


Mathematical Modelling of Heavy Metals and PAH Contaminations in Seafood from Okoroba, Nembe of Bayelsa State: Implications for Public Health	Comment by Zirak Palani: I added "region" before "Okoroba-Nembe" to clarify the geographical location.	Comment by Zirak Palani: “Potential effects” is more precise than “effects” in the context of public health research.


ABSTRACT
This study is based on the health risk assessment of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in selected seafood from Okoroba, Bayelsa State.  Seafood were collected from Okoroba River. Heavy metals, PAHs, Daily Intake, Life Cancer Risk, Total Life Cancer Risk, Target Hazard Quotient, and Hazard Index of hazardous heavy metals were investigated based on standard methods of estimation. The Ni, Cr, Pb, and Cd level in Calcinuselegans were 29.79±0.01mg/kg, 2.49±0.01, 2.49±0.01mg/kg, 1.19±0.01mg/kg, and 2.19±0.01mg/kg respectively, were significantly higher than the reference values which were 5.5mg/kg, 0.05mg/kg, 0.2mg/kg, and 1.0mg/kg respectively and similar differences were observed in Catharanthus roseus, Oxudercinae, andSesamumindicum. The estimated daily intake of Ni, Cd, and Pb in Calcinuselegans were 10.032mg/kg, 2.160mg/kg, and 0.301mg/kg respectively, were significantly higher than the reference values 0.5mg/kg, 0.00mg/kg respectively and similar trends occurred in Catharanthus roseus,Sesamumindicum, Gecarcinidae, and Atlantic silverside. The target hazard and hazard index of Ni, Pb, and Cd inHalichoeres bivittatus were 3.600mg/kg, 1.380mg/kg, 6.010mg/kg, and 2.050mg/kg respectively, which were significantly higher than the reference values 1mg/kg and similar trends occurred in Schilbemystus, Bagrus bajad, Atlantic silverside, Portunus armatus, and Catharanthus roseus. The estimated daily intake of Ni, Cd, and Pb in the studied seafoodwere higher than the Recommended Tolerable Daily Intake levels of heavy metals in sea food. The estimated daily intake, target hazard quotient and hazard index of Ni, and Pb evaluated is suggestive of possible health risk on the indigenous people of Okoroba community upon consumption for period of time. 	Comment by Zirak Palani: Preferably mention the geographical location of the country	Comment by Zirak Palani: It is preferable to mention the source of the permissible limits.	Comment by Zirak Palani: 
Keywords: Seafood, heavy metals, PAHs, EDI, LCR, TLCR, RTDI




1. 1NTRODUCTION
	
Environmental pollution arising from oil exploration and industrial waste has led to contamination of aquatic ecosystems in the Niger Delta, Nigeria. This includes Okoroba in Nembe LGA, Bayelsa State, where seafood, a primary protein source is vulnerable to pollutants such as heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs). Mathematical risk assessments are essential to evaluate human health implications. Oguguah et al. (2016) showed that heavy metals such as lead (Pb), cadmium (Cd), mercury (Hg), chromium (Cr), arsenic (As), copper (Cu), zinc (Zn), and iron (Fe) have been widely detected in fish, shrimp, and mollusks from polluted waters. According to Oguguah et al. (2016), these metals bioaccumulate and biomagnify through the food chain. Heavy metals are important aquatic pollutants with non-biodegradable and bioaccumulation properties, high toxicity, and long-time persistence (Varol et al., 2017;Uysal et al., 2019). The major source of heavy metalpollution into the river is the earth's crust. Additionally, heavy metals are known to be transmitted into the river through industrial effluents and bunkering activities directed (Uysal et al., 2019).

PAHs, which are lipophilic and persistent organic pollutants, originate from crude oil spills and combustion. They pose carcinogenic and mutagenic risks. Nwaichi et al., (2017) reported that PAHs such as benzo[a]pyrene, fluoranthene, and pyrene have been reported in aquatic species in the Niger Delta. Polycyclic aromatic hydrocarbons (PAHs) are a large fragments of all-pervasive organic compounds which possess the capacity to be widely disseminated in terrestrial and aquatic ecosystems (Boisa et al., 2019; Lawal, 2017). The level of toxicity of these organic compounds is largely dependent on theirmolecular weight as the larger molecular weight PAHs (high MW PAHs) having four to seven aromatic rings are not acutely toxic but possess a greater capacity for carcinogenicity(Srogi, 2007). PAHs also possess the tendency of eliciting oxidative stress alongside the consequence of cytotoxic effects (Padula et al., 2015). Vulnerability in children has been shown to be associated with the expression of several pathological results such as symptoms of asthma and poor cognitive development as well as the occurrence of lower pulmonary function and wheezing symptoms in adults (Padula et al., 2015).
Seafood accumulate contaminants primarily by uptake through the skin and gills, surface contacts with sediments, industrial effluent, wastewater, and food consumed (Soltani et al., 2019), thus serving as a secondary source of exposure to humans (Dang et al., 2016). Results from studies have confirmed that heavy metals may enter into the food chain through the natural and anthropogenic processes and cause toxicity in the aquatic organisms even at low concentrations (Gwimbi et al., 2020). The long period of intake of cytotoxic heavy metals through foodstuffs lead to chronic accumulation, which consequently can cause damages to organs and tissues. Consequential effects of metal accumulation are mutagenesis, carcinogenesis, teratogenesis, deformation, and breakdowns of organs (Dang et al., 2016).

Communities under Nembe Local Government Area, of Bayelsa State, is a hub of fishing activities. The Atlantic coastline, brackish mangroves, and creeks surrounding Nembe make it rich in aquatic biodiversity, contributing to the availability of seafood such as fish, shrimp, crab, periwinkle, and oysters, which are vital to the local diet and economy. However, oil exploration and exploitation by multinational companies in the region have resulted in environmental degradation that has affected seafood safety and sustainability. Nwaichi et al. (2017) showed that PAHs are formed from incomplete combustion of organic matter, crude oil spills, and gas flaring. Umeoguaju et al. (2023), detected PAHs in seafood samples from the Niger Delta, showing potential carcinogenic and mutagenic risks. Akeju and Gbekeloluwa (2023) studied the molecular Characterization of Bacteria Isolated from Some Seafood in Nembe Community while Markmanuel et al. (2022) evaluated the Tin concentrations and human health risk assessment for children and adults in seafood and canned fish commonly consumed in Nembe, Bayelsa State. 
The seafood in the Okoroba River are consumed as the main protein source by the residents of the community as well as the other cities in the Southern parts of Nigeria. Therefore, the assessment of PAHs and hazardous heavy metals in seafood is considered highly very vital as they are highly bio-accumulated biological systems and pose significant health risks over prolonged exposure (Justice-Alucho et al., 2021; Akeju and Gbekeloluwa, 2023).
Health risk assessment is a quantitative and qualitative evaluation of the risk posed to human health by the actual or potential presence of specific pollutants. It is thus an evaluation of the hazardous properties of environmental pollutants, the dose-response relationship of these pollutants and the extent of human exposure to them (Ephraim-Emmanuel and Ordinioha, 2021). Despite broader studies in the Niger Delta, Okoroba-specific data is scarce. The unique hydrology and proximity to oil facilities may influence local pollution levels. A localized study ensures context-specific data accuracy, tailored public health interventions, and grounded environmental policy recommendations. Mathematical models such as Estimated Daily Intake (EDI), Target Hazard Quotient (THQ), Hazard Index (HI), and Incremental Lifetime Cancer Risk (ILCR) allow quantification of risk levels, identification of populations at risk (e.g., children, pregnant women), and assessment of long-term implications of continuous seafood consumption (Tanhan et al., 2023; Odey et al., 2024; Nobile et al., 2024).).	Comment by Zirak Palani: Try to keep it brief in the introduction chapter.
Okoroba community is one of the prominent communities in Nembe Local Government Area. It is located 40330N and 6033200E, which occupy same geographical location with Opume, Akipilai, Nembe, Otuabagi, Agrisaba, Emago, Otuakeme, Kolo, Oloibiri, and Emeyal communities. Okoroba community is endowed with crude oil, hence one of the crude oil producing communities in Ogbia Local Government Area of Bayelsa State. The main occupation of the people of Okoroba include; farming, fishing, and palm oil milling. Periwinkle, blue swimming crab, mud keeper, slipper fish, butter catfish, silver side, sesema crab, land crab, and elegant crab remain the main source of protein to the people of Okoroba. More so, there are paucity of information regarding the health risk of consumption the famous seafood of the community.We evaluated the concentration of PAHs and heavy metals as well as performed the health risk associated with the seafood collected from the Okorobariver in Nigeria (Fig. 1).	Comment by Zirak Palani: Palani, Z. M. R., Al-Obaidy, M. H. A., Palani, D. M. R. ., & Ahmed, K. A. (2022). Effect of changes in 
some beneficial elements and dangerous heavy metals in cow and sheep manure on human and 
animal health and the environment. International Journal of Health Sciences, 6(S1), 6250–6256. 
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Figure 1 GPS of Okoroba Town, Ogbia Local Government Area of Bayelsa State
2. MATERIALS AND METHODS
2.1 Studied Area 
Collection of seafood was done in June 2024 from Okoroba River. Okoroba River originates from Nembe, Idema and it flows through Idema community through the Nembe rivers. The seafood serve as a source of livelihood for many people in Okoroba community.	Comment by Zirak Palani: Mention the name of the country here as well.
2.2 Collection of Seafood Samples
Ten different types of shell and fin seafood were collected from sites 1 and 2 in June, 2024. Upon collection, the seafood were immediately transferred into the icebox and conveyed into the laboratory. Beforedissection, they were allowed to thaw and anthropometric measurements were taken. The seafood were harvested and prepared for PAHs and hazardous metal analysis. Each of the seafood was oven-dried at 80 °C and was monitored until a constant weight was reached.



2.3 Determination of Heavy Metal ion Concentration of Seafood 
The heavy metal ion concentrations of seafood (finfish) were determined using AAS, following the modified method as described by Rohan et al. (2014). AAS technique makes use of the atomic absorption spectrum of a sample in order to assess the concentration of specific analytes within the sample. It requires using a standard with known analyte concentration to establish the relation between the measured absorbed absorbance and the analyte concentration and relies therefore on the Beer-Lambert Law. Digestion/preparation of the sample and estimation of heavy metals were carried out based on standard methods.
2.4 Determination of PAHs Concentrations Seafood (Shellfish)
Polycyclic aromatic hydrocarbon (PAHs) concentrations in seafood (shellfish) using gas chromatography and HPLC, following the modified method of determination of PAHs in seafood (shellfish) as described by Bhupander et al. (2014). In this method, 50 mL of the sample was measured into a bottle seal via a separatory funnel. Then, 50 mL of methylene chloride was added into the bottle seal containing the sample (shell fish sample) and it was shaken for 30 seconds to rinse the surface. The mixture was allowed to stand and the organic layer is separated from the water phase for a minimum of 10 minutes. Ten millilitre (10 mL) of the methylene chloride was delivered into 250 mL flask. A second 60 mL of the methylene chloride was again added to the sample (shell seafood) and both the sample and the separatory funnel were rinsed with 20 mL of the solvent into the extract. This extraction procedure was then repeated a second time with both the sample and solvent combined in an Erlenmeyer flask. The combined extract was then poured into a dried column containing packed cotton wool. Repeat the extraction procedure a second time, combine the extracts in the Erlenmeyer flask.  Perform the third extraction in the same manner. Pour the combined extract through a drying column containing sodium sulphate and silica packed with cotton wool which collect the extract into vial and concentrated it by boiling it down with 1.0 mL nitrogen steam. The remaining extract was then mixed with 1.0 mL of the solvent and 1.0µL of the mixture was injected into flame ionization detector gas chromatograph for the analysis of PAHs. 

2.5 Wet Digestion Method
In this method, a total volume of 100 mL of H2SO4, HNO3, and HClO4 in the ratio of 40%:40%:20% were mixed together. Exactly 1 g of the sample was delivered into a conical flask. Then, 2 mL of the H2SO4, HNO3, and HClO in the ratio of 40%:40%:20% the acid were added to the sample in the conical flask. Digestion of the sample was commenced until the appearance of white fumes was clearly observed or noticed. The mixture was then cooled and filtered into a 100ml volumetric flask and was made up to using distilled water. The hollow cathode lamp for the desired metal was installed. The wavelength dial as specified by the analytical methodology was set. Then, the slit width was set or prepared according to manufacturer’s suggested setting. Turn on the instrument was switched on and the hollow cathode lamp current as suggested by the manufacturer and while  the instrument was made to  warm up until energy sources stabilizes within  about 10 to 20 minutes. The current was adjusted after been warmed-up while the wavelength was also adjusted until optimum energy gain is obtained. The align lamp was then fixed in accordance with manufacturer’s instructions. The burner head was installed and adjust its position. A 10cm, single-slot burner head was recommended for air-acetylene flames. The flow rate was adjusted according to manufacturer’s instructions to give maximum sensitivity for the metal being measured. The acetylene was adjusted to a specified value. The flame was Ignited and allowed to stabilized for 10 minutes. The blank was the aspirated and the instrument was zeroed. The standard solution was aspirated and the aspiration was adjusted to a standard solution until the aspiration rate of nebulizer to obtain a maximum sensitivity. The blank was aspirated again into and re-zero instrument. The standard was aspirated using standard with a concentration near the middle of the linear range and record absorbance while the instrument is now ready to operate.  
2.6 Human Health Risk Assessment of Heavy Metals in Seafood
2.6.1 Estimated Daily Intake of Metals in Seafood
The daily intake of hazardous heavy metals were estimated based on the concentration in the samples of the seafood species. The daily intake by consuming the fish sample was estimated using equation 1 below (Matouke and Abdullahi, 2020):
[image: ]
Where.
C = Concentration of the metal in seafood (µg/g or mg/kg)
IR = Ingestion rate of seafood (g/day)
BW = Body weight (kg)
2.6.2 Target Hazard Quotient and Hazard Index of Metals in Seafood
The estimation of the Target Hazard Quotient (THQ) and Hazard Index (HI) of metals in seafood is a crucial aspect of assessing the potential health risks associated with the consumption of contaminated seafood. The Target Hazard Quotient is calculated using the formula below (Matouke and Abdullahi, 2020):
[image: ]
Where:
EFr = Exposure frequency (days/year)
ED = Exposure duration (years)
IR = Ingestion rate (kg/day)
C = Concentration of the contaminant (mg/kg)
RfD = Reference dose (mg/kg/day)
BW = Body weight (kg)
AT = Averaging time (days, ED × 365 days/year for non-carcinogens)


2.6.3 Life Cancer Risk and Total Life Cancer Risk of Metals in Seafood
The estimation of Life Cancer Risk (LCR) and Total Life Cancer Risk (TLCR) of metals in seafood is an important process to assess the potential carcinogenic risks posed by consuming seafood contaminated with carcinogenic metals. 

Daily Intake of Metal was calculated or estimated using the formula:
[image: ]
Where:
 C = Concentration of the metal in seafood (mg/kg)
IR = Ingestion rate of seafood (kg/day)
EF = Exposure frequency (days/year)
ED = Exposure duration (years)
BW = Body weight (kg)
AT = Averaging time (days, usually lifetime expectancy in days for carcinogens)
The Life Cancer Risk (LCR) was calculated using the formula:

Where:[image: ]
DIM = Daily intake of the metal (mg/kg/day)
CSF = Cancer Slope Factor (mg/kg/day)^(-1), which is a measure of the risk of cancer associated with exposure to a carcinogen over a lifetime

The estimation of Life Cancer Risk (LCR) and Total Life Cancer Risk (TLCR) of metals in seafood is an important process to assess the potential carcinogenic risks posed by consuming seafood contaminated with carcinogenic metals. 

3. RESULTS
3.1 Heavy metal concentrations in seafood from Okoroba, Nembe River
Table 1 shows the heavy metal concentrations in seafood from Okoroba, Nembe river of Bayelsa. The heavy metal levels in the selected seafood were reported in mean and standard deviation. The values of each heavy metals assayed were compared with the references for significance.
Table 1 Heavy metal concentrations in seafood from Okoroba, Nembe River
	Samples
	Pb (mg/kg)
	Cd(mg/kg)
	Cr(mg/kg)
	Ni(mg/kg)
	Zn(mg/kg)
	Mn(mg/kg)
	Fe(mg/kg)

	Grapsidae
	2.19±0.01 a
	1.19±0.01a
	2.49±0.01 a
	29.79±0.01a
	3.19±0.01
	0.18±0.01
	18.62±0.0a

	Potamonautes busungwe  
	4.03±0.01 a
	1.36±0.01
	6.07±0.00 a
	23.13±0.01a
	2.30±0.01
	1.26±0.01
	23.10±0.0a

	Cardisoma armatum
	1.67±0.01 a
	0.17±0.01
	0.83±0.01
	6.46±0.01 a
	0.58±0.01
	0.35±0.01
	12.72±0.01

	Oxudercinae
	3.22±0.01 a
	0.04±0.01
	5.16±0.01a
	10.29±0.01a
	0.91±0.01
	2.63±0.01
	19.13±0.0a

	Halichoeres bivittatu
	1.19±0.00 a
	0.47±0.01
	1.56±0.01
	8.18±0.01a
	1.83±0.01
	2.48±0.01
	21.18±0.0a

	Mystus tengara
	0.36±0.01
	0.19±0.01
	4.19±0.01a
	6.40±0.01a
	0.62±0.01
	0.15±0.04
	10.01±0.01a

	Bagrus bajad
	1.22±0.01 a
	0.56±0.01
	10.05±0.01a
	3.19±0.01
	4.18±0.01a
	0.56±0.01
	17.16±0.01a

	Atlantic silverside
	2.19±0.01a
	0.80±0.01
	5.05±0.01a
	1.38±0.01
	4.95±0.01a
	1.21±0.01
	0.04±0.01

	Portunus armatus
	3.14±0.01 a
	1.05±0.01 a
	3.19±0.01 a
	2.82±0.02
	2.10±0.01
	2.35±0.01
	15.16±0.01a

	Catharanthus roseus

	4.01±0.00 a
	1.36±0.01 a
	6.04±0.01
	7.39±0.02 a
	3.89±0.01
	0.80±0.01
	18.06±0.01

	Standard permissible limits of heavy metals in seafood

	WHO/FAO, 2011
	1.0
	0.2
	0.6
	0.05
	
	5.5
	43


Data are reported in mean and standard error of mean (M±SE). Values bearing similar superscript ‘’a’’were significantly higher than the reference values down the groups.














4.2 Estimated daily intake of metals in shellfishes from Okoroba, Nembe River
Table 2 presents the estimated daily intake of metals in shellfishes from Okoroba community, Bayelsa State. The estimated daily intake of cytotoxic heavy metals were compared to the reference values in Table 2. 
Table 2 Estimated daily intake of metals in shellfishes from Okoroba, Nembe River
	Samples
	    Pb (mg/kg)
	   Cd (mg/kg)
	   Cr
(mg/kg)
	  Ni
(mg/kg)
	    Zn (mg/kg)
	Mn(mg/kg)
	    Fe (mg/kg)

	Grapsidae
	0.301
	2.160
	0.208
	10.032
	0.010
	5.920
	0.060

	Potamonautes busungwe 
	0.016
	1.201
	0.270
	15.043
	0.008
	0.004
	0.075

	Cardisoma armatum
	0.701
	2.200
	0.203
	7.281
	0.002
	0.001
	0.041

	Oxudercinae
	0.013
	1.230
	0.017
	14.033
	0.002
	0.009
	0.062

	Halichoeres bivittatus
	1.010
	0.002
	0.305
	3.827
	0.006
	0.008
	0.069

	Mystus tengara
	0.001
	2.290
	0.514
	10.021
	0.002
	4.960
	0.033

	Bagrus bajad
	0.020
	0.002
	0.133
	16.010
	0.014
	0.002
	0.056

	Atlantic silverside
	0.573
	2.690
	0.416
	13.900
	0.016
	0.004
	1.360

	Portunus armatus
	0.826
	1.750
	0.110
	2.009
	0.007
	0.008
	0.049

	Catharanthus roseus
	1.816
	1.001
	0.520
	26.724
	0.013
	0.003
	0.059

	EC, 2005 
(mg/kg)
	0.00
	0.000
	0.1-1.2*
	0.5
	8.0
	0.4-10*
	0.8*

	UTDI (mg/kg)
	0.5
	1.0
	43.40
	22.70
	40
	-
	-


Recommended tolerable daily intake (TDI) and upper tolerable daily intake (UTDI) levels of heavy metals in sea food (WHO, 2011).




3.3 Target Hazard Quotient and Hazard Index of Metals in Seafood FromOkoroba Nembe River, Bayelsa
Table 3 shows the target hazard quotient and hazard index of metals in seafood from Okoroba Nembe River, Bayelsa. The target hazard quotient of each of the evaluated cytotoxic heavy metals calculated were compared to the reference values in table 3.

Table 3 Target hazard quotient and hazard index of metals in seafood from Okoroba Nembe River, Bayelsa
	Samples
	
	
	    Pb (mg/kg)
	    Cd (mg/kg)
	     Cr (mg/kg)
	    Ni (mg/kg)
	    Zn (mg/kg)
	Mn(mg/kg)
	  Fe
(mg/kg)
	Hazard  index

	Grapsidae
	
	
	0.103
	6.160
	0.390
	4.002
	1.450
	0.260
	0.550
	0.006

	Potamonautes busungwe  
	
	
	0.205
	3.010
	1.310
	2.010
	2.700
	1.930
	1.370
	0.008

	Cardisoma armatum
	
	
	1.000
	2.210
	1.800
	3.010
	0.006
	8.060
	1.160
	0.009

	Oxudercinae
	
	
	0.107
	1.230
	0.110
	2.010
	1.790
	1.610
	1.760
	0.008

	Halichoeres bivittatus
	
	
	2.050
	6.010
	1.380
	3.600
	1.980
	0.750
	1.590
	0.009

	Mystus tengara
	
	
	3.390
	3.290
	0.907
	1.201
	6.750
	1.540
	1.060
	0.002

	Bagrus bajad
	
	
	1.406
	0.620
	1.017
	3.160
	4.520
	1.310
	0.960
	0.009

	Atlantic silverside
	
	
	2.001
	2.690
	4.009
	2.230
	1.310
	0.810
	0.70
	0.003

	Portunus armatus
	
	
	1.008
	1.750
	2.890
	1.570
	2.540
	0.450
	1.140
	0.009

	Catharanthus roseus
	
	
	2.007
	2.010
	1.310
	3.001
	4.210
	1.840
	7.320
	0.009

	Garcia-Rico (2007).
	
	
	1
	1
	1
	1
	1
	1
	1
	1












3.4 Life Cancer Risk and Total Life Cancer Risk of Metals in Seafood FromOkoroba Nembe River, Bayelsa
Table 4 shows the life cancer risk and total life cancer risk of metals in seafood from Okoroba. The life cancer risk and total life cancer risk of Pb in Grapsidae was highest next was Cd, Cr while the least was Ni. 
Table 4 Life cancer risk and total life cancer risk of metals in seafood from Okoroba Nembe River, Bayelsa 
	Samples
	    Pb
(mg/kg)
	Cd 
(mg/kg)
	Cr 
(mg/kg)
	Ni
(mg/kg)
	Zn
	Mn
	Fe
	TLCR

	Grapsidae
	3.500
	2.004
	1.104
	1.054
	-
	-
	-
	0.058

	Potamonautes busungwe  
	1.340
	3.804
	2.001
	1.073
	-
	-
	-
	0.084

	Cardisoma armatum
	7.250
	8.650
	5.002
	6.036
	-
	-
	-
	0.038

	Oxudercinae
	1.094
	2.065
	1.009
	1.056
	-
	-
	-
	0.065

	Halichoeres bivittatus
	8.104
	7.640
	8.003
	3.046
	-
	-
	-
	0.050

	Mystus tengara
	2.560
	2.340
	0.007
	0.036
	-
	-
	-
	0.043

	Bagrus bajad
	1.040
	1.004
	0.017
	0.017
	-
	-
	-
	0.035

	Atlantic silverside
	8.005
	7.004
	5.008
	7.009
	-
	-
	-
	0.017

	Portunus armatus
	6.004
	6.650
	7.005
	5.015
	-
	-
	-
	0.020

	Catharanthus roseus
	8.004
	9.840
	6.01
	4.041
	-
	-
	-
	0.052

	Reference
	 to  
	 to  
	 to  
	 to  
	-
	-
	-
	 to  




















































3.5 Polycyclic Aromatic Hydrocarbon Concentration of Fresh Seafood Samples Harvested From Okoroba, Nembe River, Bayels.
Table 5 shows the PAH levels of fresh seafood in Okoroba river harvested from Okoroba river, Bayelsa. 

Table 5 Polycyclic aromatic hydrocarbon concentration of fresh seafood samples harvested from Okoroba, Nembe River, Bayelsa
	Compound
	Grapsidae
	Potamonautes busungwe 
	Cardisoma armatum
	Oxudercinae
	Halichoeres bivittatus
	M. tengara
	Bagrus bajad
	A.
 silverside
	P.armatus
	 C. 
roseus


	Naphthalene(3)
	10.737
	8.776
	0.085
	2.113
	8.406
	10.653
	1.260
	10.138
	8.206
	10.58

	Acenapthylene(3)
	ND
	ND
	0.194
	ND
	ND
	ND
	0.895
	1.523
	ND
	ND

	Acenaphthene(3)
	5.402
	6.416
	0.032
	ND
	5.622
	4.205
	0.575
	4.740
	3.053
	4.263

	Fluorene(3)
	4.197
	ND
	ND
	ND
	1.402
	2.098
	0.952
	5.551
	2.394
	3.318

	Phenanthrene(3)
	6.218
	10.183
	0.819
	4.762
	6.366
	11.463
	1.182
	8.476
	10.841
	5.188

	Anthracene(3)
	ND
	5.503
	ND
	ND
	ND
	ND
	ND
	ND
	ND
	ND

	Fluoranthene(3)
	3.510
	ND
	1.260
	ND
	2.740
	1.852
	1.562
	4.843
	3.744
	2.871

	Pyrene(3)
	2.830
	5.505
	ND
	2.275
	4.741
	1.215
	0.189
	2.677
	4.420
	2.110

	Benz(a) anthracene(2A)
	ND
	ND
	0.369
	ND
	ND
	ND
	ND
	ND
	ND
	ND

	Chrysene(2B)
	3.671
	2.057
	0.852
	1.143
	ND
	2.107
	0.036
	1.427
	ND
	ND

	Benzo (b) fluoranthene(2B)
	ND
	ND
	ND
	1.928
	ND
	ND
	ND
	ND
	ND
	ND

	Benzo (k) fluoranthene(2B)
	ND
	ND
	ND
	ND
	ND
	ND
	ND
	ND
	ND
	ND

	Benzo(a) pyrene(1)
	ND
	ND
	ND
	ND
	ND
	ND
	ND
	ND
	ND
	ND

	Indeno(1,2,3-cd) pyrene(2B)
	ND
	ND
	ND
	ND
	ND
	ND
	ND
	ND
	ND
	ND

	Dibenz (a,h) anthracene(2A)
	ND
	ND
	ND
	ND
	ND
	ND
	ND
	ND
	ND
	ND

	Benzo(g,h,i) perylene(3)
	ND
	ND
	ND
	ND
	ND
	ND
	ND
	ND
	ND
	ND

	Total
	36.565
	38.440
	3.611
	12.222
	29.276
	33.591
	6.650
	39.375
	32.657
	28.309

	Total carcinogenic PAHs
	3.671
	2.057
	1.221
	3.071
	0
	2.107
	0.036
	1.427
	0
	0

	% Carcinogenic PAHs
	10.040
	5.351
	33.813
	25.127
	0
	6.273
	23.94
	3.624
	0
	0











1 = cancer-causing polycyclic sweet-smelling hydrocarbon to people; 2A = most likely cancer-causing polycyclic fragrant hydrocarbon; 2B = perhaps cancer-causing polycyclic fragrant hydrocarbon; (3) =Non-cancer-causing polycyclic sweet-smelling hydrocarbon; ND = Not Detected .

4. DISCUSSION OF FINDINGS
The toxic metals arsenic (As), mercury (Hg), cadmium (Cd), and lead (Pb) are the most common heavy metals that induce human poisoning. Fish and aquatic product consumption is the major pathway for human exposure to Hg and As and, to a lesser extent, Cd and Pb (Goyanna et al., 2023). The exposure of water shelfish to As, Cd, Pb, and Cr result in bioaccumulation, mainly in liver and kidney tissues. Cd and Pb have been widely recognized as pollutants in waters worldwide and as a threat to aquatic organisms (Gu et al., 2017).
The concentration of heavy metals in seafood collected from Okoroba river was reported in Table 1. The heavy metal concentrations in the seafood were estimated in mg/kg/ dry weight. Ni level in Grapsidae was highest followed by Fe, Zn, Cr, Pb, Cd while the least was Mn (Table 1). The Ni, Cr, Cd, and Pb levels observed in Grapsidae were higher than the reference values as reported by WHO/FAO (2011). The Fe concentration in Potamonautes busungwe  was noticed to be highest followed by Ni, Cr, Pb, Zn, Cd while the least was Mn (Table 1).  The level of Ni, Cr, Cd, and Pb seen characterized in Potamonautes busungwe   were higher than the reference values as reported WHO/FAO (2011). 	Comment by Zirak Palani: Palani, D. M. R., Hamzah, L. H., Hamasalim, H. J., & Palani, Z. M. R. (2022). Hygienic evaluation of heavy metals levels in meat tissues and fats after adding selenium and zinc. Journal of Pharmaceutical Negative Results, 13(Special Issue 6), 2033–2038.
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The Fe estimated in Cardisoma armatum seafood was highest in concentration next was Ni, Pb, Cr, Zn, Mn while the least was Cd. The level of Cr, and Cd were lower than the reference values shown in Table 1. The level of Ni and Pb in observed in Cardisoma armatum could lead to health risk to the people of Okoroba community upon consumption over a period of time, which in line with the report of Pastorelli et al.(2012) on Human exposure to lead, cadmium and mercury through fish and seafood product consumption in Italy: A pilot evaluation.
The Ni level determined in Oxudercinae was highest followed by Cr, Pb while the least among the hazardous heavy metals in Table 1 was Cd. The Ni, Cr, and Pb concentration evaluated in Oxudercinae were significantly higher than the reference values (Table 1). The Ni estimated among the cytotoxic heavy metals in Halichoeres bivittatu was highest in concentration next to it was Cr, Pb, Cd, while the least was Cd. The level of Ni, Cr, and Pb observed in Halichoeres bivittatu were higher that the reference values (Table1). Ni and Cr levels in Mystus tengara were significantly high when compared to those of the reference values in Table 1. The Ni level in Mystus tengara was higher than that of Cr.
More so, among the cytotoxic heavy metals estimated in Bagrus bajad, Cr was highest in concentration followed by Ni, Pb, while the least was Cd (Table 1). The Cr, Ni, and Pb levels were higher than the references values reported by FAO (2008). Also, the Pb, Cd, Cr, and Ni levels determined in Atlantic silverside were higher than the reference values (Table 1). The Cr estimated was highest in level followed by Pb, Ni while the least was Cd.
The level of Cr in Portunus armatus was noticed to be highest next was Pb, Ni while the least was Cd. The concentration of Cr, Pb, Ni, and Cd characterized in Portunus armatus were higher than the reference values on Table 1. The concentration of Ni determined in Catharanthus roseus was highest followed by Cr, Pb, while the least was Cd. But the levels of these metals were significantly higher than the reference values reported by WHO/FAO (2011)
The levels of Ni, Cr, Cd, and Pb estimated from Grapsidae, Potamonautes busungwe,Cardisoma armatum, Halichoeres bivittatu, Bagrus bajad,Atlantic silverside,Portunus armatus,and Catharanthus roseus, is suggestive that consumption of these seafood for protein might pose potential risk to the Okoroba indigenous people. The level of Ni, Cr, Cd, and Pb estimated in Grapsidae, Potamonautes busungwe,Cardisoma armatum, Oxudercinae, Halichoeres bivittatu, Bagrus bajad,Atlantic silverside,Portunus armatus,and Catharanthus roseus seafood from this study is similar to the values reported by Ali et al.(2023) on Human biomonitoring of heavy metals exposure in different age- and gender-groups based on fish consumption patterns in typical coastal cities of China and Turdiyeva and Lee (2023) on Comparative analysis and human health risk assessment of contamination with heavy metals of Central Asian rivers.
The estimated daily intake of Ni in was highest in Grapsidae followed by Mn, Cd, Pb, Cr, Fe, while the least was Zn. The Recommended Tolerable Daily Intake (TDI) of Pb, Cd, Cr, and Ni level in Grapsidae were higher than the Recommended Tolerable Daily Intake (TDI) but were lower than the Upper Tolerable Daily Intake (UTDI) levels of heavy metals in sea food (Garcia-Rico et al., 2007) except for Cd, Cr, and Ni, which were higher. The estimated daily intake of Ni in Gecarcinidae was noticed to be highest followed by Cd, Pb, and Cr. The estimated daily intake of Ni, Cd, and Pb were higher than the Recommended Tolerable Daily Intake (TDI)levels of heavy metals in sea food (Table 2).
The higher levels of Cd, Cr, and Ni when compared to the Recommended Tolerable Daily Intake (TDI) but were lower than the Upper Tolerable Daily Intake (UTDI) levels of heavy metals in sea food is suggestive Grapsidae, Gecarcinidae, may pose health risk upon consumption for a period of time. The Estimated Daily Intake for Pb and Cd were higher than the estimated daily intake of Ni, Cd, and Cr were higher than the Recommended Tolerable Daily Intake (TDI)levels of heavy metals in sea food(Table 2). Sen et al. (2022) reported similar results on the heavy metal level in seafood.The estimated daily intake of Ni, Cd, and Cr in Grapsidae, Gecarcinidae, Oxudercinae, were higher than the Recommended Tolerable Daily Intake (TDI)levels of heavy metals in seafood while those of Zn, Mn, and Fe were lower than Recommended Tolerable Daily Intake (TDI) but were lower than the Upper Tolerable Daily Intake (UTDI) levels of heavy metals in sea food(Table 2).
However, the estimated daily intake of Ni in Oxudercinae was highest followed by Cd, Cr, while the least was Pb regarding the cytotoxic heavy metals. The estimated daily intake of Ni, Cd, Cr, and Pb in this study were significantly higher than the Recommended Tolerable Daily Intake (TDI)levels of heavy metals in seafood but lower than  the Recommended Tolerable Daily Intake (TDI)levels of heavy metals in seafood(Table 2). The estimated daily intake of Ni, Cd, Cr, and Pb observed in Oxudercinae is indicative that it could be unsafe for consumption. The estimated daily intake of Ni in Halichoeres bivittatus was highest in level next was Pb,Cr while the least was Cd. The estimated daily intake of Pb in Halichoeres bivittatus was higher than both the Recommended Tolerable Daily Intake (TDI)levels of heavy metals in seafood but lower than the Recommended Tolerable Daily Intake (TDI)levels of heavy metals in seafood. The estimated daily intake of Cr and Ni in Halichoeres bivittatus were higher than the Recommended Tolerable Daily Intake (TDI)levels of heavy metals in seafood (Table 2).
The estimated daily intake of Ni in Mystus tengara was noticed to be highest followed by Mn, Cd, Cr, Fe, Zn while the least was Pb. The estimated daily intake of Ni, Pb, Cd, Cr, and Mn in Mystus tengara were higher than the Recommended Tolerable Daily Intake (TDI)levels of heavy metals in seafood but lower than the Recommended Tolerable Daily Intake (TDI)levels of heavy metals in seafood (Table 2). Meanwhile, the estimated daily intake of Ni in Bagrus bajad was highest next was Cr, Pb while the least among the cytotoxic heavy metals in this study was Cd. The estimated daily intake of Ni, Pb, Cr, and Cd in Bagrus bajad were higher than the Recommended Tolerable Daily Intake (TDI)levels of heavy metals in seafood but lower than the Recommended Tolerable Daily Intake (TDI)levels of heavy metals in seafood (Table 2).
The estimated daily intake of Ni in Atlantic silverside was highest followed by Cd, Pb while the least regarding hazardous heavy metals in this study was Cr. The estimated daily intake of Ni, Pb, Cr, and Cd in Atlantic silverside were higher than the Recommended Tolerable Daily Intake (TDI)levels of heavy metals in seafood but lower than the Recommended Tolerable Daily Intake (TDI)levels of heavy metals in seafood(Table 2). The estimated daily intake of Ni in Portunus armatus was highest next was Cd, Pb while the least was Cr. The estimated daily intake of Ni, Pb, Cr, and Cd in Portunus armatus were higher than the Recommended Tolerable Daily Intake (TDI)levels of heavy metals in seafood only (Table 2). The estimated daily intake of Ni in Catharanthus roseus was highest next was Cd, Pb while the least was Cr. The estimated daily intake of Ni, Pb, and Cd in Catharanthus roseus were higher than the Recommended Tolerable Daily Intake (TDI)levels of heavy metals in seafood but lower than the Recommended Tolerable Daily Intake (TDI)levels of heavy metals in seafood (Table 2).
The estimated daily intake of Ni was observed to predominantly and significantly increased in Grapsidae, Potamonautes busungwe, Gecarcinidae, Oxudercinae, Halichoeres bivittatus, Mystus tengara,Bagrus bajad, Atlantic silverside,Portunus armatus, and Catharanthus roseus and was  higher than the estimated daily intake of Ni, Pb, and Cd in Catharanthus roseus were higher than the Recommended Tolerable Daily Intake (TDI)levels of heavy metals in seafood (Table 2). This predominantly increased Ni estimated daily intake of Ni found in these seafood is suggestive Ni could induced toxicological consequences to vital organs in the body following prolonged consumption. Zodape et al. (2010) on contamination of heavy metals in seafood marketed from Vile Parle and Dadar markets of suburban areas of Mumbai reported similar results on Cd, Cr, and Pb level and Mokhtar et al. (2012) on assessment Level of Heavy Metals in Penaeusmonodon and OreochromisSpp in selected aquaculture ponds of high densities development area
Table 3 shows the target hazard quotient and hazard index of metals in seafood harvested from Okoroba of Bayelsa State. The target hazard quotient and hazard index of Cd and Ni was highest in Grapsidae followed by Ni, Cr while the least among the cytotoxic metals in this study was Pb. The target hazard quotient and hazard index of Cd and Ni in Grapsidae were higher than the reference values as reported by Garcia-Rico et al. (2007). The target hazard quotient and hazard index of Cdwas highest in Potamonautes busungwe   next was Ni, Cr while the least was Pb among the hazardous heavy metals. The target hazard quotient of CdCr, and Ni observed in Potamonautes busungwe   were higher than reference target hazard quotient of CdCr, and Ni observed in seafood.
Meanwhile, the target hazard quotient and hazard index of Niwas highest in Gecarcinidae next was Cd, Cr while the least was Pb.  The target hazard quotient of CdCr, and Ni observed in Gecarcinidae were higher than reference target hazard quotient of CdCr, and Ni observed in seafood. Also, the target hazard quotient and hazard index of cytotoxic heavy metals in Oxudercinae showed that Ni had the highest target quotient hazardous index next was Cd, Cr while the least was Pb. The target hazard quotient and hazard index of Ni, Cd, and Pb were higher than the reference values (Table 3). The significant higher target hazard quotient and hazard index of Ni, Cd, and Pb observed in Oxudercinae is suggestive that it could not be safe for consumption.Estimation of the target hazard quotient and hazard index of cytotoxic heavy metals in Halichoeres bivittatus revealed that Cd had the highest target quotient hazardous index followed by Ni, Pb while the least was Cr. The target hazard quotient and hazard index of Ni, Cd, Cr, and Pb were higher than their references (Table 3). The target hazard quotient and hazard index of Ni, Cd, Cr, and Pb noticed in Halichoeres bivittatus is suggestive of possible health risk in consumption of the seafood by the indigenous people of Okoroba community.
Analysis of the target hazard quotient and hazard index of cytotoxic heavy metals in Mystus tengara revealed that Pb had the highest target quotient hazardous index followed by Cd, Ni while the least was Cr. The target hazard quotient and hazard index of Ni, Cd, and Pb were higher than their references (Table 3). The target hazard quotient and hazard index of Ni, Cd, and Pb noticed in Mystus tengara is suggestive of possible health risk in consumption of the seafood by the indigenous people of Okoroba community. Evaluation of the target hazard quotient and hazard index of cytotoxic heavy metals in Bagrus bajad revealed that Ni had the highest target quotient hazardous index followed by Pb, Cr while the least was Cd. The target hazard quotient and hazard index of Ni, and Pb were higher than their references (Table 3). The target hazard quotient and hazard index of Ni, and Pb noticed in Bagrus bajad is suggestive of possible health risk in consumption of the seafood from Okoroba community. The target hazard quotient and hazard index of Cr, Ni, and Pb evaluated in this study were higher than those reported by Esilaba et al. (2020) on human health risk assessment of trace metals in the commonly consumed fish species in Nakuru Town, Kenya.
The target hazard quotient and hazard index of cytotoxic heavy metals in Atlantic silverside indicated that Cr had the highest target quotient hazardous index followed by Cd, Ni while the least was Pb. The target hazard quotient and hazard index of Cr, Cd, Ni, and Pb were far much higher than their references (Table 3). Also, the target hazard quotient and hazard index of heavy metals characterized in Portunus armatus indicated that Cr had the highest target quotient hazardous index followed by Cd, Ni while the least was Pb. The target hazard quotient and hazard index of Cr, Cd, Ni, and Pb were far much higher than their references (Table 3). 
The target hazard quotient and hazard index of these cytotoxic heavy metals noticed in Atlantic silverside, Catharanthus roseus, and Portunus armatus point to the possibility of threat to health upon consumption of Atlantic silverside,Catharanthus roseus and Portunus armatus as a sources of protein and nourishments. The target hazard quotient and hazard index of cytotoxic heavy metals in Catharanthus roseus indicated that Ni had the highest target quotient hazardous index followed by Pb, Cd while the least was Cr. The target hazard quotient and hazard index of Ni, Pb, Cd, and Pb were far much higher than their references (Table 3).The target hazard quotient and hazard index of Cd, Pb, and Ni in the selected seafood is suggestive that it could be unsafe depending on Grapsidae, Potamonautes busungwe, Gecarcinidae, Oxudercinae, Halichoeres bivittatus, Mystus tengara, Bagrus bajad, Atlantic silverside, Portunus armatus,Catharanthus roseus, and as sources of protein and mineral nourishments. Taiwo et al. (2018) reported similar heavy metal levels of carcinogenic and non-carcinogenic evaluations of heavy metals in protein foods from southwestern Nigeria.
The life cancer risk and total life cancer risk of Cd in Potamonautes busungwe was observed to be highest followed by Cr, Pb while the least was Ni.  The life cancer risk and total life cancer risk of Cd in Gecarcinidae was highest next was Pb, Ni while the least was Cr. The life cancer risk and total life cancer risk of Cd in Oxudercinae was highest followed by Pb, Ni while the least was Cr. The life cancer risk and total life cancer risk of Pb in Halichoeres bivittatus was highest followed by Cr, Cd while the least was Ni. The life cancer risk and total life cancer risk of Pb in Mystus tengara was highest followed by Cd, Ni while the least was Cr. The life cancer risk and total life cancer risk of Pb in Bagrus bajad was highest followed by Cr, Ni while the least was Cr. The life cancer risk and total life cancer risk of Pb in Atlantic silverside was highest followed by Ni, Cd while the least was Cr. The life cancer risk and total life cancer risk of Cr in Portunus armatus was highest followed by Cd, Pb while the least was Ni. The life cancer risk and total life cancer risk of Cd in Catharanthus roseus was highest followed by Pb, Cr while the least was Ni. The life cancer risk and total cancer risk of Cd, Cr, and Ni in this study were higher than the those reported by Adowei et al. (2020).	Comment by Zirak Palani: Palani, Z. M. R., Al-Obaidy, M. H. A., Palani, D. M. R. ., & Ahmed, K. A. (2022). Effect of changes in 
some beneficial elements and dangerous heavy metals in cow and sheep manure on human and 
animal health and the environment. International Journal of Health Sciences, 6(S1), 6250–6256. 
https://doi.org/10.53730/ijhs.v6nS1.6295  
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The naphathalene level in Grapsidae was highest followed by Mystus tengara,C. roseus, A. silverside,Potamonautes busungwe, H. bivittatus, Oxudercinae while the least was Gecarcinidae. The acenaphthylene level in A. silverside was highest next was B. bajad, Gecarcinidae, while it was undetected in Grapsidae,Mystus tengara,Oxudercinae,H. bivittatus,P. armatus and C. roseus. The acenahthrene level in S. indicum was observed to be highest followed by Grapsidae,H. bivittatus,A. silverside,C. roseus,Mystus tengara,P. armatus,P. armatus while it was not detected in Oxudercinae. The fluorene concentration in A. silverside was seen to be highest next was Grapsidae,C. roseus, P. armatus,Mystus tengara,H. bivittatus it was not detected in Potamonautes busungwe, Gecarcinidae, and Oxudercinae. Phenanthrene level in Mystus tengara was noticed to be highest followed by Potamonautes busungwe,A. silverside, H. bivittatus,Grapsidae,C. roseus,Oxudercinae, B. bajad while the least was Gecarcinidae (Table 5). The fluoranthene concentration in A. silversidewas observed to be highest next was P. armatus, Grapsidae, C. roseus,H. bivittatus, B. bajad, Gecarcinidae while Fluoranthene was not detected in Mystus tengaraand Oxudercinae. The level of naphathalene, acenaphthylene, acenahthrene and fluorene estimated in this study in Grapsidae,Potamonautes busungwe,Mystus tengara,Oxudercinae,H. bivittatus,P. armatus and C. roseus is higher than the those reported by Nwaichi et al. (2016)
The pyrene level in Potamonautes busungwe was highest next was H. bivittatus, P. armatus, Grapsidae,A. silverside, Oxudercinae,C. roseus,Mystus tengara,B. bajad while it was not detected in Gecarcinidae. Also, Chrysene level observed in Grapsidae was higher followed by Mystus tengara, Potamonautes busungwe, A. silverside, Oxudercinae, Gecarcinidae, B. bajad while it was not detected in Mystus tengara,P. armatus, and C. roseus.Benzo (k), Benzo(a) pyrene, Indeno(1,2,3-cd) pyrene, Dibenz (a,h) anthracene, and Benzo(g,h,i) perylene were below detection limit in all the seafood used for this study. Chrysene is perhaps cancer-causing polycyclic fragrant hydrocarbon and its presence in Grapsidae, Mystus tengara, Potamonautes busungwe, A. silverside, Oxudercinae, Gecarcinidae, and B. bajad is suggestive of the possibility of cancer risk upon consumption of Grapsidae, Mystus tengara, Potamonautes busungwe, A. silverside, Oxudercinae, Gecarcinidae, and B. bajad seafood by the indigenous people of Okoroba community. Silva et al. (2011) reported estimated similar pyrene and chrysene in their study on polycyclic aromatic hydrocarbons (PAHs) in some locally consumed fishes in Nigeria. 
The total concentration of carcinogenic PAHs in A. silverside was highest followed by S. indicum, Grapsidae, Mystus tengara, P. armatus, H. bivittatus, C. roseus,Gecarcinidae. The total carcinogenic PAHs in Potamonautes busungwe was highest next was that of Oxudercinae, Mystus tengara, A. silverside,Gecarcinidae while the least were H. bivittatus, P. armatus, and C. roseus. The percentage of carcinogenic PAHs in Gecarcinidaewas highest followed by Oxudercinae, B. bajad, Grapsidae,, Mystus tengara, Potamonautes busungwe, A. silverside while H. bivittatus, P. armatus, and C. roseus have the lowest percentage of PAHs (Table 5). The acenaphthylene, acenahthrene, fluorine,phenanthrene, pyrene, acenahthrene, chrysene, fluoranthene, level in Grapsidae, Mystus tengara,C. roseus, A. silverside,Potamonautes busungwe, H. bivittatus,Oxudercinae and Gecarcinidae, P. armatus and C. roseus were higher than the values  reported by Nwaichi and Ntorgbo (2016) on assessment of PAHs levels in some fish and seafood from different coastal waters in the Niger Delta.


5. CONCLUSION
Cytotoxic Pb, Cd, Cr, and Ni as well as benz(a) anthracene, chrysene, fluorene, and phenanthrene were mathematically evaluated in the studied seafood collected from Okoroba River. High levels Pb, Cd, Cr, Ni, benz(a)anthracene, chrysene, fluorene, and phenanthrene were observed in seafood collected from Idema River. LCR and TLCR of Pb, Cd, Cr, and Ni studied in the studied seafoodwere significantly higher the reference values for seafood.Chronic consumption of these examined seafood for the presence of heavy metals and PAHs by residents of Okoroba River could lead to cumulative toxic effects. Immediate action is required to prevent the contamination of marine resources in Okoroba River. Public health interventions, including raising awareness about the risks of consumption of the contaminated studied seafood is necessary. This research is both urgent and vital for safeguarding human health, preserving local biodiversity, and promoting sustainable living in Okoroba and similar coastal communities.	Comment by Zirak Palani: Academically, it should not exceed 5 lines.
Data Availability
The data that support the findings of this study are available on request from the corresponding
author.
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