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Abstract
This study explores the application of machine learning (ML) methodologies to improve clinical decision-making, with a specific emphasis on diagnostic and prognostic modeling in the healthcare domain. It underscores the utility of ML algorithms in processing large-scale, heterogeneous medical datasets for disease classification, risk prediction, and pattern recognition. Despite their potential, several challenges hinder the full integration of ML in clinical settings, including model interpretability, class imbalance (particularly in datasets with low disease prevalence), and the necessity of earning clinicians’ trust through reliable and transparent predictions. The research implements traditional ML techniques to support prognostic assessment in life-threatening cardiovascular conditions, addressing key preprocessing tasks such as feature engineering, class rebalancing, and threshold optimization for risk stratification. Furthermore, the study incorporates a patient-centered framework by modeling patient preferences using supervised learning algorithms to predict individualized treatment choices. This dual approach—combining technological precision with human-centric considerations—aims to assist clinicians in delivering personalized care, thereby enhancing decision quality, patient engagement, and overall satisfaction with healthcare outcomes.
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1. Introduction
Big Data and Predictive Analytics are rapidly evolving research areas with huge economic and societal implications. “The rapid integration of Information and Communication Technologies (ICTs) into critical sectors like healthcare brings immense benefits but also necessitates robust cybersecurity measures to protect sensitive data."(Solomon Antwi Buabeng et al., 2024). In healthcare domain, big data captured from side channel systems of medical devices, clinical systems, patient health records, information websites provide opportunities to establish better healthcare systems. With these datasets, predictive analytics can be utilized to aid diagnosis and medical decision-making through analyzing patients’ symptoms, genomic characteristics and medical imaging (Hu & Sokolova, 2020). “The ability of machine learning to spot patterns and anomalies in large datasets makes it useful in a variety of fields, including financial fraud detection” (Yaw Agyeman & Gbli Tetteh, 2024).
Machine Learning, the core technique of Predictive Analytics has been extensively applied to business, e-commerce, and finance for risk management, customer behaviour prediction, and investment strategy estimation. Recently, researchers in healthcare begin to explore the application of Predictive Analytics on medical data in disease identification and outcome prediction. Enabling healthcare-related stakeholders to deliver timely appropriate healthcare services, predictive analytics systems provide recommendations based on diagnosis of diseases and medical decision-making. Exploration of Analysing Healthcare Data Survey currently being of exploratory interest in broader areas and varying contexts. Lots of researchers have done great work in specific areas.
A summary of domains of explored medical data and corresponding ML methods is presented first. Afterwards, in recent AI technology context, significance of healthcare data and clear scopes of this work was presented. Lastly, this work aims to provide a comprehensive analysis of recent literature on predictive analytics in healthcare diagnosis and medical decision-making using ML methods, make the work done therein available to wide audience, and propose future research directions tailored at healthcare-related decision-making based on varying datasets.
2. Overview of Predictive Analytics
Predictive analytics, also known as forecasting, predictive modeling, or predictive data mining, is the process of analyzing current and historical data in order to better forecast future events. Predictive tools are automated and employ a wide array of sophisticated statistical techniques to predict the future occurrence of events from historical and current data. A more technical definition is: “… predictive analytics makes use of learning algorithms, various statistical modeling techniques, and data mining technologies in order to draw inferences from the data and predict trends and behaviors based on the data.” (Dixon et al., 2024).
Predictive analytics is a relatively recent term used in the world of statistics, data mining and learning; the mathematical modeling of future conditions from known historical and current values is as old as human thinking. A high best-known application of predictive analytics is in the stock market trading, where known fundamental values are used to establish price quotations in conjunction with complex mathematical models. Predictive analytics has found some other practical applications as well, e.g. finding similar items in recommendation systems.
Predictive analytics in the medical area can change the face of patient care by forecasting infectious disease outbreaks, tailoring treatment plans, and employing hospital resources with more effectiveness (Weng, 2019). Predictive modeling can improve patient care by using hospital admission, discharge, and transfer (ADT) data and using the mosaic approach to characterizing daily hospital flow to forecast admission volumes. Predictive modeling can help clinicians in hospitals improve proactive care by using computer systems and risk scores to predict patient risk level on different diagnosis-related groups.
Machine learning algorithms, which are trained on massive data sets, can make accurate forecasts of patient risks for particular ailments; consequently, these tools can enable early diagnosis and preventive care. In terms of the huge amount of data generated from transactions and healthcare systems, the application of predictive analytics in healthcare is potentially very promising. The article highlights the need for studying innovative methodologies of machine learning algorithms in the healthcare arena. Finally, various types of predictive analytics platforms available in healthcare are reviewed.
3. Machine Learning Fundamentals
Machine Learning is an interdisciplinary field that consists of computer science, mathematics, and statistics. It is also an approach toward building intelligent machines for artificial intelligence (AI)(Tetteh, 2024). The idea of utilizing machine learning for AI is to learn from data. Instead of explicitly programming hand-crafted rules, a model is constructed for prediction by feeding data into a machine learning algorithm. Such data-driven methodology is now the state-of-the-art approach in various research domains. In recent years, systems and research have made use of machine learning for effective healthcare management, biomedical image processing, disease identification, diagnosis, and finding novel biomarkers (Weng, 2019).
Machine Learning applications in healthcare exploit data to concentrate knowledge for making better-informed decisions. By finding affiliations and understanding patterns within the data, Machine Learning can potentially enhance care, save lives, and lower costs. Payers can monitor adherence to medication and treatment regimens and identify patterns that lead to individual and population health benefits. For example, certain outcomes might be predicted based on recorded data, such as patients who will choose elective surgery or patients at risk for complications (Sam Daliri, 2017). When transparency and control are continuously delivered to health professionals, personal assistants can respond to health problems, and patients will be empowered in their active role in the management of their own illnesses. In order to do so, it is critically important for healthcare organizations to gain the available tools, infrastructure, and procedures to utilize Machine Learning effectively. This is because health data volume is expected to grow considerably in the coming years.
Machine Learning encompasses qualities such as variety, speed, and accuracy; along with velocity, veracity, and value, these capabilities are usually depicted as the six rationales behind the Big Data buzz. These differences underline the requirement for a new analytical and decision-making paradigm to glean knowledge and generate action from new inputs in healthcare organizations. There are still opportunities to improve the incorporation of this discipline within healthcare on a larger, multi-institutional scale. More time may be needed to properly design the project investments, while locations may decide to target initial aspirations based on available infrastructure, partner ecosystem alignment, and domain knowledge. The initial prioritization will be refined through a mix of desired outcomes, focus areas, feasibility, and existing capabilities. Although rapidly emerging, the understanding of the mutual benefits between big data and machine learning is still nascent.
4. Applications of Predictive Analytics in Healthcare
In recent years, healthcare has leveraged technological advancements to transition from paper-based records to electronic data collection and storage. This transformation has created an abundance of data analyzed through various predictive analytic techniques to extract useful information, leading to improved disease diagnosis and decision support systems (Habehh & Gohel, 2021).
Healthcare data is collected, produced, and stored in abundance by various stakeholders such as hospitals, practitioners, laboratories, pharmacies, insurance companies, and governments. The term predictive analytics is defined as a collection of techniques to analyze data to identify trends, patterns, and relationships that support decision making. Predictive analytics is widely accepted in the business sector to support marketing, customer profiling, risk analysis, and fraud detection. Unlike in business, predictive analytics is still in the early stages of development in the healthcare domain, with a focus on data and technology rather than individualized prediction.
Several machine learning-based predictive analytics have been developed in disease diagnosis and medical decision-making. Disease diagnosis and medical decision-making in healthcare can be performed through either traditional statistical methods or artificial intelligence approaches. Traditional techniques include healthcare knowledge, rules, or algorithms, while statistical methods use data-centered modeling based on statistical measures. However, these traditional and statistical modeling approaches have limitations in scalability, accuracy, and interpretability in a complex dynamic healthcare setting.
4.1. Disease Prediction Models
Early and timely detection of the disease is very important as it not only helps the patient but also is beneficial for the medical staff by reducing their workload and providing instant treatment to the patients. Many systems based on algorithms have been proposed which work correctly in a fixed environment, but the rise in the number of users and location of the user makes it difficult for such systems to work correctly. We formulate a predictive model that can work in this dynamic environment. In addition to prediction, we also check for the credibility of the prediction made by the model. The proposed model is expected to outperform existing models in various environments and produce an accuracy score of above 90%. Only online health care systems capable of disease prediction using an ML-based model are planned. In addition, the proposed system also checks the credibility of the prediction made (Kumar et al., 2021). To check which diseases can affect the patient, the user can choose from resourceful options as the system is easy to understand. The disease to be predicted can be chosen from seven diseases namely Liver Disease, Diabetes, Heart Disease, Breast Cancer, Kidney Disease, Parkinson Disease, and Brain Stroke. The user is then prompted to enter some details which are features fed to the model for prediction. These datasets consist of certain features such as blood pressure, cholesterol, etc., whose values determine whether a person is suffering from that disease or not. For prediction, the value of various coefficients and intercept is fetched from the database in real-time. Upon clicking the submit button, the disease is predicted based on the entered values of the respective disease features and output is displayed to the users in a blink of an eye. The users are also provided with the accuracy of the model.
4.2. Patient Risk Stratification
A growing emphasis on accuracy in predictive analytics is evident in health care. Recently, machine learning methods, traditionally used in fields such as finance and marketing, have been applied to predict health care events not previously possible. Advanced predictions of health care events such as these have important implications for a wider range of clinical use cases, including interventions targeting patients at risk of a negative health event. In addition to identifying patient risk, these predictions become inputs in a predictive analytics framework that can triage clients to appropriate interventions. User acceptance of this framework depends on the clinical tool’s utility and ease of use, including an understandable interface, informative visual displays, informative machine learning transparency, and clinical usability.
The advent of widespread electronic health record (EHR) implementation coincided with healthcare advances that rapidly increased the volume and complexity of information clinicians can access about individual patients. Yet, from a clinical data synthesis perspective, the EHR and other electronic sources of clinical information hold a wealth of untapped information that can benefit overall patient care. Unlocking electronically-stored healthcare data to improve healthcare across a population of patients requires better development and application of tools that collect and synthesize digitally stored data. The use of real-world data (RWD) from sources such as EHRs, registries, and claims data for the development of machine learning (ML)-based predictive risk models is an emerging research area. However, the vast majority of research about the utility and value of ML approaches in healthcare has been retrospective in nature, used historical data for model development and validation, and was limited to specific use cases. There is a notable lack of prospective evaluation of ML tools in healthcare, which has hindered their widespread adoption into real-world clinical workflows in an evidenced-based fashion. Indeed, in a recent systematic literature review of studies that used ML tools to address a clinical problem, just 2% of reviewed studies were prospective in design.
4.3. Treatment Outcome Prediction
Machine Learning (ML) has emerged as a powerful tool for extracting prognostic thresholds and stratifying patients based on the likelihood of mortality or critical events within defined timeframes. In particular, classification-based ML techniques are increasingly used to construct individualized survival curves and risk stratification models. This study proposes a data-driven ML framework that enables the systematic classification of patients with cardiovascular diseases using datasets derived from epidemiological studies. Specifically, the approach supports the automated diagnosis of heart rhythm disorders by addressing structured periodicity detection problems, as illustrated by J. Mena et al. (2012).
In parallel, the exponential growth of medical literature, particularly within databases like MedLine—the largest repository of peer-reviewed medical publications, has presented both opportunities and challenges. While such databases bridge critical information gaps between healthcare providers and patients, they often overwhelm clinicians with excessive, heterogeneous patient-related information. Compounding this issue is the surge in user-generated content on digital platforms, where patients express their healthcare experiences, concerns, and treatment feedback through blogs, forums, and social media posts. These unstructured data sources offer valuable insights but remain underutilized due to their volume and informal linguistic structure.
To address this gap, recent research has focused on mining and analyzing patient-centric narratives to inform clinical decision-making. For instance, Lyu et al. (2023) explore the application of supervised ML models, including Random Forest and Logistic Regression—to predict patient treatment preferences based on individual and disease-specific characteristics. These models are deployed via web-based decision support systems to assist healthcare providers in tailoring medical interventions. Furthermore, ML-based approaches are being extended to model the dynamics of physician-patient communication and its impact on health choice decisions. Advanced topic modeling techniques are also employed to identify latent themes in patient discourse, thereby enhancing the interpretability and contextual relevance of diagnostic explanations.

5. Data Sources for Healthcare Analytics
The growing availability of diverse medical data sources, coupled with advanced analytical techniques, presents substantial opportunities for large-scale investigation of Medicare datasets. However, this potential can only be realized through rigorous statistical preprocessing, data cleaning, and the implementation of robust translational data search strategies. Currently, datasets compiled for general medical research contain valuable diagnostic information, including data relevant to specific disease categories such as various forms of cancer (Daliri, 2017). Expanding the utility of open health data through the development of disease-specific aggregator APIs would significantly enhance the capacity for targeted research and systematic reviews in specialized medical domains.
The existing datasets encompass extensive electronic health record (EHR) formats that facilitate the generation of advisory treatment plans. These recommendations are increasingly leveraged by pharmaceutical and biomedical companies for drug development and clinical trial optimization. A deeper understanding of molecular-level data transformations is required, suggesting a mathematical framework capable of analyzing protein denaturation, gene expression, and other biochemical processes associated with disease pathogenesis. Additionally, a wide range of data acquisition technologies, including VPN-enabled devices, GPRS-based medical monitors, and other telehealth tools, can be integrated into the system to enrich the database with real-time, patient-specific information. Data collected from healthcare providers and patients can be continuously processed and summarized to provide personalized clinical suggestions, assuming each patient’s diagnostic footprint reaches a significant data threshold (e.g., 1 MB per individual health record or daily monitoring logs).
To facilitate more effective medical decision-making, intelligent matchmaking systems are essential. These systems should match patients with appropriate physicians based on contextual variables such as geographic location, clinical specialization, years of experience, and historical treatment success rates. Patient and physician profiles must be stored in separate, secured databases, and probabilistic graphical models should be employed to identify optimal matches while filtering out noise or irrelevant diagnostic artifacts. Moreover, studies highlight both the potential benefits and risks of such analytical systems, calling for developing a comprehensive mathematical theory grounded in logic-based prescription modeling. Matching algorithms must be refined to minimize diagnostic inaccuracies and ensure that suggestions provided to clinicians are both practical and evidence-based. In certain cases, patients undergoing surgical procedures may receive wearable devices similar to those used in industrial monitoring settings (e.g., mines), enabling continuous physiological tracking.
Finally, integrating auxiliary datasets, such as traffic accident histories, into healthcare analytics platforms can offer new insights into injury prevention and rehabilitation planning. These systems can produce predictive and preventative recommendations by architecting periodic data comparisons. A proportion of funding within these ecosystems could also be allocated toward analyzing the economic burden of vehicular trauma and other emergent health crises.

5.1. Electronic Health Records
Electronic health records (EHR) based on the health, genomics, and multi-modal data of patients have gradually become mainstream within hospitals and clinics for patient diagnosis and therapy management. Under logging data warehouses, EHR remains an essential data source in this field. Thus, the systems researched are mostly built to provide solutions for a series of critical clinical tasks, like disease onset and course prediction, treatment diagnosis and recommendation, health risk assessment, early detection of disease recurrence, and patient health status estimation. Most of these clinical tasks can be summarized to determine a particular health status and measure the possibility of health status transitions based on existing patient history using predictive models.
A novel method for predicting the onset of common health conditions at risk for patients in the next 3 years from their historical medical records is presented. Using natural language processing in healthcare, these models automatically estimate real-time probabilities of patients developing these diseases over a selection of time intervals, allowing personalized preventative care plans with respect to patient risk. The dataset used contains millions of patient health records. Zero, one, or multiple coding or billing readings are logged occasionally instead of continuous monitoring and sampling. Additionally tested the models' generalizability across clinical settings and methods to make interpretable in the medical domain, showing that the strong majority of suggested observations are expert approved and aligned with clinical literature for the diagnosed disease conditions. Clinical medicine relies upon the ultimate goal of using probability prediction for improved population health management through targeted patient intervention.
Medical data is collected and stored in an unstructured manner; however, it often has a multitude of hidden patterns. Sequential data developed over time is one of the primary formats for clinical records. Each record can be viewed as a sequence of observations occurring at specific timestamps for a specific guardian entity, e.g., patients. Such a record reveals longitudinal events of a patient, which may be observed at certain intervals, e.g., a scheduled visit for consultation or therapy. This irregularly-sampled event series reflects timely patient history and provides effective and impartial cues for predicting future incidents.
5.2. Wearable Devices
With the development of intelligent wearable devices, mobile health systems can monitor health problems in real time. This paper discusses the approach of 5P-medicine, the purpose of creating software capable of estimating health problems related to cardiovascular diseases. To generate and train predictive models, different datasets are acquired. These datasets include health-related and informational data, which serve to train various machine learning algorithms. With the integration into miniature devices, technologies such as IoT and connected sensors are becoming more common. Sensors are being integrated into mobile communication devices to monitor health problems outside of medical facilities (Miguel Pires et al., 2021). In addition to mobile clinical applications, a wide range of wearable devices with sensors for physical activity monitoring and fall detection are emerging.
The fifth P, related to Precision Medicine, is intended to create an algorithm capable of predicting healthcare problems with high accuracy. This intention is typically accompanied by a list of risk factors of interest or clinically relevant chronic diseases. A global system was designed for the analysis of the data collected by the different sensors available in mobile and wearable devices. Smartphones and connected wearable devices can generate and collect a large-scale amount of diverse, complex, and dynamic data for analysis.
The integration of sensors into mobile devices has improved the interaction between users and information stored on personal devices. Personal health devices have been developed to measure blood pressure, blood glucose, and heart rate. Other less commonly used sensors are also integrated into smartphones to track information such as sleep, mood, and stress. The analyses performed with raw data taken from these sensors can be used to extract relevant knowledge related to the user’s behaviors, health, and well-being. Data analyses can include the detection of anomalies on computed profiles or predictions of future states based on these profiles.
5.3. Genomic Data
Recent advances in human genetics, genome sequencing, and analytical technologies have significantly expanded the potential of genomics in predictive medical diagnostics. Genomic medicine specialists have offered critical guidance on leveraging these developments; however, their integration into routine clinical diagnostics remains limited. One of the most promising, yet underutilized, avenues for predictive diagnosis is the application of machine learning (ML) techniques to genomic data. Despite the richness of genomic datasets, composed primarily of raw base calls, these data remain largely untapped for predictive diagnostic purposes (Ahuja et al., 2023).
Current research emphasizes several key considerations to enhance the utility of genomic data in clinical decision-making. These include policy and informatics frameworks, advanced noise suppression techniques during data preprocessing, temporal genomic heterogeneity, and the incorporation of covariates that influence genomic liability and phenotypic expression. The reliability of emerging big data-driven predictive medicine depends heavily on the precision with which these models forecast physiological baselines and deviations in response to internal or external stimuli (Pemmasani et al., 2020). To illustrate the state of the art, three representative approaches to predicting genomic liabilities have been identified and examined. One notable example from a Japanese research group involved the development of a genomic risk prediction model for breast cancer. Using comprehensive breast cancer genomic datasets, the researchers identified ten high-risk candidate genes; CBS, GRHPR, MTHFR, MAT1A, MAOA, HOMER2, HCK, PHYH, BDKRB2, and KCNMA1, which were consistently associated with increased breast cancer susceptibility. Subsequently, expression levels of these genes were measured in healthy individuals, and 3D high-resolution imaging was conducted using the Elyra PS.1 super-resolved optical system to enhance signal fidelity and reduce observational noise in the raw genomic data.
Combining advanced optical imaging with genomic feature analysis, this integrative approach represents a significant step forward in genome liability prediction. It demonstrates both methodological novelty and global relevance, providing a framework for early, personalized disease risk stratification in predictive genomics.

6. Machine Learning Techniques in Healthcare
In the medical field, numerous healthcare systems collect vast amounts of patient data. The patient data is written in patient’s record that contains messages about symptoms, genetic codes, medications and prescriptions. From this big pool of recorded data, useful information can be extracted to provide knowledge about the factors that lead to the events/complications, in order to give suggestions about risk reasons for these event(s) as well as probability of occurrence. Extraction of this knowledge is the aim of the medical data mining process. Medical diagnosis and therapy support systems are used to process patient’s recorded data before predicting the presence/probability of a specific event in the patient. Typically, a mined knowledge can be used to provide inference ways to generate hypotheses/plans how to treat a medical event, for instance, an oncologic disease. Hypotheses of an event can be represented as a program in a suitable programming language. Search for treatment plans is the process of generating procedural plans that use the mined knowledge and appropriate scenarios of an event in order to elaborate practical programs per a specific patient in order to treat it.
Knowledge-Based systems (KBSs) offer inferences which can be used to integrate this information and to provide adequate diagnosis/therapy suggestions. These systems use a representation language based on Semantic Networks (SN) to represent the knowledge and an inference engine to provide a generic diagnosis. This generic diagnosis can then be applied to specific patient’s data to generate a complete and bespoke suggestion. Using KBSs the expert skill can be captured in a reusable form. Thus, they can evolve and adapt to more facts and rules in order to offer more knowledge. However, KBSs usually need experts to verify the newly acquired knowledge and more experts can be referred to refine the knowledge and/or to modify the governing rules. Moreover, there are typically large solutions spaces and their combinatorial nature makes it difficult to adapt the planning generation searches.
Machine Learning (ML) techniques can help with the knowledge acquisition, KBSs can proactively adapt to data and automatically extract relevant information. They can also grow with the system and enrich its acquired knowledge, without external intervention by experts and will be able to query new facts/data and rules in order to elicit newly relevant information. The rich structure of data files, including text, graphics, object and image type files, allows applying ML to KBSs in order to acquire the knowledge throughout the structures. This is suitable for healthcare and medical applications where most of the information is recorded in arbitrary text that is easily accessible. ML covers a wide range of techniques and it is quite difficult to get it used by practitioners. It generally provides a numerical hypothesis, most times not adequate for healthcare workers.
6.1. Supervised Learning
Predictive analytics in the context of healthcare diagnosis and medical decision-making is of great importance. Alphanumeric and digital medical data are likely to continue growing exponentially in the near future. Machine learning aims to automate processes and extract information from pre-existing data by building self-learning models. Machine learning applications in healthcare have brought new insights into a secondary analysis of health records. Machine learning helps to develop new drugs, define populations susceptible to certain illnesses, and identify predictors of many common diseases. These tasks are no longer only done by highly trained professionals, but by human-comparable tools. Such tools can bring transformations to the workflow of healthcare and thus facilitate the development of efficient and scalable personal service offerings. This rise of machine learning is also accompanied by a growing concern about understanding the decisions made by complex learning models. Due to the life-crucial nature of healthcare, explainable results together with the output of learning algorithms are requested. Researchers had sought to understand treatment efficacy or the influence of covariates on prediction. These developments prompt questions about how understanding works with complex statistics.
Building explainable learning models in health records and disease diagnosis is challenging. First, extensive medical data on patients and their medical records are usually unstructured. Though there is a fixed set of input attributes, such as visits, medications, and diagnoses, these attributes may not be uniformly stored in databases. Second, attributes that are appropriate for improving prediction accuracy may be uncovered. Third, the learning task is especially challenging because the prevalence of positive labels is usually low. Furthermore, time-related features need to be correctly handled, as events should be trained on such attributes and time-grounded attributes should be ignored. Some approaches have been proposed to handle these problems. Multi-component linear regression was applied to yield linear approximating scores for interpreting model decisions. In addition to the importance of covariates, all possible combinations of covariates were explored with the help of logic trees for model understanding. Partial dependence and accumulated local effects provide global explanations for the understanding of how a covariate influences predictions.
New challenges arise for an understanding with model complexity increasing. For instance, approximating representations of learning algorithms by simpler models is requested, as decisions traced back to covariates would be less helpful when the impact of intermediate attributes is also obscured. Therefore, how to address the aforementioned problems both in learning task and interpretation is to be investigated. Harnessing relevant background knowledge in both modeling and understanding is a promising solution. Domain-specific knowledge concerning interacting covariates can help model decisions and reduce the complexity of such analyses. Data also usually come with background knowledge such as prior probabilities and structures, allowing bias for improving the accuracy and efficiency of both prediction and understanding. Despite recent advances, efforts for supervised learning with explainability from a statistical viewpoint are rare yet. A large-scale comprehensive medical data set is explored for predictive analysis from the viewpoint of statistical modeling and understanding.
6.2. Unsupervised Learning
Generalization is an important aspect of data mining applications, and new methods must perform more effectively than prior methods on previously unseen data. Furthermore, high-quality data is recognized as one of the key determinants of a model’s accuracy. However, even in targeted studies, data can be noisy, and cleaning the data can be a time-consuming manual process. Ideally, machine learning tools should be trained on smooth data that is indicative of underlying distributions while avoiding regions where data may be incomplete or redundant. While it may always be desirable to obtain accurate representations from datasets, the extraction of this accurate information may not be achievable due to limited observational data or even the interference of unexplainable, intuitive datasets.
Unsupervised machine learning—specifically cluster analysis—is an area of data mining dedicated to grouping data points. Careful discrimination of the most stable clusters can replace the often cumbersome and complicated task of cleaning data. While cluster analysis alone may not yield superior interpretations of data, it can improve and augment generally accurate models by supplying relevant frameworks that assist the further adjudication of one model over another.
In this work, abstract clustering techniques are applied to lung cancer data. Such methods seek to extract groupings among patients based on similarities in presentation that indicate redundancies in data. The cluster method applied is an agglomerative hierarchical algorithm that amalgamates atomization distances into quantitative interpretations of similarity. Once the cluster organization is generated, it is necessary to establish its quality and worthiness of further study. Quantitative descriptors of clusters, including compactness and viscosity, are thus defined.
In addition to data fitting, the clustering framework can be directly integrated into fuzzy expert systems. As such, all variables pertinent to outcome prediction could be input without prior identification of relevant variables as imperfect learning on highly correlated data may confound supervised methods and convolute groupings in the high dimensional space.
6.3. Reinforcement Learning
Reinforcement learning (RL) has been employed in healthcare for a variety of tasks. (Zheng et al., 2020) developed a personalized multimorbidity management framework to help patients with diabetes and comorbidities improve A1C levels while minimizing excess use of medications. Most prior RL applications haven’t addressed the key challenge of downstream medical action space size and continuous nature. There are millions of recommended actions at the same time due to each drug having over a thousand doses and many drug combinations. Thus, action choice besides learning needs to be explicitly addressed to avoid either continuous actions or discrete action ensembling. RL’s interpretability improves beyond the best treatment recommendation by detecting drug-measurement pairs which further inform healthcare practitioners about how to close care gaps.
7. Challenges in Implementing Predictive Analytics
Effective evidence recommendation in healthcare environments is a important issue in a Big Data context. It can be considered a task of diagnosing the healthcare field, where relevant literature documents must be provided for the task patient. However, the task designing must deal with some particular characteristics of the medical domain, namely, the issue of finding relevant documents in PubMed and the short length of the documents. This situation makes standard text processing tools inappropriate for the task. A semi-automatic tool to summarize medical documents is proposed. This tool has been developed over several years in response to academic user needs. However, it can also be applied in Industry 4.0 as a general tool for knowledge extraction and data understanding from documents (Luo, 2016).
Personal health records (PHR) enable patients to access and share medical history, promoting preventive care and healthier lifestyles. However, PHR lacks clinical decision support, limiting proactive decision-making and further health care service improvement. A predictive analytics framework is proposed that enhances PHR with predictions of diseases’ occurrence probabilities based on personal health information. The framework is implemented with an open-source ontology and the Apache Spark platform. Two applications are developed: monitoring patients’ risk of developing heart disease and diabetes. Ontology-based knowledge inference techniques can also assist health care organizations in identifying potential patients. These conditions can be solved by developing systems that will enable citizens, patients, and health care organizations to share health information in a safe and secure manner. This will help improve citizens’ health status by decreasing health care costs and expense, promoting preventive care, and improving healthier lifestyles.
A variety of diagnosis and prognosis models are being developed using various machine learning techniques and algorithms. However, models that are deployed are still rare in clinical practice. Some of the most important challenges for the successful implementation of such models are discussed: the interpretation and explainability of predictive models, patient empowerment, and efficacy evaluation of machine learning algorithms in the clinical setting. These constraints are raised using examples of model implementation challenges faced in different healthcare settings.
7.1. Data Privacy and Security
Machine learning models' adoption in healthcare is challenged by private data, which is difficult to store, ineffective, and potentially hazardous. Secure data storage and computing schemes are required, or models must be transferred without sensitive data. Privacy from exposure through white-box attacks is equally vital across the machine learning pipeline. Ethical issues arise in model training or explaining input data, as even well-curated data with no harm can yield bias in decisions. Digital health providers must consider these risks. Data privacy preservation methods ensure selective trustless access to healthcare data. Solutions include secure clouds fulfilling functionalities with untrusted data and computation based on blinds. Aggregation is handled with blinded data parts and other-times information. Identify dispersers make reconstructed information feasible across all selection function parameters and usages, disentangling construction parts. Resilience to network adversaries is ensured. Abandoning cloud interactions, each locus retains a dispersed part and uses a third-party attention part provider. Locally aggregated data is dispersed before access, resulting in minimal data volume after reconstruction. Spaceless multiplication can also be dispersed. It is hard to insert noise that cannot be modeled and randomized sources of noise. Input noise can be used to mask an input.
Privacy is expensive, demanding a new balance between availability and privacy. Well-defined design objectives such as privacy symmetry and personalized privacy are suggested. Deployed schemes need fidelity and differential privacy by design. New asymptomatic transferable attacks challenge more extensive access levels. In hierarchical federated learning, shares vary among model owners. A black-box attack transfer principle can be built, supported by L0 attack robustness research. Evaluating the added combination design complexity of different shared architectures is required. Research must consider emerging threats and diverse machine learning settings. Recently proposed techniques can be adapted for functionally similar models in a white-box approach (Sharma et al., 2018).
7.2. Model Interpretability
Machine learning predictive models have achieved some of the most impressive successes in challenging healthcare problems such as breast cancer diagnosis, heart disease detection, or drug side-effect identification. However, these models are often non-linear and complex, requiring many machine learning algorithms to induce very complicated functions which map from the input space to predictions. In such cases, normal users, including healthcare professionals like doctors, do not know how the results appear because the models are too complicated for them to understand. In predictive modeling, therefore, model interpretability is the ability of the human user to comprehend the cause of a decision made by the predictive model. For diagnosing a lung disease using the results of a CT scan, physicians need to understand the reasons why the patients are classified as positive or negative. The results of predictive modeling systems which lack interpretability are often rejected in healthcare applications, even when accuracy is very high.
Interpretability is one of the four properties of a model including validity, robustness, and security which is most desirable in predictive modeling applications. Validity means a model’s standardization and predicts functionalities that are close to the real-world system. A robust model makes predictions that are stable with respect to small perturbations in the data. A secure model is one that guarantees that the predictions it gives out are reserved and/or privacy-preserving. Validity is a realistic yet very broad requirement that would require the user to trust a model like human experts in healthcare. Robustness is a model feature that can be probabilistically quantified. A secure model cannot guarantee those properties because of using non-parameterized global feature spaces. Broadly, model interpretability can be embedded into three categories according to whether the causes of the output are reconstructed from the model directly, whether the model is converted to a new representation, and whether the rules of the model are expressed in an intelligible format (Mitros & Mac Namee, 2019). In those categories, most model-interpretation approaches require healthy representations of the predictive model form interpreting, which is not possible to get in default black box models for some healthcare questions.
Therefore, it is desirable to have a method which can explain the prediction results for a complicated machine learning model without degrading its prediction accuracy. This is a need very well recognized by healthcare professionals and of intensive interest in recent years. This project aims to develop a model interpretation method which automatically generates justification and provides a rationale for any machine learning prediction result. When patients are diagnosed using a lung cancer prediction model, doctors need to be able to check the reasons why they were diagnosed as negative or positive, such as “the CT scan image has normal texture”, thus selecting treatment strategies accordingly instead of blind reliance on model prediction results (Luo, 2018).
7.3. Integration with Clinical Workflows
Integration with clinical workflows is the next step to fully realize the benefits offered by predictive analytics for bedside diagnosis and medical decision-making. Perspectives on integrating predictive analytics with clinical workflows in health care, on both the technical and human sides, are summarized here (Luo, 2016). A human-computer collaborative approach is needed to take full advantage of the latest AI tools, for such reasons as patients and physicians have important informatics knowledge that machines cannot fully emulate, especially for medicines, decisions must inevitably be made in an uncertain environment, and medical attention is a constrained resource. Key strategies to implement the collaborative approach have been summarized, including ensuring timely machine predictions according to flow scheduling of clinical operations, assessing predictions by explaining machine reasoning and reporting predicted risks and uncertainty, and adjusting prediction sessions according to human engagement level and prediction validity. Currently, the focus of the above collaborative approach is early diagnosis of patients at high risk based on past health records and predicting the onset time of future diseases. Extensive efforts are needed from both research and industry to cover all tasks involved in time-series data understanding and prediction. Many important monitoring tasks remain untackled, such as disease surveillance from text records and severity assessment of internal nursing observations. Supporting bedside predictions of such unmonitored tasks requires further research to adaptively extract useful data for prediction from unstructured text workflows, make timely predictions and assess their validity, and to determine how to modify care actions based on machine awareness of hidden pathophysiological processes. At a higher abstraction level, enrichment of data to fully address diagnostics and decisions of COVID-19, including exploratory visualization over data and predictions, has an important role to play. Transparency and engagement to the public can be increased through such visualization. The above coverage has important implications for advancing current research and industries in enabling intelligent healthcare. These efforts need to be cooperative among health organizations, information providers, pharmaceutical companies, researchers, programmers, and policy-makers.
8. Case Studies
A digital biomarker of diabetes from smartphone-based vascular signals. Diabetes is a chronic that is currently affecting approximately 463 million adults worldwide and resulting $376 billion of healthcare cost. A novel technology of smartphone-based vascular signal measurement has made assessing vascular function feasible outside professional healthcare settings. The aim of the current study is to examine whether smartphone-based vascular signals can be a digital biomarker of detecting diabetes. A total of 660ft Chinese adults were randomly recruited for both smartphone-based measurements of vascular signals and professional healthcare measurements in hospitals. The support vector machine (SVM) is used for constructing classification models, and the leave-one-hospital-out cross-validation (LOHO-CV) was carried out. For the 10 SVM models, the average receiver operating characteristic (ROC) area, sensitivity, specificity, and accuracy were 0.825, 0.83, 0.75, and 0.774, respectively. Incomparable performance and classification power with state-of-the-art classification methods including XGBoost, Random Forest, Decision Tree, and K-nearest neighbor (K-NN) were demonstrated on the same dataset. This study presented the first successful case on bridge discovering diabetes with digital biomarker from vascular signals measured through a common smartphone. The practicality, effectiveness, and feasibility of smartphone-based vascular signal measurements in diagnosing and predicting diabetes, present the possible future research direction and implications on health monitoring and achieving individual health management (Hu & Sokolova, 2020). Identifying Diabetic Patients with High Risk of Readmission Managing unplanned readmissions is crucial in providing appropriate care for diabetic patients. This study develops a collaborative filtering for screening patients with a high chance of readmission that uses past readmission information of existing patients to predict whether a new patient will be readmitted again. By capturing the dynamics of patient diagnosis over time, the model needs fewer data instances to have the same prediction performance as conventional approaches when new patients are added to the database. A case study was conducted in a Taiwanese medical center based on patient records from 2014 to 2018. Patients discharged after their index admission were included in the analysis. Data preprocessing was performed according to clinical practice. Only patients screened to have T1 and T2 diabetes and who had received an examination measure were of interest. Leveraging machine learning and big data for optimizing medication prescriptions in complex diseases: a case study in diabetes management The importance of the Internet of Medical Things for the management of complex diseases. Transfer learning-based deep learning for integrating heterogeneous interaction networks toward ex-SYD prediction. A preliminary study of a novel three-stage framework for big health data analytics. Big health data management and computational medicine for kidney disease prevention. The big bank: a new paradigm for health information systems. Social networks for healthcare and medicine. Predicting 30-day all-cause hospital readmissions This study characterizes the research landscape in predictive modeling of hospital readmissions. It summarizes aspects of modeling such as data sources, candidate features, model evaluation, and implementation as well as suggesting new directions. Aiming to improve the success rates of prediction at higher lead times, the study makes an argument for further consideration of the new emerging features and exploratory methods. It provides an overview of studies that exploit spatial and temporal variability of probability of readmissions. A growing number of studies adopted examined the impact of complex interactions such as social, economic, and environmental factors. Most studies evaluated models using well-established randomized sampling approaches, hold-out, k-fold, leave-one-out, and time-slice methods. While it supports the robustness and interpretability of models, such approaches may lead to bias.
8.1. Predictive Analytics for Diabetes Management
Diabetes is a complex chronic condition that has become an immense medical and economic burden in the United States and worldwide. In 2020, a projected 34 million Americans had diabetes, and 88 million more were estimated to have prediabetes. One in seven healthcare dollars in the U.S. are associated with diabetes. A clinical intervention was redlined to prevent service utilization; however, the hypothetical effect was unknown. Informed by findings from a machine-learning predictive model, clinical actions were designed within a sponsoring healthcare organization to filter high-risk patients in order to optimize allocation of intervention resources. The interaction and feedback from stakeholders between data science/analytics and the rest of the organization were crucial in achieving a positive impact. With growing emphasis on data-driven healthcare, clinical implementation evaluation is of utmost importance to inform efficient design and evaluation of future predictive modeling efforts (Selya et al., 2021).
A machine-learning predictive model was developed to identify patients with diabetes at a high risk of unplanned medical visits. Clinically relevant risk factors were identified by automated feature engineering and selection. Stakeholders interacted, contracted, and iterated on predictions to derive design specifications. A minimum viable product was developed and tested, eliciting feedback to refine the tool and sustain interactions. With divergence in motivation and understanding surrounding these biases, leveraging discrepancy to inform actions was essential. Integration into classifying patients to be prioritized for care managers and obtaining results was shared with nurses and care managers to inform which patients would benefit most from the clinical intervention.
8.2. Cardiovascular Risk Assessment Models
Cardiovascular disease is a significant public health concern worldwide. Global estimates indicate that more than 17 million deaths annually can be attributed to cardiovascular disease, accounting for 31% of total deaths. Cardiovascular disease primarily stems from atherosclerosis, which is an inflammatory process during which plaque accumulates in the arteries. Plaque primarily consists of cholesterol, fat, and calcium, leading to narrowing and occlusion of the arterial lumen, which compromises blood supply. Atherosclerosis affects not only the arterial walls in the coronary system (coronary artery disease) but can also affect the carotid and vertebral arteries leading to cerebral ischemia or cerebrovascular disease (CVD). Other categories include Peripheral Artery Disease affecting peripheral arteries such as those in the limbs and aortic atherosclerosis involving the thoracic and abdominal aorta.
Age, sex, diabetes, dyslipidemia, increased body mass index, familial history of cardiovascular disease, hypertension, smoking status, physical activity, social deprivation, socioeconomic status, and other factors can influence the risk of cardiovascular events (Shishehbori & Awan, 2024). Therefore, experts have created various multivariable prediction tools for cardiovascular risk assessment. The Framingham Cardiovascular Risk Score, the European Systematic Coronary Risk Evaluation, QRISK, and the American Heart Association/American College of Cardiology guidelines for atherosclerotic cardiovascular disease are a few examples. These algorithms have been widely and successfully used in clinical practice all over the world.
While traditional statistical methods have been helpful for risk assessment, they have severe limitations that can impact the overall accuracy of the scores. For example, to be included as independent variables in prediction models, traditional variables scores must be continuous and measured on the same scale. Although the included variables may be risk factors for cardiovascular events, they can only be measured in specific subpopulations, and many of them are categorical variables. Furthermore, the risk models designed for a given demographic, location, or era do not predict risk well on new, external populations. Most equations assume linear relationships among the risk factors included. Most importantly, traditional statistical models may not capture the complex interactions of predictors. Over the last ten years, with the rise of big data analytics, machine learning has emerged as a powerful data-driven approach (A. Goldstein et al., 2016). Machine learning is capable of integrating and interpreting a wide variety of multimodal data inputs to generate holistic and actionable insights in healthcare. Recently, more advanced Large Language Models have been developed, serving as crucial intermediaries to connect extensive electronic medical record data with clinical practice.
8.3. Cancer Prognosis Using Machine Learning
Machine learning (ML) algorithms support physicians in quickly creating reliable diagnoses and lending skilled assistance to medical personnel, helping achieve plausible and adequate disease treatments. Over the last decade, ML techniques have played a key role in the diagnosis and prognosis of chronic diseases like heart disease, lung disease, and cancer. The applications of disease prognosis using ML techniques are useful for identifying the factors necessary for evaluating the status of chronic diseases, determining treatment for disease progression, and estimating the time of death. ML techniques help identify those factors and detect chronic disease prognosis, or why an individual is time faulty for a disease based on extensive clinical data from survivors. Survival analysis is an important and active research topic in actuarial science and healthcare statistics, having strong applications in forecasting chronic disease prognosis like cardiovascular diseases, cancers, and other gender-related diseases. Identifying individuals at risk of disease and estimating the time of occurrence based on risk should be the first concern of cardiologists or medical assistants to ensure the best treatment for patients. ML techniques play a crucial role in this implementation, but most health professionals think it's difficult to use them for prognosis modeling or don't want to spend a long time training to use ML algorithms (J. Mena et al., 2012).
Cancers are a group of diseases characterized by uncontrolled cell division. They can occur anywhere in the human body and often, tissues comprise cells from different origins. The ability to determine a malignant tumor's probability of successfully metastasizing represents the potential to kill many individuals in today's world. The treatment of primary tumors itself is usually not a big challenge, even if it is expensive, painful, and can lead to life-changing consequences. However, if the tumor metastasizes and spreads throughout the body, the chances of successful treatment and recovery are greatly reduced. Therefore, it is critical for early interventions and investigations to understand and intervene in metastasis (C Mariani et al., 2019).
9. Ethical Considerations
The use of AI predictive analytics in healthcare has increased significantly in recent years, fueled by the growing demand for improved patient care, clinical decisions, and operational efficiencies. Advances in machine learning algorithms and the availability of extensive electronic health records also contribute to this increased adoption. AI predictive analytics create models from historical data to infer the state of unfamiliar variables, assisting in detecting, understanding, and articulating future scenarios (Dixon et al., 2024). In medicine, predictive analytics can be utilized for identifying population health trends, informing early detection, diagnosis, and treatment of diseases, and recognizing operational issues. Enabled by machine learning, predictive modeling in healthcare can be accomplished via multiple approaches, including regression-based modeling, clustering algorithms, and classification approaches.
Machine learning has a wide range of applications across the entire spectrum of healthcare, right from drug discovery, disease detection, and prevention, to planning, monitoring, and providing care. Machine learning methods have been used to analyze medical images to distinguish between normal and abnormal tissues and identify benign and malignant tumors. The analysis of smoking history, gender, age, and familial history has been utilized to develop a scoring system for classifying patients into risk groups to evaluate the need for bronchial endoscopy. Machine learning techniques have also been utilized in the prediction of length of stay in hospitals, readmission, and recommendation of suitable treatments. Increasing number of digital devices and services leading to big data generation has created interest in the adoption of machine learning in healthcare institutions.
On the other hand, the introduction of AI-driven tools in the medical domain raises questions concerning data privacy, algorithmic bias, accountability, and impact on the clinician-patient relationship. The challenge is to harness the promise of these complex approaches to best serve public health and enhance the quality of patient care across populations while ensuring patient autonomy and protecting sensitive data. Thus, a proper framework for the development and systematic evaluation of trustable AI is needed to ensure a just implementation and maximize the respective benefits. Ethical issues in the implementation of AI predictive analytics within healthcare systems include transparency and interpretability, liability, bias, and fairness.
9.1. Bias in Machine Learning Models
Machine learning (ML) has rapidly been incorporated into healthcare systems over the past decade, including its integration into diagnostic tools. These tools are increasingly prevalent in the prediction of heart failure and various types of cancer. The technology presents excellent potential, but as ML in healthcare becomes more powerful, the potential for inequity in these tools may also grow. This growth has manifest as differing performance and predictive accuracy of ML methods for different social groups. Such predictive disparities by race disadvantage some groups relative to others and may exacerbate inequity in an already inequitable healthcare system. A growing body of studies have noted such differing predictive accuracy of ML methods by race, but the root causes of these predictive disparities do not well-understood (Barton et al., 2023). In general, bias can be introduced at any stage of model development, including data collection, data selection, model training, or model deployment. As such, there are opportunities to mitigate these potential biases at each step of the ML model development pipeline. A pre-processing approach removes or reduces potentially biased features from the dataset, or modifies the dataset in a manner that ensures the ML algorithm selects for the remaining features more equitably. For example, approaches such as reweighting training data, combining datasets, or removing race information fall within this pre-processing category. There is no unique approach to mitigating bias in this stage, as numerous techniques that span this space exist. Adversarial debiasing, regularization, imposing constraints, or alternative methods of estimating likelihood that improve equity across outcomes comprise the in-processing approach (Xu et al., 2022). Finally, post-processing refers to the adjustment of predictions on test datasets to yield a more equitable outcome. This latter category includes methods such as calibrating results or varying cut-point selections to boost equity in performance. As with any aspect of the development of predictive algorithms, bias in the outcome can compound at each of these stages. There are front-end bias mitigation techniques along the ML model development pipeline that can potentially reduce such disparities. However, building ML models with no or very minimal bias mitigation techniques can greatly increase the risk of substantially inaccurate performance by race, or other social groups, ultimately manifesting as inequitable access to healthcare, or inequitable provision of healthcare. Though there is an evidence base that has amassed in the deep learning and ML community around health equity in the development of algorithmic tools, the adoption of bias mitigation in ML has not kept pace with the rise of the technology. In particular, a fair number of health equity-related ML studies assess for racial bias in outcomes, but some do not correct for this bias, or do so only in very crude ways. A very small number of studies published their code and methodologies not only for bias assessment, but also for debiasing. A recent study performed experiments that assessed the presence of racial bias amongst a group of relatively basic ML algorithms. In this study, as a demonstration of bias in model outcomes, healthcare access was chosen as the outcome of prediction for model creation.
9.2. Informed Consent and Patient Autonomy
Some jurisdictions have adopted regulations aimed at protecting consumer autonomy with respect to predictive algorithms in some contexts. For example, a medical consumer-protection statute in California prohibits potentially determent decisions about life insurance, group health insurance, or long-term care insurance be based on the results of a predictive algorithm unless (a) the algorithm is disclosed to the consumer in plain language, (b) a copy of the algorithm is provided to the consumer, and (c) the consumer is given a chance to contest or appeal against the algorithm outcome (Vayena et al., 2018). Some pharmaceutical companies have adopted similar principles, joining an initiative that proposed to disclose algorithms in understandable language.
Data governance describes policies and mechanisms deciding how data can be collected, stored, and used. In contrast to data strategies, which concern only institution/organization-provided data, data governance concerns personal data generated by the demographic or data’s context. Some academic and public initiatives have arisen to address data governance challenges raised by MLm. The General Data Protection Regulation aims to protect privacy, alert digital marketing tricks, and reduce discrimination without in-depth knowledge of digital media. Other proposals focus on algorithmic reduction of discrimination as a temporary solution before overall institution reform. Addressing evolving risks, the Wellcome Trust establishes a “health AI code” to include requirements for adaptive governance, public participation in institution design, and cooperation across sectors.
Recent ethical discussions and development in this area mostly feature on public, decision-maker, and grassroots levels. Institutional responses, which make the standards and mechanisms practical, have rarely been addressed. Research on this layer is critical not only because the governing policies and codes are relevant mainly in professional contexts but also due to the vast ecosystem of institutional players in MLm. Meanwhile, understands of institutional actors behind public/business policies and principles, codes and standards, and data governance mechanisms are still scarce.
10. Future Directions in Predictive Analytics
While still evolving, predictive analytics has shown immense promise with the increased availability of health data and the growth of advanced machine learning and artificial intelligence (AI) technologies. Harnessing predictive analytics platforms and integrating them into the clinical workflow for the security of health data is a subject of further exploration. Implementing predictive analytics in today’s healthcare system across the globe will take time and is likely to face several hurdles. Multiple predictive analytics platforms are already actively acquiring data from thousands of hospitals to achieve better patient outcomes, and more have been proposed. It should be noted that although a few predictive models are already offering the service, the majority are still experimental models tested only against specific datasets and are therefore, not clinically deployable yet.
There is an immense opportunity for both the private sector and research institutions to set up predictive analytics platforms that can aid hospitals and provide the service for free to government institutions to guarantee patient privacy. Large tech companies are already seen investing in healthcare predictive analytics platforms to analyze the massive amount of health data it gathers for increasing its market share. These companies should play an active role by partnering with medical institutions and establishing data-acquiring mechanisms to make smart decisions regarding disease detection and prevention (Dixon et al., 2024).
The exponential increase in the amount of online health-related data, coupled with the developments in natural language processing, has the potential to significantly boost the performance of predictive models. Current state-of-the-art methods use clinical diagnosis and lab test results to identify patients with a 42.28% average precision. However, there is still much room for improvement. Research studies and models employing web data and social network posts to identify diseases and label classification would be able to benefit the existing predictive models significantly. Combining the structured health data collected by hospitals with semantic web corpus and unstructured textual data from web sources would result in enhanced performance.
10.1. Advancements in AI Technologies
The recent decades have seen tremendous developments in AI technologies due to emphasized investments and research in its domain (Dixon et al., 2024). In parallel to the rapid augmentation of computational capabilities and power, non-linear classifiers as well as advanced optimization methods are now widely accessible tools for scientists, civil servants, and engineers to encode the intuitive complexity of their systems of interest and explore it through the eyes of data. AI now actively analyzes data from diverse sources including remote sensing satellites, surveillance systems, social networks. A notable result of this trend is the significant range of application of this realm of science, ranging from search engines and recommender systems in social network management to bent-pipe algorithms monitoring and directing the visit of the major scientific observatories of the world in the study of the early universe. However, beyond this macroscopic situation, an ocean of uncertainty still surrounds how AI technologies can be introduced, developed, and implemented in safety-critical fields such as health care or air traffic management, where erratic diagnostic decisions or unpredicted deaths of passengers could result from misleading AI results. Some lessons can be learned from a successful introduction of AI in the fundamental science domain such as high-energy physics or astronomy, following the so-called live and let live paradigm: AI socio-economic impacts must be studied before being deployed.
Traditionally, decision making in health care is based on expert knowledge. Medical decision making usually refers to a set of diagnosed processes that aim at selecting the most appropriate strategy to achieve a goal such as being cured and avoid adverse side effects or drug administration. In other words, a decision is made when the healthcare provider is obliged to choose one operation among a finite set of potential operations. AI predictive analytics is derived from predictive modeling and utilizes discovery-driven computations to provide insight into how underlying phenomena occur. Predictive modeling analyzes historic data and constructs mathematical models which predict future unknown events using the learned models and available input data. Predictive analytics utilization can create a significant impact on the decision-making process of healthcare delivery.
10.2. Personalized Medicine
Personalized medicine, “tailored” to individual patients, on the prize list of medical progress overburdened by the onset of the big-data era, involves the management, analysis and visualization of ever-increasing clinical data, as well as its advanced interpretation and profound insight by clinical and precision medicine informatics, to discern the complex connections among to-be-analyzed data and make Pharmaco-Information-oriented decision (Ahmed, 2020). Personalized medicine endeavors to utilize clinical diversity to explore the relationship between the heterogeneous epidemiological and genomic data and the clinical outcomes; to uncover biological insights and significant variables related to the clinical consequences or effectiveness for the individualized disease prognosis at the management end; to format a visual interface that is more intuitive and comprehensive for the nucleation, simulation and prediction of disease evolution at the diagnosis end; and to provide a theoretical basis for personalized convicts of drug-targeted and preclinical testing evaluation. There is, on one side, the micro-level examination of omics data with regards to the effect on single outcome and single gene, etc., and on the other side, the macro-level aggregation of extensive biomedical texts to achieve a system-level understanding. However, there are overwhelming omics datasets raising challenges for personalized medicine in understanding human biology, pathology and the deep relation between omics alterations and disease (Z. Papadakis et al., 2019). Integrative omics is a prerequisite for deepening understanding of health and disease, which involves combining, aggregating and jointly analyzing distinct types of data. Nevertheless, the compute-intensive nature, nonlinearity and non-Gaussian characteristics of genomic and biomedical data render significant challenges for big-data-driven personalized medicine. Public resources with multi-omics data and gigantic knowledge provide invaluable treasure for precision medicine studies.
10.3. Collaboration Between Stakeholders
The multi-disciplinary nature of predictive analytics in research and healthcare to address the needs of typical target populations. Important dimensions of interdisciplinary collaboration across stakeholder categories and roles are identified including: (1) Health, social and data science stakeholder workgroup engagement in agenda-setting to define research, implementation and evaluation goals; (2) Profiling target populations towards model development and validation; (3) Implementation design and stakeholder engagement strategies; (4) Avoiding or addressing gaps in anticipated feasibility, acceptability and usability of predictive models for target populations; and (5) Identifying next steps in implementation, sustainability and development of models associated with complementary health conditions and study populations.
Timely interventions to support health, rehabilitation and quality of life among individuals with anticipated or emergent conditions affecting daily life, such as autism diagnosis, depression, obesity, and Alzheimer’s disease-related neurocognitive disorder present challenging implementation opportunities to predictive modeling researchers, public funders, and clinical stakeholders. Attention to long-range strategic infrastructures and active processes to realize analytics promise for target populations, caregivers, service providers, and public stakeholders not traditionally engaging in predictive modeling research, health service planning, and practice is critical to maximizing payoffs for healthcare innovation investment.
The unique complexities and opportunities associated with development of predictive analytics infrastructure to support broad health in diverse populations, at the domain level and public health arena attending processes, relationships, and outcomes critical to success and feasibility mentioned above. Because analytics are often developed to target the needs of particular populations, public health implications extend from research and health service planning investments to broad concerns about health service access and quality—challenges deepened for lower risk populations and less publicly funded service provision settings. Publicly and privately funded consultation and design resources respondents recommend address a health condition’s core issues, emphasize stakeholder training and audit processes to support understanding of analytics, and importantly, specify high-level decision criteria governing their broader scope.
11. Conclusion
Analytic that forecast events or trends by identifying historical data via statistical or machine learning models is known as predictive analytics. The predictive analytics field is highly interdisciplinary and emerges from collaboration between various fields such as statistics, data mining, machine learning, and information visualization. In recent years, it has been successfully applied to a wide range of domains including but not limited to healthcare, finance, telecommunication, and academia. Predictive analytics plays a significant role in healthcare. It has broad applications such as predicting disease development, medical requests, treatment effects, and patient compliance as well as designing less invasive diagnostic studies. Predictive analytics based on big data is generally task-oriented and consists of data pre-processing, model construction, model evaluation, and application. It can be accomplished in various ways based on the application, such as established statistical approaches like regression and machine learning approaches like support vector machines and deep learning. A pressing need exists in healthcare domain for developing accurate, clear, and robust predictive models. Reliable predictive models greatly assist healthcare experts in making better informed decisions on diagnosis and treatment. Recent decades have witnessed the irreplaceable power of machine learning techniques in finding patterns hidden in big data to assist in diagnosis and medical decision-making. It is important but challenging yet to develop medically interpretable machine learning models that provide classification results in the form of clinical ratings in tandem with biometric data such as continuous glucose monitoring signals under the framework of supervised learning. A range of analysis on diabetes has been reported, including but not limited to scientific endeavors on mechanism exploration, and development of computational tools to simulate, analyze, and visualize various physiological and biochemical reactions to meet the requirements of diabetes diagnosis, treatment, education, and scientific research. Continuous glucose monitoring systems provide minute-by-minute glucose readings, and accurate prediction of blood glucose levels is an important component of intelligent insulin decision support systems for diabetes treatment. Diabetes also serves as a vanguard for utilizing machine learning techniques to leverage big data to facilitate radiotherapy planning and execution. For example, a mathematical programming model and a constraint programming model have been used to intelligently schedule radiotherapy patients according to a range of criteria.
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