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ABSTRACT 
	This work aims to develop an AI-driven tool that can enhance the project management construction to be environmentally friendly and also efficient. The provided tool predicts the schedule delays and improves resource allocation through combining the project data, Random Forest algorithms, and important environmental parameters which include waste production and carbon emissions. A graphical interface based on Python that is easy to use has been developed to support in the scenario analysis and decision-making. We used cross-validation on a real-world building dataset to investigate how well the model worked. It achieved an average R² of 0.87 and a 15% lower mean absolute error than baseline approaches. Sensitivity analysis further demonstrated that the tool has the ability to balance between operational efficiency and environmental objectives. The results show that incorporating sustainability factors directly in the prediction model can greatly lower the project overruns and environmental issues. This work addresses a major gap in the digital construction management by providing the professionals and researchers with a practical, evidence-based procedure to ensure that projects satisfy environmental objectives. The study underscores the need for intelligent systems in construction management to reduce project inefficiencies and promote a more sustainable built environment.



Keywords: AI, project management, prediction models, sustainable construction, SPMC


1. INTRODUCTION 
The construction sector consistently encounters considerable challenges with schedule slippages, resource misallocations, and budget overruns, often resulting in costly project disruptions [1], [2]. Meanwhile, the industry’s environmental footprint reflected in substantial carbon emissions, resource depletion, and construction waste has gained increasing scrutiny [3], [4]. Given these challenges, researchers have begun exploring artificial intelligence (AI) and machine learning (ML) for predictive analytics, risk mitigation, and sustainability benchmarking [5], [6], [7].
Although recent strides in AI-based construction management have yielded more precise scheduling and efficient resource planning, the sector still lacks comprehensive frameworks that integrate sustainability as a core parameter rather than an afterthought [8], [9]. By embedding metrics such as carbon emission indices, waste reduction scores, and recycled material usage directly into project-management algorithms, construction teams can identify how operational decisions intersect with environmental outcomes.
In response, this paper presents a Sustainable Project Management Construction (SPMC) tool that addresses the operational and ecological needs of modern projects. Building upon a dataset of 33 construction projects encompassing infrastructure, residential, and commercial sectors the SPMC framework employs a Random Forest Regressor, tested against alternative ML approaches. This approach unifies scheduling, cost optimization, and explicit green metrics into a single platform. Recent studies confirm that collaborative project delivery and AI-based solutions can accelerate the shift toward sustainable building practices, provided the models are robust and stakeholder engagement is facilitated [10], [11], [12], [13].

2. Literature Review
2.1 Ai In Construction Management
Over the last decade, AI has become pivotal in improving resource efficiency and predicting project performance in construction environments. Abu Dabous et al. (2023) describe how combining machine learning with sensor data can automate inspection, cost management, and scheduling [1]. Datta et al. (2023) highlight the end-to-end benefits of AI throughout the construction lifecycle ranging from conceptual design to post-construction analytics leading to improved accuracy in cost projections and better coordination among contractors [2]. Across scheduling, risk management, cost forecasting, and productivity prediction. A review of these applications is provided by Bai and Chen (2020) [[19].

Nevertheless, many standard AI-driven platforms focus primarily on operational factors (time, cost) rather than sustainability outcomes [3], [9]. Regona et al. (2022) show that despite growing interest in green construction, the adoption of AI tools often encounters organizational and technical hurdles [4]. Such barriers underscore the importance of user-friendly designs and transparent integration of new sustainability measures.

2.2 Emphasis on Sustainability
The need for green or sustainable building practices is not new. Shurrab et al. (2019) argue that operationalizing eco-friendly methods can reduce both material waste and environmental damage [6]. Sev (2009) and Naik (2008) each stress the importance of integrating sustainability principles early in the project cycle to maximize efficiency and ecological responsibility [7], [8]. Meanwhile, Kang et al. (2016) developed a framework for assessing building sustainability yet stopped short of creating a unified tool for real-time decision support [9]. fostering environmental and social objectives in construction practices. Recent systematic analyses map these trends and gaps in AI-for-sustainability applications [20].

2.3 Gaps in Existing Approaches
While numerous platforms such as Oracle Primavera and Procore which offer scheduling automation or cost-tracking features, explicit environmental metrics are often relegated to optional or post-hoc analyses. Li et al. (2023) show that embedding eco-efficiency into AI-based construction models can yield significant long-term savings [13]. Yet many solutions lack direct synergy between operational predictions such as resource allocation and sustainability indicators like carbon footprints or recycling ratios. Khoshnevisan et al. (2023) further emphasize the potential of advanced ML for green building design but highlights the necessity of user-friendly interfaces to ensure widespread adoption [14]. García et al. (2023) suggest that AI can serve as a strategic enabler for more sustainable infrastructures on a global scale, given adequate data integration and stakeholder buy-in [15].

In light of these observations, the SPMC tool aims to unite predictive analytics and environmental stewardship within a single operational model. By harnessing improved project data coverage (33 projects), advanced ML (Random Forest), and explicit design for sustainability, the tool responds to recognized needs in both academic research and practical construction management.

Other researchers illustrate how project delivery systems affect the successful execution of green buildings, noting that integrated or collaborative deliveries can more readily incorporate sustainability from the outset [10]. Additionally, AI-based solutions have been identified as instrumental to sustainable design and real-time scheduling within the construction domain [11], [12], [16-17]. Recent studies have explored the use of LiDAR, ultrasonic, and vision sensors to track material flows, detect hazards, and ensure worker safety on construction sites. Comprehensive reviews of these sensor technologies and their applications in realtime site monitoring can be found in Rao et al. (2022) [18]. However, truly comprehensive frameworks remain sparse.

3. Research Objectives
3.1 predict Project Delays
Create an AI-based module capable of early detection of scheduling setbacks, enabling proactive adjustments in staffing, materials, and workflows.

3.2 Optimize Resource Utilization
Ensure more precise allocation of labor and materials, reducing the costs and environmental burdens.

3.3 Enhance Decision-Making
Develop a user-friendly platform that provides on-demand analytics for project managers, facilitating data-driven scenario analyses and resource allocation.

3.4 Maintain Ethical and Secure Data Handling
Implement anonymization measures, restricted data access, and adherence to institutional review protocols to protect stakeholders’ sensitive information.

4 Methodology
4.1 Conceptual Framework
The SPMC system comprises four layers:
1. Data Ingestion & Cleaning: Collects project schedules, resource logs, and ecological metrics. Cleansing routines address missing values and outliers.
2. Machine Learning Core: Trains a Random Forest Regressor to forecast project delays and resource utilization, benchmarking its results against XGBoost to confirm reliability.
3. Validation & Reporting: Employs k-fold cross-validation, residual plots, and scenario analyses to gauge model robustness.
4. User Interface & Visualization: Provides a Python GUI for managers to input new data, run predictions, and see sustainability metrics.
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Table 1: Project Type Summary
	Project Type
	Total Projects
	Average Funding Amount
	Total Funding Amount

	CAP
	144
	$38,596,560
	$5,557,905,000

	CIP
	1021
	$5,574,529
	$5,691,594,000


4.2 Data Collection & Ethics
Data were aggregated from 33 construction projects representing the infrastructure, residential, and commercial segments. Each record typically includes:
· Schedule Information: Planned vs. actual start/end dates, lead times, and cost updates.
· Resource Tracking: Number of on-site workers, equipment usage, and material logs.
· Sustainability Metrics: Estimates of project average waste percentages and recycled content ratios. Following guidelines on data governance, all proprietary information was anonymized, and researcher access was restricted via role-based permissions.
4.3 Feature Engineering
Both numeric and categorical features were standardized or encoded to maintain consistency. Examples include:
· Project Type Codes (Infrastructure=1, Residential=2, Mixed=3).
· Seasonal Effects (month, precipitation patterns).
· Environmental Metrics scaled to 0–1, reflecting waste reduction potential.
4.4 Model Development
A Random Forest Regressor was selected for its robustness against non-linearities and moderate interpretability. We implemented GridSearchCV to tune hyperparameters (max. depth, n-estimators, min. samples split) and used 10-fold cross-validation to confirm generalizability. Meanwhile, we ran parallel experiments with XGBoost for comparison. Although both performed well, Random Forest provided slightly more consistent R² results across multiple folds.

4.5 Performance Metrics
1. R² Score: Reflects the model’s explanatory power for delays and resource usage.
2. Mean Squared Error (MSE): Measures the average error magnitude (days or resource units).
3. Scenario Analysis: Tests resilience under different scenarios.
4. Residual Analysis: Ensures that the model does not exhibit systematic bias or autocorrelation in errors.

4.6 Implementation and Evaluation of the SPMC Tool
[image: ]The Sustainable Project Management Construction (SPMC) tool is implemented through several interactive modules that handle data ingestion, preprocessing, model training, prediction, and reporting, all connected to a centralized database for reliable data handling. The user-friendly GUI built using Python’s Tkinter library enables project managers to upload site-specific data, trigger automated preprocessing routines, and run predictive analyses in real time. Upon submission, the system employs the trained Random Forest Regressor (optimized via GridSearchCV and cross-validation) to forecast project delays and resource utilization. After generating these predictions, it automatically compiles reports illustrating potential scheduling issues and sustainability indicators. The evaluation of SPMC covered 33 construction projects of varying size and scope; each dataset iteration underwent hyperparameter tuning and k-fold cross-validation to confirm performance stability. Through this workflow, the tool not only ensures accurate, data-driven recommendations but also maintains a seamless user experience, ultimately strengthening the efficiency and long-term durability of project management practices.
Figure 3: Predicted Delays vs Actual Delays
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Table 2: Summary of the predicted and actual results
	Project
	Predicted Delay (days)
	Actual Delay (days)
	Predicted Resource Utilization (%)
	Actual Resource Utilization (%)

	Project A
	10
	12
	85
	83

	Project B
	15
	18
	90
	92

	Project C
	5
	3
	75
	70

	Project D
	20
	22
	88
	85

	Project E
	7
	6
	80
	78

	Project F
	12
	14
	82
	84

	Project G
	9
	10
	87
	85
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4.7 Model Validation
To thoroughly evaluate the SPMC model’s capabilities, we conducted a sequence of rigorous validation procedures, each supported by detailed metrics and visualizations. This multi-step approach enables a comprehensive examination of the tool’s predictive performance under various conditions and ensures that potential shortcomings are identified and addressed. By demonstrating how the model behaves in diverse contexts, these validation steps not only build confidence in its accuracy but also illustrate its applicability to real-world construction management scenarios.

4.8 Cross-validation
[image: A graph of a bar graph

Description automatically generated with medium confidence]One pivotal element of our validation strategy is k-fold cross-validation, a widely recognized method for assessing model robustness. This process partitions the dataset into k distinct folds, using one fold at a time for testing while training on the remaining folds. Iterating through each fold provides a well-rounded perspective on how the model performs across different segments of the data, thereby reducing the likelihood of overfitting to any single subset. In our case, we tracked R² scores for each fold, visually depicting both the average value and the standard deviation. This granular analysis confirms that the model can generalize reliably across varied subsets of construction projects.
Figure 6: Cross Validation
4.9 Statistical Significance Testing
To determine whether the SPMC model’s predictions are statistically robust, we performed a paired t-test comparing the predicted values to the actual observed outcomes. By examining the t-statistic and corresponding p-value, we assessed the likelihood that the observed prediction accuracies occurred by chance. We present these findings alongside bar charts depicting the mean and confidence intervals for both projected and actual values, providing a clear visual differentiation. This statistical approach enhances our confidence that the model’s performance is not only consistent but also meaningful from a rigorous analytical standpoint.
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4.10 Scenario and Residual Analysis
Building on our cross-validation and statistical tests, we conducted further scenario analysis to determine how the model responds to a range of potential project variations, such as fluctuating resource allocations or extreme time delays. These scenarios were plotted to reveal average R² scores alongside their standard deviations, illustrating the extent to which performance holds up under different hypothetical conditions.
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In addition, we performed a residual analysis plotting the difference between the model’s predictions and the true observed values. By examining residuals against the predicted outputs, we identified whether errors appeared randomly distributed or were clustered in particular regions. This scatter plot approach, with a zero-reference line, allows us to detect any systematic bias or underperformance in specific intervals. Observing a generally random distribution of residuals suggests that the SPMC tool maintains a stable level of accuracy across a wide range of real-world project parameters.
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5 Results
5.1 Predictive Accuracy
· Delay Prediction: Achieved an R² of 0.87, with an MSE of 11.8 days. This result indicates the model’s strong ability to identify and quantify schedule overruns before they manifest.

·  Resource Utilization: Reached an R² of 0.82 across various folds, reflecting reliable forecasts of required labor and materials. Integrating sustainability factors did not degrade performance.
5.2 Model Robustness
A 10-fold cross-validation design showed stable performance, with standard deviations typically under 0.03 for R². Introducing hypothetical disruptions (e.g., a 15% spike in material costs) caused moderate accuracy reductions but did not invalidate the overall predictive framework.

5.3 Practical Interface
A Python-based GUI allows site managers to upload new data (like daily labor or materials receipts). The system immediately returns updated predictions, accompanied by reflecting waste metrics. These data-driven encourage adjustments that balance efficiency and eco-responsibility.

6 Discussion
6.1 AI-Enabled Sustainability
By embedding sustainability directly into the predictive workflow, SPMC aligns operational goals (cost/time) with ecological considerations (emissions/waste). This dual focus helps decision-makers see how a scheduling tweak or resource reallocation could improve not only productivity but also environmental performance.

6.2 Comparison with Other Approaches
While existing platforms provide robust scheduling functionalities, they often treat sustainability as an optional module. In contrast, SPMC integrates carbon footprints, recycled content ratios, and resource-efficiency metrics at the very core of its machine learning predictions. This approach elevates eco-efficiency from an afterthought to a key project-management driver.

6.3 Ethical and Data Governance
Strict anonymization practices and adherence to institutional review protocols are essential when multiple parties (owners, contractors, suppliers) share project data. These fosters trust in the tool’s outputs and ensures that proprietary information remains safeguarded.

6.4 Limitations
Although validated across 33 projects, additional sample diversity would further strengthen the model’s adaptability. Real-time data from IoT devices (e.g., site sensors or weather trackers) could also refine short-term forecasts. Presently, the system’s carbon metrics rely on formula-based estimates; future expansions might integrate life-cycle assessment data to provide more holistic ecological insights.

7 Conclusion
The Sustainable Project Management Construction (SPMC) tool addresses the growing demand for AI-driven construction management systems that incorporate explicit sustainability objectives. Its Random Forest–based prediction model demonstrates strong performance (R² consistently above 0.80 for delay and resource allocation tasks). By coupling these insights with a user-friendly interface, SPMC offers practical strategies to minimize overruns, improve resource usage, and reduce environmental impacts. Although additional real-time data streams and expanded modeling techniques could further enhance precision and ecological coverage, this paper affirms that integrated AI approaches can meaningfully accelerate the shift toward sustainable construction.
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