
A Study On Dual Hyperbolic Generalized Edouard Numbers

Abstract.In this research, we introduce the generalized dual hyperbolic Edouard numbers, a novel class

of number sequences that extends existing recurrence relations into a new mathematical framework. Several

special cases of these numbers are examined in detail, including the dual hyperbolic Edouard numbers and the

dual hyperbolic Edouard-Lucas numbers, each revealing intriguing combinatorial and algebraic properties.

Explicit expressions for these sequences are derived, such as Binet-type formulas, generating functions,

and summation identities, which offer analytical insight into their behavior and structural patterns. In

addition, we explore matrix representations associated with these sequences, providing an elegant algebraic

tool for further theoretical development and potential applications.
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1. Introduction

1.1. Dual Hyperbolic Numbers. In mathematical and geometric contexts, a hypercomplex system

refers to a framework that generalizes the principles of complex numbers. These systems possess rich algebraic

structures and are frequently studied for their diverse applications in physics and engineering. Below, we

provide a concise overview of the key application areas of hypercomplex number systems in these fields.

In contrast to complex numbers, hypercomplex systems provide a more sophisticated framework for

representing transformations and symmetries in higher-dimensional spaces. As noted by Kantor in [38],

these systems can be viewed as extensions of the real number line, offering algebraic tools tailored to mul-

tidimensional analysis. The principal types of hypercomplex number systems encompass complex numbers,

hyperbolic numbers, and dual numbers. Complex numbers, defined by a real and an imaginary component,

serve as the foundational structure for more advanced hypercomplex systems. Hyperbolic numbers build
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upon the complex number framework and are employed in diverse mathematical models, particularly those

involving Lorentz transformations and spacetime geometries. Dual numbers, distinguished by the presence

of a dual unit whose square is zero, are instrumental in various algebraic constructions, including automatic

differentiation and kinematic analysis.

The following sections offer more detailed insights into the mathematical properties and application

areas of these hypercomplex systems.

• Complex numbers are constructed by extending the real number system through the introduction

of an imaginary unit, denoted as ”i”, which satisfies the identity i2 = −1. A complex number is

typically expressed in the form z = a + bi, where a and b are real numbers, and i represents the

imaginary unit.

• Hyperbolic numbers also referred to as double numbers or split complex numbers extend the real

number system by introducing a new unit element j, which satisfies the identity j2 = 1 [44]. These

numbers are distinct from real and complex numbers due to their unique algebraic properties. A

hyperbolic number is defined as:

H = {h = a+ jb : a, b ∈ R, j2 = 1, j 6= ±1}.

where a and b are real numbers and j is the hyperbolic unit. This structure enables the modeling of

systems with split-signature metrics and has notable applications in areas such as special relativity

and signal processing.

• Dual numbers [20] expand the real number system through the incorporation of a new element

ε, which satisfies the identity ε2 = 0. This infinitesimal unit distinguishes dual numbers from

other hypercomplex systems and makes them especially valuable in modeling instantaneous rates

of change. A dual number is defined as:

D = {d = a+ εb : a, b ∈ R, ε2 = 0, ε 6= 0}.

where a and b are real numbers, and ε is the nilpotent unit. Dual numbers are commonly used in

applications such as automatic differentiation, kinematics, and perturbation analysis, due to their

ability to elegantly encode infinitesimal variations.

• Among the non-commutative examples of hypercomplex number systems are quaternions [26].

Quaternions generalize complex numbers by incorporating three distinct imaginary units, typi-

cally denoted as i,j, and k. A quaternion has the form as a0+ ia1+ ja2+ka3, where a0, a1, a2, a3 ∈

R.These multiplication rules result in a non-commutative structure, meaning the order of multipli-

cation affects the result.The set of quaternion numbers is formally defined as:

HQ = {q = a0 + ia1 + ja2 + ka3 : a0, a1, a2, a3 ∈ R, i2 = j2 = k2 = ijk = −1},
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• Additional hypercomplex systems include octonions and sedenions, which are discussed in [29] and

[45]. The algebras C (complex numbers), HQ (quaternions), O (octonions), and S (sedenions) are

all constructed as real algebras derived from the real numbers R using a recursive procedure known

as the Cayley—Dickson Process. This technique successively doubles the dimension of each algebra

and continues beyond sedenions to produce what are collectively referred to as the 2n-ions.The

following table highlights selected publications from the literature that investigate the properties

and applications of these extended number systems.

For more information on hypercomplex algebra, see [39,27,41,75]

Table 1. Papers that have been published in the literature raleted to 2n-ions.

Authors and Title of the paper↓ Papers↓

Biss, D.K., Dugger, D., Isaksen, D.C., Large annihilators in Cayley-Dickson algebras [8]

Hamilton, W.R., Elements of Quaternions [26]

Imaeda, K., Sedenions: algebra and analysis [28]

Moreno, G., The zero divisors of the Cayley-Dickson algebras over the real numbers [40]

Göcen, M., Soykan, Y., Horadam 2k-Ions [21]

Soykan,Y., Tribonacci and Tribonacci-Lucas Sedenions [45]

On higher order Fibonacci hyper complex numbers [37]
A dual hyperbolic number is a type of hypercomplex number, specifically a member of the hyperbolic

number system. A dual hyperbolic number is defined as follows

q = (a0 + ja1) + ε(a2 + ja3) = a0 + ja1 + εa2 + εja3

where a0, a1, a2, a3 ∈ R .

HD, the set of all dual hyperbolic numbers, are generally denoted by

HD = {a0 + ja1 + εa2 + εja3 : a0, a1, a2, a3 ∈ R, j2 = 1, j 6= ±1, ε2 = 0, ε 6= 0}.

The {1, j, ε, εj} is linearly independent, and the algebra HD is generated by their span, i.e. HD =

sp{1, j, ε, εj}

Therefore, {1, j, ε, εj} forms a basis for the dual hyperbolic algebra HD. For more detail, see [2].

The next properties are holds for the base elements {1, j, ε, εj} of dual hyperbolic numbers (commutative

multiplications):

1.ε = ε, 1.j = j, ε2 = ε.ε = (jε)2 = 0, j2 = j.j = 1

ε.j = j.ε, ε.(εj) = (εj).ε = 0, j(εj) = (εj)j = ε

where ε denotes the pure dual unit (ε2 = 0, ε 6= 0), j denotes the hyperbolic unit (j2 = 1), and εj denotes

the dual hyperbolic unit ((jε)2 = 0).
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We claim that p and q be two dual hyperbolic numbers that q = a0 + ja1 + εa2 + jεa3 and p =

b0 + jb1 + εb2 + jεb3 and then we can write the product of p and q as

qp = a0b0 + a1b1 + j(a0b1 + a1b0) + ε(a0b2 + a2b0 + a1b3 + a3b1) + jε(a0b3 + a1b2 + a2b1 + b0a3)

and we can write the sum dual hyperbolic numbers p and q as componentwise.

The dual hyperbolic numbers form a commutative ring, real vector space and an algebra. HD is not

field since every dual hyperbolic numbers doesn’t have an inverse. For more detail about dual hyperbolic

numbers, see [2].

1.2. General Linear Recurrence Relations. Linear recurrence relations of second, third, and fourth

order are specific instances of the more general k-th order linear recurrence relations. These relations define

sequences in which each term is a linear combination of a fixed number of preceding terms. A homogeneous

linear recurrence relation of order k is expressed as:

an = r1an−1 + r2an−2 + · · ·+ rkan−k, for n ≥ k,

where r1, r2, . . . , rk are constant coeffi cients, and the initial terms a0, a1, . . . , ak−1 are given.

Examples of Specific Orders:

• Second-order:

an = ran−1 + san−2

Characteristic equation:

x2 − rx− s = 0

• Third-order:

an = ran−1 + san−2 + tan−3

Characteristic equation:

x3 − rx2 − sx− t = 0

• Fourth-order:

an = ran−1 + san−2 + tan−3 + uan−4

Characteristic equation:

x4 − rx3 − sx2 − tx− u = 0

The general solution depends on the roots of the characteristic equation. If the polynomial has k distinct

roots r1, r2, . . . , rk, the solution is given by:

an = α1r
n
1 + α2r

n
2 + · · ·+ αkrnk ,

where α1, α2, . . . , αk are constants determined by initial conditions.

In the case of repeated roots or complex conjugate pairs, the solution modifies accordingly:
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• Repeated roots:

an = P (n)rn

where P (n) is a polynomial in n.

• Complex conjugate roots:

an = rn (α cos(nθ) + β sin(nθ))

An inhomogeneous linear recurrence relation includes a non-zero forcing term:

an = r1an−1 + · · ·+ rkan−k + f(n),

where f(n) is a known function. The general solution is the sum of the homogeneous solution and a

particular solution to the nonhomogeneous recurrence.

Higher-order recurrence relations are foundational in numerous domains:

• Combinatorics: Problems involving partitions, tilings, and lattice paths.

• Computer Science: Analysis of recursive algorithms and dynamic programming.

• Mathematical Physics: Discrete dynamical systems and numerical modeling.

• Number Theory: Extensions of sequences such as Fibonacci, Lucas, and others.

1.3. Background on Edouard Numbers. This section presents key foundational results on Edouard

numbers, which are governed by a third-order homogeneous linear recurrence relation. These numbers

provide a framework for exploring generalized integer sequences and their associated algebraic structures.

A generalized Edouard sequence {Wn}n≥0 = {Wn(W0,W1,W2)}n≥0 is defined by the third-order recur-

rence relations

Wn = 7Wn−1 − 7Wn−2 +Wn−3; W0,W1,W2 (n ≥ 3) (1.1)

with the initial values W0,W1,W2 not all being zero. The sequence {Wn}n≥0 can be given to negative

subscripts by defining

W−n = 7W−(n−1) − 7W−(n−2) +W−(n−3)

for n = 1, 2, 3, .... Thus, recurrence (1.1) is true for all integer n.

In the Table 2 we give the first few generalized Edouard numbers with positive subscript and negative

subscript

Table 2. A few generalized Edouard numbers
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n Wn W−n

0 W0 W0

1 W1 7W0 − 7W1 +W2

2 W2 42W0 − 48W1 + 7W2

3 W0 − 7W1 + 7W2 246W0 − 287W1 + 42W2

4 7W0 − 48W1 + 42W2 1435W0 − 1680W1 + 246W2

5 42W0 − 287W1 + 246W2 8365W0 − 9799W1 + 1435W2

6 246W0 − 1680W1 + 1435W2 48756W0 − 57120W1 + 8365W2

If we takeW0 = 0,W1 = 1,W2 = 7 then {En} is the Edouard sequence, if we takeW0 = 3,W1 = 7,W2 =

35 then {Kn} is the Edouard-Lucas sequence. In other words, Edouard sequence {En}n≥0, Edouard-Lucas

sequence {Kn}n≥0 are given by the third-order recurrence relations

En = 7En−1 − 7En−2 + En−3, E0 = 0, E1 = 1, E2 = 7, (1.2)

Kn = 7Kn−1 − 7Kn−2 +Kn−3, K0 = 3,K1 = 7,K2 = 35, (1.3)

In addition that the sequences given above can be extended to negative subscripts by defining,

E−n = 7E−(n−1) − 7E−(n−2) + E−(n−3),

K−n = 7K−(n−1) − 7K−(n−2) +K−(n−3),

for n = 1, 2, 3, ... respectively. As a result, recurrences (1.2)-(1.3) are true for all integer n.

We can enumerate several essential properties of generalized Edouard numbers that are required.

Binet formula of generalized Edouard sequence can be calculated using its characteristic equation given

as

z3 − 7z2 + 7z − 1 =
(
z2 − 6z + 1

)
(z − 1) = 0,

where the roots of above equation are

α = 3 + 2
√
2,

β = 3− 2
√
2,

γ = 1.

Using these roots and the recurrence relation of {Wn}, we can write the Binet’s formula can be written as

Wn =
z1α

n

(α− β)(α− γ) +
z2β

n

(β − α)(β − γ) +
z3γ

n

(γ − α)(γ − β) (1.4)

=
z1α

n

(α− β)(α− γ) +
z2β

n

(β − α)(β − γ) −
z3γ

n

4

= A1α
n +A2β

n +A3γ
n,
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where z1, z2 and z3 are given below

z1 = W2 − (β + 1)W1 + βW0,

z2 = W2 − (α+ 1)W1 + αW0,

z3 = W2 − 6W1 +W0,

and

A1 =
W2 − (β + 1)W1 + βW0

(α− β)(α− γ) , (1.5)

A2 =
W2 − (α+ 1)W1 + αW0

(β − α)(β − γ) ,

A3 =
W2 − 6W1 +W0

(γ − α)(γ − β) .

Binet’s formula of Edouard, Edouard-Lucas sequences can be written as

En =
αn+1

(α− β)(α− 1) +
βn+1

(β − α)(β − 1) −
1

4
,

Kn = αn + βn + 1.

After then we can write the generating function of generalized Edouard numbers,
∞∑
n=0

Wnx
n =

W0 + (W1 − 7W0)x+ (W2 − 7W1 + 7W0)x
2

1− 7x+ 7x2 − x3 . (1.6)

Next, we give the exponential generating function of
∞∑
n=0

Wn
xn

n! of the sequence Wn.

Lemma 1. [3, Lemma 1.4]. Suppose that fWn
(x) =

∞∑
n=0

Wn
xn

n! is the exponential generating function of

the generalized Edouard sequence {Wn}. Then
∞∑
n=0

Wn
xn

n!
=
(W2 − (β + 1)W1 + βW0)

(α− β)(α− 1) eαx +
(W2 − (α+ 1)W1 + αW0)

(β − α)(β − 1) eβx − (W2 − 6W1 +W0)

4
ex.

The previous Lemma gives the following results as particular examples.

Corollary 2. Exponential generating function of Edouard and Edouard-Lucas numbers are

a):
∞∑
n=0

En
xn

n!
=

∞∑
n=0

(
αn+1

(α− β)(α− 1) +
βn+1

(β − α)(β − 1) −
1

4
)
xn

n!
=

αeαx

(α− β)(α− 1) +
βeβx

(β − α)(β − 1) −
1

4
ex.

b):
∞∑
n=0

Kn
xn

n!
=

∞∑
n=0

(αn + βn + 1)
xn

n!
= eαx + eβx + ex.

For more details about generalized Edouard numbers, see [59].

Now, we give some information on published papers related to hyperbolic and dual hyperbolic numbers

in litarature.
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• Cockle [12] explored hyperbolic numbers with complex coeffi cients, contributing to the early devel-

opment of hypercomplex algebra.

• Cheng and Thompson [10] introduced dual numbers with complex coeffi cients, expanding the alge-

braic versatility of dual number systems for applications in polynomial equations and transformation

theory.

• Akar at al [2] introduced the concept of dual hyperbolic numbers, combining characteristics of dual

and hyperbolic systems into a unified algebraic structure.

Next, we give some information related to dual hyperbolic sequences presented in literature.

• Soykan at al [56] introduced the concept of dual hyperbolic generalized Pell numbers, extending

classical Pell sequences into the framework of hypercomplex algebra. These numbers are defined

as:

V̂n = Vn + jVn+1 + εVn+2 + jεVn+3

where j2 = 1 and ε2 = 0, reflecting the underlying dual hyperbolic structure.The scalar components

Vn follow the recurrence relation for generalized Pell numbers:Vn = 2Vn−1 + Vn−2, V0 = a, V1 = b

(n ≥ 2)with initial values V0, V1 not both zero.

• Cihan at al [1] examined the structure of dual hyperbolic Fibonacci and dual hyperbolic Lucas

numbers, which integrate classical sequences into a hypercomplex framework. These numbers are

defined as:

DHFn = Fn + jFn+1 + εFn+2 + jεFn+3,

DHLn = Ln + jLn+1 + εLn+2 + jεLn+3

where j2 = 1, ε2 = 0.The scalar components are governed by the classical recurrence relations.

Fibonacci sequence: Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1, Lucas sequence: Ln = Ln−1 + Ln−2,

L0 = 2, L1 = 1.

• Soykan at al [[57] investigated dual hyperbolic generalized Jacobsthal numbers, extending classical

recurrence relations within a hypercomplex framework. These numbers are expressed as:

Ĵn = Jn + jJn+1 + εJn+2 + jεJn+3

where j2 = 1, ε2 = 0 and the scalar components Jn follow the recurrence relation Jn = Jn−1+2Jn−2,

J0 = a, J1 = b.

• Bród at al [9] examined the structure of dual hyperbolic generalized balancing numbers, integrating

classical recurrence sequences with dual and hyperbolic number theory. These numbers are defined

as:

DHBn = Bn + jBn+1 + εBn+2 + jεBn+3
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where j2 = 1, ε2 = 0 and the base sequence Bn follows the recurrence Bn = 6Bn−1 − Bn−2,

B0 = 0, B1 = 1.

Next section, we present the dual hyperbolic generalized Edouard numbers and give some properties of

these numbers.

2. Dual Hyperbolic Generalized Edouard Numbers and their Generating Functions and

Binet’s Formulas

In this section, we define dual hyperbolic generalized Edouard numbers then using this definition, we

present generating functions and Binet’s formula of dual hyperbolic generalized Edouard numbers.

We now examine dual hyperbolic generalized Edouard numbers within the algebra HD. The nth such

number is defined as

Ŵn =Wn + jWn+1 + εWn+2 + jεWn+3. (2.1)

with the initial values Ŵ0, Ŵ1, Ŵ2. (2.1) can be written to negative subscripts by defining,

Ŵ−n =W−n + jW−n+1 + εW−n+2 + jεW−n+3. (2.2)

so identity (2.1) holds for all integers n.

Now, we define some special cases of dual hyperbolic generalized Edouard numbers. The nth dual

hyperbolic Edouard numbers, the nth dual hyperbolic Edouard-Lucas numbers, respectively, are given as

the nth dual hyperbolic Edouard numbers is given Ên = En + jEn+1 + εEn+2 + jεEn+3, with the initial

values

Ê0 = E0 + jE1 + εE2 + jεE3,

Ê1 = E1 + jE2 + εE3 + jεE4,

Ê2 = E2 + jE3 + εE4 + jεE5,

the nth dual hyperbolic Edouard-Lucas numbers is given K̂n = Kn + jKn+1 + εKn+2 + jεKn+3 with the

initial values

K̂0 = K0 + jK1 + εK2 + jεK3,

K̂1 = K1 + jK2 + εK3 + jεK4,

K̂2 = K2 + jK3 + εK4 + jεK5.

Note that, for dual hyperbolic Edouard numbers (by using Wn = En, E0 = 0, E1 = 1, E2 = 7) we get

Ê0 = j + 7ε+ 42jε,

Ê1 = 1 + 7j + 42ε+ 246jε,

Ê2 = 7 + 42j + 246ε+ 1435jε,
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for dual hyperbolic Edouard-Lucas numbers (by using Wn = Kn, K0 = 3, K1 = 7, K2 = 35) we obtain

K̂0 = 3 + 7j + 35ε+ 199jε,

K̂1 = 7 + 35j + 199ε+ 1155jε,

K̂2 = 35 + 199j + 1155ε+ 6727jε.

So, using (2.1), we can write the following identity for non negative integers n,

Ŵn = 7Ŵn−1 − 7Ŵn−2 + Ŵn−3, (2.3)

and the sequence {Ŵn}n≥0 can be given as

Ŵ−n = 7Ŵ−(n−1) − 7Ŵ−(n−2) + Ŵ−(n−3),

for n = 1, 2, 3, ... by using (2.2). As a result., recurrence (2.3) holds for all integer n.

Table 3 presents the initial values of the dual hyperbolic generalized Edouard numbersŴn, showcasing

terms with both positive and negative subscripts for a comprehensive view of the sequence’s symmetric

structure.

Table 3. A few dual hyperbolic generalized Edouard numbers

n Ŵn Ŵ−n

0 Ŵ0 Ŵ0

1 Ŵ1 7Ŵ0 − 7Ŵ1 + Ŵ2

2 Ŵ2 42Ŵ0 − 48Ŵ1 + 7Ŵ2

3 Ŵ0 − 7Ŵ1 + 7Ŵ2 246Ŵ0 − 287Ŵ1 + 42Ŵ2

4 7Ŵ0 − 48Ŵ1 + 42Ŵ2 1435Ŵ0 − 1680Ŵ1 + 246Ŵ2

5 42Ŵ0 − 287Ŵ1 + 246Ŵ2 8365Ŵ0 − 9799Ŵ1 + 1435Ŵ2

6 246Ŵ0 − 1680Ŵ1 + 1435Ŵ2 48756Ŵ0 − 57120Ŵ1 + 8365Ŵ2

Note that

Ŵ0 = W0 + jW1 + εW2 + jεW3,

Ŵ1 = W1 + jW2 + εW3 + jεW4,

Ŵ2 = W2 + jW3 + εW4 + jεW5.

A few dual hyperbolic Edouard numbers, dual hyperbolic Edouard-Lucas numbers with positive subscript

and negative subscript are given in the following Table 4, Table 5.

Table 4. Dual hyperbolic Edouard numbers
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n Ên Ê−n

0 j + 7ε+ 42jε

1 1 + 7j + 42ε+ 246jε ε+ 7jε

2 7 + 42j + 246ε+ 1435jε 1 + jε

3 42 + 246j + 1435ε+ 8365jε 7 + j

4 246 + 1435j + 8365ε+ 48756jε 42 + 7j + ε

5 1435 + 8365j + 48756ε+ 284172jε 246 + 42j + 7ε+ jε

Table 5. Dual hyperbolic Edouard-Lucas numbers

n K̂n K̂−n

0 3 + 7j + 35ε+ 199jε

1 7 + 35j + 199ε+ 1155jε 7 + 3j + 7ε+ 35jε

2 35 + 199j + 1155ε+ 6727jε 35 + 7j + 3ε+ 7jε

3 199 + 1155j + 6727ε+ 39203jε 199 + 35j + 7ε+ 3jε

4 1155 + 6727j + 39203ε+ 228487jε 1155 + 199j + 35ε+ 7jε

5 6727 + 39203j + 228487ε+ 1331715jε 6727 + 1155j + 199ε+ 35jε

Now, we will give some expressions that we will use in the rest of the paper and then we define Binet’s

formula for the dual hyperbolic generalized Edouard numbers.

α̂ = 1 + jα+ εα2 + jεα3, (2.4)

β̂ = 1 + jβ + εβ2 + jεβ3, (2.5)

γ̂ = 1 + j + ε+ jε. (2.6)

Note that using above equalities we can write the following identities:

α̂2 = 1 + α2 + 2jα+ 2ε(α4 + α2) + 4jεα3,

β̂
2
= 1 + β2 + 2jβ + 2ε(β2 + β4) + 4jεβ3,

γ̂2 = 3 + 2j + 4ε+ 4jε,

α̂β̂ = 1 + αβ + j(β + α) + ε(β2 + α2 + α3β + αβ3) + εj(α3 + α2β + αβ2 + β3),

α̂γ̂ = 1 + α+ j(1 + α) + ε(1 + α+ α2 + α3) + jε(1 + α+ α2 + α3),

β̂γ̂ = 1 + α+ j(1 + α) + ε(1 + α+ α2 + α3) + jε(1 + α+ α2 + α3).

Theorem 3. (Binet’s Formula) Let n be any integer then the Binet’s formula of dual hyperbolic gener-

alized Edouard number is

Ŵn = α̂A1α
n + β̂A2β

n + γ̂A3 (2.7)

where α̂, β̂, γ̂ are given as (2.4)-(2.5)-(2.6).
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Proof. Using Binet’s formula of the generalized Edouard numbers given below

Wn = A1α
n +A2β

n +A3

where A1, A2, A3 are given (1.5) we get

Ŵn = Wn + jWn+1 + εWn+2 + jεWn+3,

= A1α
n +A2β

n +A3γ
n + (A1α

n+1 +A2β
n+1 +A3γ

n+1)j + (A1α
n+2 +A2β

n+2 +A3γ
n+2)ε

+(A1α
n+3 +A2β

n+3 +A3)jε.

= α̂A1α
n + β̂A2β

n + γ̂A3.

This proves (2.7). �
In particular, for any integer n, the Binet’s Formula of nth dual hyperbolic Edouard number, Edouard-

Lucas numbers, respectively, provided by

Ên =
α̂αn+1

(α− β)(α− 1) +
β̂βn+1

(β − α)(β − 1) −
γ̂

4
,

K̂n = α̂αn + β̂βn + γ̂,

In the following Theorem, we now derive the generating function for the sequence of dual hyperbolic gen-

eralized Edouard numbers, providing a compact analytical representation of their structure and recursive

behavior.

Theorem 4. The generating function for the dual hyperbolic generalized Edouard numbers is

f
Ŵn
(x) =

Ŵ0 + (Ŵ1 − 7Ŵ0)x+ (Ŵ2 − 7Ŵ1 + 7Ŵ0)x
2

(1− 7x+ 7x2 − x3) . (2.8)

Proof. We assume that f
Ŵn
(x) is the generating function of the dual hyperbolic generalized Edouard

numbers and then we can write

f
Ŵn
(x) =

∞∑
n=0

Ŵnx
n.
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Then, in light of the definition of the dual hyperbolic generalized Edouard numbers, and substracting

7xg(x) and −7x2g(x) from x3g(x), we get

(1− 7x+ 7x2 − x3)f
GŴn

(x) =

∞∑
n=0

Ŵnx
n − 7x

∞∑
n=0

Ŵnx
n + 7x2

∞∑
n=0

Ŵnx
n − x3

∞∑
n=0

Ŵnx
n,

=

∞∑
n=0

Ŵnx
n − 7

∞∑
n=0

Ŵnx
n+1 + 7

∞∑
n=0

Ŵnx
n+2 −

∞∑
n=0

Ŵnx
n+3,

=

∞∑
n=0

Ŵnx
n − 7

∞∑
n=1

Ŵn−1x
n + 7

∞∑
n=2

Ŵn−2x
n −

∞∑
n=3

Ŵn−3x
n,

= (Ŵ0 + Ŵ1x+ Ŵ2x
2)− 7(Ŵ0x+ Ŵ1x

2) + 7GW0x
2

+

∞∑
n=3

(Ŵn − 7Ŵn−1 + 7Ŵn−2 − Ŵn−3)x
n,

= Ŵ0 + Ŵ1x+ Ŵ2x
2 − 7Ŵ0x− 7Ŵ1x

2 + 7Ŵ0x
2,

= Ŵ0 + (Ŵ1 − 7Ŵ0)x+ (Ŵ2 − 7Ŵ1 + 7Ŵ0)x
2.

Note that , using the recurrence relation Ŵn = 7Ŵn−1 − 7Ŵn−2 + Ŵn−3 and rearranging above equation,

the (2.8) has been obtained. �
Now we can write the generating functions of the dual hyperbolic Edouard, Edouard-Lucas numbers as

fÊn(x) =
(j + 7ε+ 42jε) + (1− 48jε− 7ε)x+ (ε+ 7jε)x2

(1− 7x+ 7x2 − x3) ,

fK̂n
(x) =

(3 + 7j + 35ε+ 199jε) + (−14− 14j − 46ε− 238jε)x+ (7 + 3j + 7ε+ 35jε)x2
(1− 7x+ 7x2 − x3) ,

respectively. �
Next, we give the exponential generating function of

∞∑
n=0

Ŵn
xn

n! of the sequence Ŵn.

Lemma 5. Suppose that f
Ŵn
(x) =

∞∑
n=0

Ŵn
xn

n! is the exponential generating function of the dual hyperbolic

generalized Edouard sequence { Ŵn}.

Then
∞∑
n=0

Ŵn
xn

n! is given by

∞∑
n=0

Ŵn
xn

n!
=

∞∑
n=0

Wn
xn

n!
+ j

∞∑
n=0

Wn+1
xn

n!
+ ε

∞∑
n=0

Wn+2
xn

n!
+ jε

∞∑
n=0

Wn+3
xn

n!

=
(W2 − (β + 1)W1 + βW0)

(α− β)(α− 1) eαx +
(W2 − (α+ 1)W1 + αW0)

(β − α)(β − 1) eβx − (W2 − 6W1 +W0)

4
ex

+j(
(W2 − (β + 1)W1 + βW0)α

(α− β)(α− 1) eαx +
(W2 − (α+ 1)W1 + αW0)β

(β − α)(β − 1) eβx − (W2 − 6W1 +W0)

4
ex)

+ε(
(W2 − (β + 1)W1 + βW0)α

2

(α− β)(α− 1) eαx +
(W2 − (α+ 1)W1 + αW0)β

2

(β − α)(β − 1) eβx − (W2 − 6W1 +W0)

4
ex)

+jε(
(W2 − (β + 1)W1 + βW0)α

3

(α− β)(α− 1) eαx +
(W2 − (α+ 1)W1 + αW0)β

3

(β − α)(β − 1) eβx − (W2 − 6W1 +W0)

4
ex).
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Proof: Note that we have

∞∑
n=0

Ŵn
xn

n!
=

∞∑
n=0

(Wn + jWn+1 + εWn+2 + jεWn+3)
xn

n!
.

Then using the Binet’s formula of dual hiperbolic generalized Edouard numbers or exponential generating

function of the generalized Edouard sequence we get the required identy.

The previous Lemma gives the following results as particular examples.

Corollary 6. Exponential generating function of dual hiperbolic Edouard and dual hyperbolic Edouard-

Lucas numbers are

a):

∞∑
n=0

Ên
xn

n!
=

αeαx

(α− β)(α− 1) +
βeβx

(β − α)(β − 1) −
1

4
ex + j(

α2eαx

(α− β)(α− 1) +
β2eβx

(β − α)(β − 1) −
1

4
ex)

+ε(
α3eαx

(α− β)(α− 1) +
β3eβx

(β − α)(β − 1) −
1

4
ex) + jε(

α4eαx

(α− β)(α− 1) +
β4eβx

(β − α)(β − 1) −
1

4
ex).

b):

∞∑
n=0

K̂n
xn

n!
= eαx + eβx + ex + j(αeαx + βeβx + ex).

+ε(α2eαx + β2eβx + ex) + jε(α3eαx + β3eβx + ex).

3. Obtaining Binet Formula From Generating Function

Next ,by using generating function f
Ŵn
(x), we investigate Binet formula of {Ŵn}.

Theorem 7. (Binet formula of dual hyperbolic generalized Edouard numbers)

Ŵn = α̂A1α
n + β̂A2β

n + γ̂A3 (3.1)

Proof. Using the
∑∞
n=0 Ŵnx

n we can write

∞∑
n=0

Ŵnx
n =

Ŵ0 + (Ŵ1 − 7Ŵ0)x+ (Ŵ2 − 7̂W 1 + 7Ŵ0)x
2

(1− 7x+ 7x2 − x3) =
d1

(1− αx) +
d2

(1− βx) +
d3

(1− x) , (3.2)

so that

∞∑
n=0

Ŵnx
n =

d1
(1− αx) +

d2
(1− βx) +

d3
(1− x) ,

=
d1(1− x)(1− βx) + d2 (1− αx) (1− x) + d3 (1− αx) (1− βx)

(x2 − 6x+ 1) (1− x) ,

thus, we obtain

Ŵ0+(Ŵ1−7Ŵ0)x+(Ŵ2−7Ŵ1+7Ŵ0)x
2 = d1+d2+d3+(−d2−αd2−βd1−αd3−βd3)x+(αd2+βd1+αβd3)x2.
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By equating the coeffi cients of corresponding powers of x in the above equation, we get

Ŵ0 = d1 + d2 + d3, (3.3)

Ŵ1 − 7Ŵ0 = −d2 − αd2 − βd1 − αd3 − βd3,

Ŵ2 − 7Ŵ1 + 7Ŵ0 = αd2 + βd1 + αβd3.

If we solve (3.3) we obtain

d1 =
Ŵ0α

2 + (Ŵ1 − 7Ŵ0)α+ (Ŵ2 − 7Ŵ1 + 7Ŵ0)

(α− β)(α− γ) ,

d2 =
Ŵ0β

2 + (Ŵ1 − 7Ŵ0)β + (Ŵ2 − 7Ŵ1 + 7Ŵ0)

(β − α)(β − γ) ,

d3 =
Ŵ0γ

2 + (Ŵ1 − 7Ŵ0)γ + (Ŵ2 − 7Ŵ1 + 7Ŵ0)

(γ − α)(γ − β) ,

Thus (3.2) can be given as

∞∑
n=0

Ŵnx
n = d1

∞∑
n=0

αnxn + d2

∞∑
n=0

βnxn + d3

∞∑
n=0

xn,

=

∞∑
n=0

(d1α
n + d2β

n + d3)x
n,

=

∞∑
n=0

(
Ŵ2 − (β + 1)Ŵ1 + βŴ0

(α− β)(α− γ) αn +
Ŵ2 − (α+ 1)Ŵ1 + αŴ0

(β − α)(β − γ) βn +
Ŵ2 − 6Ŵ1 + Ŵ0

(γ − α)(γ − β) )x
n.

Hence, we get

Ŵn = α̂A1α
n + β̂A2β

n + γ̂A3. �

4. Some Identities

We now introduce distinctive identities pertaining to the sequence {Ŵn} of dual hyperbolic generalized

Edouard numbers. The forthcoming theorem establishes a Simpson type formula within this framework,

characterizing the structural relationships among consecutive terms of the sequence.

Theorem 8. (Simpson’s formula for dual hyperbolic generalized Edouard numbers) For all integers n

we have, ∣∣∣∣∣∣∣∣∣
Ŵn+2 Ŵn+1 Ŵn

Ŵn+1 Ŵn Ŵn−1

Ŵn Ŵn−1 Ŵn−2

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
Ŵ2 Ŵ1 Ŵ0

Ŵ1 Ŵ0 Ŵ−1

Ŵ0 Ŵ−1 Ŵ−2

∣∣∣∣∣∣∣∣∣ . (4.1)

Proof. To proof the above theorem, we can use mathematical induction. First we assume that n > 0.
For n = 0 identity (4.1) is true. Let (4.1) is true for n = k. Consequently, the identity can be stated as
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follows ∣∣∣∣∣∣∣∣∣
Ŵk+2 Ŵk+1 Ŵk

Ŵk+1 Ŵk Ŵk−1

Ŵk Ŵk−1 Ŵk−2

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
Ŵ2 Ŵ1 Ŵ0

Ŵ1 Ŵ0 Ŵ−1

Ŵ0 Ŵ−1 Ŵ−2

∣∣∣∣∣∣∣∣∣ .
For n = k + 1, and using above equality, we can write∣∣∣∣∣∣∣∣∣

Ŵk+3 Ŵk+2 Ŵk+1

Ŵk+2 Ŵk+1 Ŵk

Ŵk+1 Ŵk Ŵk−1

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
7Ŵk+2 − 7Ŵk+1 + Ŵk Ŵk+2 Ŵk+1

7Ŵk+1 − 7Ŵk + Ŵk−1 Ŵk+1 Ŵk

7Ŵk − 7Ŵk−1 + Ŵk−2 Ŵk Ŵk−1

∣∣∣∣∣∣∣∣∣
= 7

∣∣∣∣∣∣∣∣∣
Ŵk+2 Ŵk+2 Ŵk+1

Ŵk+1 Ŵk+1 Ŵk

Ŵk Ŵk Ŵk−1

∣∣∣∣∣∣∣∣∣− 7
∣∣∣∣∣∣∣∣∣
Ŵk+1 Ŵk+2 Ŵk+1

Ŵk Ŵk+1 Ŵk

Ŵk−1 Ŵk Ŵk−1

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣
Ŵk Ŵk+2 Ŵk+1

Ŵk−1 Ŵk+1 Ŵk

Ŵk−2 Ŵk Ŵk−1

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
Ŵk+2 Ŵk+1 Ŵk

Ŵk+1 Ŵk Ŵk−1

Ŵk Ŵk−1 Ŵk−2

∣∣∣∣∣∣∣∣∣ .
Note that, for the case n < 0 the proof can be done similarly. Thus, the proof is completed. �
From Theorem 4.1 we get the following corollary.

Corollary 9.

(a):

∣∣∣∣∣∣∣∣∣
Ên+2 Ên+1 Ên

Ên+1 Ên Ên−1

Ên Ên−1 Ên−2

∣∣∣∣∣∣∣∣∣ = −8j − 280ε− 280jε− 8.

(b):

∣∣∣∣∣∣∣∣∣
K̂n+2 K̂n+1 K̂n

K̂n+1 K̂n K̂n−1

K̂n K̂n−1 K̂n−2

∣∣∣∣∣∣∣∣∣ = 4096j + 143 360ε+ 143 360jε+ 4096.
Theorem 10. Suppose that n and m be positive integers, En is Edouard numbers, the following equality

is valid:

Ŵm+n = Em−1Ŵn+2 + (Em−3 − 7Em−2)Ŵn+1 + Em−2Ŵn. (4.2)

Proof. First for the proof, we assume that m ≥ 0 .The identity (10) can be proved by mathematical

induction on m. Taking m = 0, we get

Ŵn = E−1Ŵn+2 + (E−3 − 7E−2)Ŵn+1 + E−2Ŵn
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which is true by seeing that E−1 = 0, E−2 = 1, E−3 = 7. We assume that the identity (4.2) holds for m = k.

Then for m = k + 1, we get

Ŵ(k+1)+n = 7Ŵn+k − 7̂Wn+k−1 + Ŵn+k−2

= 7(Ek−1Ŵn+2 + (Ek−3 − 7Ek−2)Ŵn+1 + Ek−2Ŵn)

−7(Ek−2Ŵn+2 + (Ek−4 − 3Ek−3)Ŵn+1 + Ek−3Ŵn)

+(Ek−3Ŵn+2 + (Ek−5 − 3Ek−4)Ŵn+1 + Ek−4Ŵn)

= (7Ek−1 − 7Ek−2 + Ek−3)Ŵn+2 + ((7Ek−3 − 7Ek−4 + Ek−5)

−7(7Ek−2 − 7Ek−3 + Ek−4))Ŵn+1 + (7Ek−2 − 7Ek−3 + Ek−4)Ŵn

= EkŴn+2 + (Ek−2 − 7Ek−1)Ŵn+1 + Ek−1Ŵn

= E(k+1)−1Ŵn+2 + (E(k+1)−3 − 7E(k+1)−2)Ŵn+1 + E(k+1)−2Ŵn.

Consequently, by mathematical induction on m, this proves (10). Note that, for the other cases the proof

can be done similarly. �

5. Linear Sums

In this section, we provide summation formulas for hyperbolic generalized Edouard numbers covering

positive subscripts.

Proposition 11. For the generalized Edouard numbers, we have the following formulas:

(a):
∑n
k=0Wk =

1
4 (−(n+ 3)Wn + (n+ 2)(7Wn+1 −Wn+2)− (n+ 1)Wn+1 + 2W2 − 13W1 + 7W0).

(b):
∑n
k=0W2k =

1
32 (−(n+3)W2n+(n+2)(−7W2n+2+48W2n+1− 7W2n)− (n+1)W2n+2+15W2−

96W1 + 49W0).

(c):
∑n
k=0W2k+1 =

1
32 (−(n+ 3)W2n+1 + (n+ 2)(−W2n+2 + 42W2n+1 − 7W2n)− (n+ 1)(7W2n+2 −

7W2n+1 +W2n) + 9W2 − 56W1 + 15W0).

Proof. It is given in Soykan [60, Theorem 3.3]. �
Next, we present the formulas which give the summation of the dual hyperbolic generalized Edouard

numbers.

Theorem 12. For n ≥ 0 then the following sum formulas holds for dual hyperbolic generalized Edouard

numbers.

(a):
∑n
k=0 Ŵk =

1
4 (−(n+ 3)Ŵn + (n+ 2)(7Ŵn+1 − Ŵn+2)− (n+ 1)Ŵn+1 + 2Ŵ2 − 13Ŵ1 + 7Ŵ0).

(b):
∑n
k=0 Ŵ2k =

1
32 (−(n+3)Ŵ2n+(n+2)(−7Ŵ2n+2+48Ŵ2n+1− 7Ŵ2n)− (n+1)Ŵ2n+2+15Ŵ2−

96Ŵ1 + 49Ŵ0).

(c):
∑n
k=0 Ŵ2k+1 =

1
32 (−(n+ 3)Ŵ2n+1 + (n+ 2)(−Ŵ2n+2 + 42Ŵ2n+1 − 7Ŵ2n)− (n+ 1)(7Ŵ2n+2 −

7Ŵ2n+1 + Ŵ2n) + 9Ŵ2 − 56Ŵ1 + 15Ŵ0).
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Proof.

(a): Note that using (2.1), we get

n∑
k=0

Ŵk =

n∑
k=0

Wk + j

n∑
k=0

Wk+1 + ε

n∑
k=0

Wk+2 + jε

n∑
k=0

Wk+3

and using Proposition 11 the proof is easily attainable.

(b): Note that using (2.1), we get

n∑
k=0

Ŵ2k =

n∑
k=0

W2k + j

n∑
k=0

W2k+1 + ε

n∑
k=0

W2k+2 + jε

n∑
k=0

W2k+3

and using Proposition 11 the proof is easily attainable.

(c): Note that using (2.1), we get

n∑
k=0

Ŵ2k+1 =

n∑
k=0

W2k+1 + j

n∑
k=0

W2k+2 + ε

n∑
k=0

W2k+3 + jε

n∑
k=0

W2k+4

and using Proposition 11 the proof is easily attainable. �
As a particular case of the Theorem 12 (a), we present the following corollary.

Corollary 13.

(a):
∑n
k=0 Êk =

1
4 (−(n+ 3)Ên + (n+ 2)(7Ên+1 − Ên+2)− (n+ 1)Ên+1 + 1− 34jε− 5ε).

(b):
∑n
k=0 K̂k =

1
4 (−(n+ 3)K̂n + (n+ 2)(7K̂n+1 − K̂n+2)− (n+ 1)K̂n+1 − 8j − 32ε− 168jε).

As a particular case of the Theorem 12 (b), we present the following corollary.

Corollary 14.

(a):
∑n
k=0 Ê2k =

1
32 (−(n+3)Ê2n+(n+2)(−7Ê2n+2+48Ê2n+1−7Ê2n)−(n+1)Ê2n+2+7j+ε−33jε+9).

(b):
∑n
k=0 K̂2k =

1
32 (−(n + 3)K̂2n + (n + 2)(−7K̂2n+2 + 48K̂2n+1 − 7K̂2n) − (n + 1)K̂2n+2 − 32j −

64ε− 224jε).

As a particular case of the Theorem 12 (c), we present the following corollary.

Corollary 15.

(a):
∑n
k=0 Ê2k+1 =

1
32 (−(n + 3)Ê2n+1 + (n + 2)(−Ê2n+2 + 42Ê2n+1 − 7Ê2n) − (n + 1)(7Ê2n+2 −

7Ê2n+1 + Ê2n) + j − 33ε− 231jε+ 7).

(b):
∑n
k=0 K̂2k+1 =

1
32 (−(n + 3)K̂2n+1 + (n + 2)(−K̂2n+2 + 42K̂2n+1 − 7K̂2n) − (n + 1)(7K̂2n+2 −

7K̂2n+1 + K̂2n)− 64j − 224ε− 1152jε− 32).
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6. Matrices related with Dual Hyperbolic Generalized Edouard Numbers

In this section, using dual hyperbolic Edouard numbers, we give some matrices related to dual hyperbolic

Edouard numbers.

We consider the triangular sequence {En} defined by the third-order recurrence relation as follows

En = 7En−1 − 7En−2 + En−3

with the initial conditions

E0 = 0, E = 1, E2 = 7.

We present the square matrix A of order 3 as

A =


7 −7 1

1 0 0

0 1 0


under the condition that detA = 1. Then, we give the following Lemma.

Lemma 16. For any integers n the following identity can be written


Ŵn+2

Ŵn+1

Ŵn

 =


7 −7 1

1 0 0

0 1 0


n

Ŵ2

Ŵ1

Ŵ0

 . (6.1)

Proof. First, we prove the assertion for the case n ≥ 0. Lemma 16 can be given by mathematical

induction on n. If n = 0 we get


Ŵ2

Ŵ1

Ŵ0

 =


7 −7 1

1 0 0

0 1 0


0

Ŵ2

Ŵ1

Ŵ0


which is true. We assume that (6.1) is true for n = k. Thus the following identity is true.


Ŵk+2

Ŵk+1

Ŵk

 =


7 −7 1

1 0 0

0 1 0


k

Ŵ2

Ŵ1

Ŵ0

 .
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For n = k + 1, we get


7 −7 1

1 0 0

0 1 0


k+1

Ŵ2

Ŵ1

Ŵ0

 =


7 −7 1

1 0 0

0 1 0



7 −7 1

1 0 0

0 1 0


k

Ŵ2

Ŵ1

Ŵ0



=


7 −7 1

1 0 0

0 1 0




Ŵk+2

Ŵk+1

Ŵk



=


7Ŵk+2 − 7Ŵk+1 + Ŵk

Ŵk+2

Ŵk+1



=


Ŵk+3

Ŵk+2

Ŵk+1

 .

For the other case n < 0 the proof is easily attainable. Consequently, using mathematical induction on n,

the proof is completed.

Note that, see [58],

An =


En+1 −7En + En−1 En

En −7En−1 + En−2 En−1

En−1 −7En−2 + En−3 En−2

 .

Theorem 17. If we define the matrices N
Ŵ
and S

Ŵ
as follow

N
Ŵ

=


Ŵ2 Ŵ1 Ŵ0

Ŵ1 Ŵ0 Ŵ−1

Ŵ0 Ŵ−1 Ŵ−2

 ,

S
Ŵ

=


Ŵn+2 Ŵn+1 Ŵn

Ŵn+1 Ŵn Ŵn−1

Ŵn Ŵn−1 Ŵn−2

 .

then the following identity is true:

AnN
Ŵ
= S

Ŵ
.
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Proof. For the proof, we can use the following identities

AnN
Ŵ

=


En+1 −7En + En−1 En

En −7En−1 + Tn−2 En−1

En−1 −7En−2 + En−3 En−2




Ŵ2 Ŵ1 Ŵ0

Ŵ1 Ŵ0 Ŵ−1

Ŵ0 Ŵ−1 Ŵ−2

 ,

=


a11 a12 a13

a21 a22 a23

a31 a32 a33


where

a11 = Ŵ2En+1 + Ŵ1 (En−1 − 7En) + Ŵ0En,

a12 = Ŵ1En+1 + Ŵ0 (En−1 − 7En) + Ŵ−1En,

a13 = Ŵ0En+1 + Ŵ−1 (En−1 − 7En) + Ŵ−2En,

a21 = Ŵ2En + Ŵ1 (En−2 − 7En−1) + Ŵ0En−1,

a22 = Ŵ1En + Ŵ0 (En−2 − 7En−1) + Ŵ−1En−1,

a23 = Ŵ0En + Ŵ−1 (En−2 − 7En−1) + Ŵ−2En−1,

a31 = Ŵ2En−1 + Ŵ1 (En−3 − 7En−2) + Ŵ0En−2,

a32 = Ŵ1En−1 + Ŵ0 (En−3 − 7En−2) + Ŵ−1En−2,

a33 = Ŵ0En−1 + Ŵ−1 (En−3 − 7En−2) + Ŵ−2En−2.

Using the Theorem 10, the proof is done. �
From Theorem 17, we can write the following corollary.

Corollary 18.

(a): We suppose that the matrices NÊ and SÊ are defined as the following

NÊ =


Ê2 Ê1 Ê0

Ê1 Ê0 Ê−1

Ê0 Ê−1 Ê−2

 ,

SÊ =


Ên+2 Ên+1 Ên

Ên+1 Ên Ên−1

Ên Ên−1 Ên−2

 ,

so that the following identity is true for An, NÊ, SÊ,

AnNÊ = SÊ ,
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(b): We suppose that the matrices NK̂ and SK̂ are defined as the following

NK̂ =


K̂2 K̂1 K̂0

K̂1 K̂0 K̂−1

K̂0 K̂−1 K̂−2

 ,

SK̂ =


K̂n+2 K̂n+1 K̂n

K̂n+1 K̂n K̂n−1

K̂n K̂n−1 K̂n−2

 ,

so that the following identity is true for An, NK̂ , SK̂ ,

AnNK̂ = SK̂ .

7. Conclusion

In the literature, numerous studies have explored numerical sequences, which play a significant role in a

wide range of disciplines, including physics, engineering, architecture, nature, and art. Among these, integer

sequences such as Fibonacci, Lucas, Pell, and Jacobsthal are among the most well-known examples of second-

order recurrence relations. The Fibonacci sequence, in particular, gained fame through its appearance in

the rabbit population problem introduced by Leonardo of Pisa in his 1202 book Liber Abaci. Both the

Fibonacci and Lucas sequences have inspired a wealth of intriguing and elegant mathematical identities. For

rich applications of these second order sequences in science and nature, one can see the citations in [33,34,35].

In this work, we introduce the concept of dual hyperbolic generalized Edouard sequences and focus on

four specific cases: dual hyperbolic Edouard numbers, dual hyperbolic Edouard-Lucas numbers.

• In section 1, we present infprmation on the application areas of hypercomplex number systems in

physics and engineering fields. Also, we give some properties about generalized Edouard numbers.

• In section 2, we define dual hyperbolic generalized Edouard numbers then using this definition, we

present generating functions and Binet’s formula of dual hyperbolic generalized Edouard numbers.

• In section 3,we obtain Binet’s formula from generating function.

• In section 4, we give certain distinctive identities for the dual hyperbolic generalized Edouard

sequence {Ŵn} that named Simpson’s formula.

• In section 5, we present summation formulas for dual hyperbolic generalized Edouard numbers.

• In section 6, we give some matrices related to dual hyperbolic Edouard numbers.

Linear recurrence relations (sequences) have many applications. Next, we list applications of sequences

which are linear recurrence relations.

First, we present some applications of second order sequences.

• For the applications of Gaussian Fibonacci and Gaussian Lucas numbers to Pauli Fibonacci and

Pauli Lucas quaternions, see [4].
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• For the application of Pell Numbers to the solutions of three-dimensional difference equation sys-

tems, see [6].

• For the application of Jacobsthal numbers to special matrices, see [72].

• For the application of generalized k-order Fibonacci numbers to hybrid quaternions, see [24].

• For the applications of Fibonacci and Lucas numbers to Split Complex Bi-Periodic numbers, see

[73].

• For the applications of generalized bivariate Fibonacci and Lucas polynomials to matrix polynomi-

als, see [74].

• For the applications of generalized Fibonacci numbers to binomial sums, see [71].

• For the application of generalized Jacobsthal numbers to hyperbolic numbers, see [68].

• For the application of generalized Fibonacci numbers to dual hyperbolic numbers, see [69].

• For the application of Laplace transform and various matrix operations to the characteristic poly-

nomial of the Fibonacci numbers, see [16].

• For the application of Generalized Fibonacci Matrices to Cryptography, see [43].

• For the application of higher order Jacobsthal numbers to quaternions, see [42].

• For the application of Fibonacci and Lucas Identities to Toeplitz-Hessenberg matrices, see [22].

• For the applications of Fibonacci numbers to lacunary statistical convergence, see [5].

• For the applications of Fibonacci numbers to lacunary statistical convergence in intuitionistic fuzzy

normed linear spaces, see [30].

• For the applications of Fibonacci numbers to ideal convergence on intuitionistic fuzzy normed linear

spaces, see [31].

• For the applications of k-Fibonacci and k−Lucas numbers to spinors, see [32].

• For the application of dual-generalized complex Fibonacci and Lucas numbers to Quaternions, see

[70].

• For the application of special cases of Horadam numbers to Neutrosophic analysis see [23].

• For the application of Hyperbolic Fibonacci numbers to Quaternions, see [15].

We now present some applications of third order sequences.

• For the applications of third order Jacobsthal numbers and Tribonacci numbers to quaternions, see

[14] and [13], respectively.

• For the application of Tribonacci numbers to special matrices, see [55].

• For the applications of Padovan numbers and Tribonacci numbers to coding theory, see [46] and

[7], respectively.

• For the application of Pell-Padovan numbers to groups, see [19].

• For the application of adjusted Jacobsthal-Padovan numbers to the exact solutions of some differ-

ence equations, see [25].
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• For the application of Gaussian Tribonacci numbers to various graphs, see [53].

• For the application of third-order Jacobsthal numbers to hyperbolic numbers, see [17].For the

application of Narayan numbers to finite groups see [36].

• For the application of generalized third-order Jacobsthal sequence to binomial transform, see [47].

• For the application of generalized Generalized Padovan numbers to Binomial Transform, see [48].

• For the application of generalized Tribonacci numbers to Gaussian numbers, see [49].

• For the application of generalized Tribonacci numbers to Sedenions, see [50].

• For the application of Tribonacci and Tribonacci-Lucas numbers to matrices, see [51].

• For the application of generalized Tribonacci numbers to circulant matrix, see [52].

• For the application of Tribonacci and Tribonacci-Lucas numbers to hybrinomials, see [54].

• For the application of hyperbolic Leonardo and hyperbolic Francois numbers to quaternions, see

[18].

Next, we now list some applications of fourth order sequences.

• For the application of Tetranacci and Tetranacci-Lucas numbers to quaternions, see [63].

• For the application of generalized Tetranacci numbers to Gaussian numbers, see [64].

• For the application of Tetranacci and Tetranacci-Lucas numbers to matrices, see [65].

• For the application of generalized Tetranacci numbers to binomial transform, see [66].

We now present some applications of fifth order sequences.

• For the application of Pentanacci numbers to matrices, see [62].

• For the application of generalized Pentanacci numbers to quaternions, see [61].

• For the application of generalized Pentanacci numbers to binomial transform, see [67].
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[15] Daşdemir, A., On Recursive Hyperbolic Fibonacci Quaternions, Communications in Advanced Mathematical Sciences,

4(4), 198-207, 2021. DOI:10.33434/cams.997824

[16] Deveci, Ö., Shannon, A.G., On Recurrence Results From Matrix Transforms, Notes on Number Theory and Discrete

Mathematics, 28(4), 589—592, 2022. DOI: 10.7546/nntdm.2022.28.4.589-592

[17] Dikmen, C.M., Altınsoy, M.,On Third Order Hyperbolic Jacobsthal Numbers, Konuralp Journal of Mathematics, 10(1),

118-126, 2022.
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[48] Soykan, Y., Taşdemir, E., Okumuş, İ., A Study on Binomial Transform of the Generalized Padovan Sequence, Journal of

Science and Arts, 22(1), 63-90, 2022. https://doi.org/10.46939/J.Sci.Arts-22.1-a06
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[56] Soykan, Y., Gümüş, M., Göcen, M., A study on dual hyperbolic generalized Pell numbers, Malaya Journal Of Matematik,

09(03), 99-116, 2021.
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