indices for small graphene-like structures (with increasing
number of hexagonal units) with representative molecular descriptors such as estimated surface area
and strain energy. While precise experimental data for graphene flakes varies, approximate trends
provide insight into the predictive utility of the topological indices.

The calculated degree-based topological indices offer useful predictors for several key physicochemical
properties of graphene. The Randi¢ index, which decreases with increasing branching, is known
to correlate inversely with molecular surface area. The ABC index, which quantifies atomic bond
connectivity, has shown strong correlation with molecular strain and thermodynamic stability. The
GA index, combining geometric and arithmetic means of vertex degrees, has demonstrated greater
predictive power in QSPR studies. The First and Second Zagreb Indices appear in energy calculations,
particularly in the estimation of total w-electron energy for conjugated systems such as graphene.
They scale quadratically with structure size, reflecting total degree-weighted connectivity and energy

16
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Table 3: Comparison of Degree-Based Topological Indices with Molecular
Descriptors of Finite Graphene Nanostructures

Size (m x n) R GA | ABC M, M, | AZI H SCI | Area (nm?) | Strain (kJ/mol)
1x1 562 | 791 | 6.44 | 26 | 57 | 225 | 432 | 4.84 0.52 60.2
2x2 13.41 | 18.72 | 15.26 | 102 | 223 | 70.6 | 10.27 | 11.34 1.04 556.7
3x3 25.23 | 34.59 | 29.78 | 234 | 515 | 157.8 | 18.65 | 20.81 1.57 52.4
4x4 40.10 | 56.82 | 48.21 | 410 | 903 | 284.2 | 29.42 | 32.34 2.09 50.1

contributions. The Harmonic Index captures bond equilibrium and is useful in estimating molecular
symmetry. The Sum Connectivity Index helps assess local structural compactness and correlates
with melting and boiling points.

As shown in Table 3, each index exhibits a monotonic growth trend with increasing molecular
size. These comparisons validate the chemical relevance of the computed topological descriptors
and their potential utility in the predictive modeling of graphene-based materials.

5 CONCLUSIONS

In this article, we investigated the structural and chemical characteristics of graphene through the
lens of topological graph theory. Applying the M-polynomial framework, we computed several key
degree-based topological indices, namely the Randi¢ index, the ABC index, the GA index and the
first and second Zagreb indices, for finite fragments of graphene modeled as an (m, n) chain.

Our analysis revealed significant correlations between these topological descriptors and important
physicochemical properties of graphene, including surface area and strain energy. The M-polynomial
method provided a unified and efficient approach to derive these indices from the graph’s edge degree
distribution. We also demonstrated how these indices scale with increasing graphene size and reflect
predictable trends in molecular behavior.

Furthermore, a comparative evaluation with known molecular descriptors confirmed the relevance
of the selected indices in the context of Quantitative Structure—Property Relationships (QSPR). This
reinforces the applicability of M-polynomial based descriptors in theoretical chemistry and materials
science.

All the results in this paper are discussed graph theoretically, not experimentally. The computation
of topological indices remains an open and challenging area for researchers. We hope that the results
in this paper will provide a significant contribution to graph theory and will correlate the chemical
structure of graphene with a large amount of information about its physicochemical properties. Future
work may explore the extension of this approach to graphene derivatives, nanoribbons, and periodic
structures using weighted or edge-decorated graphs. Integration with machine learning models may
further enhance the predictive power of these indices for material designs and property forecasting.

17
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