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Sensing in the Tropical River Basin of the Western 
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ABSTRACT 

Wayanad is prone to unexpected landslides due to human interventions and, unusual geological and 

abundant rainfall, which cause loss of life and property damage. This study was conducted to construct a 

landslide susceptibility map of the Kabani River Basin area in the Southern Western Ghats region using a 

statistical method. For this, we used previously recorded landslide locations, and 11eleven landslide factors 

were used for modelling:, namely lithology, geomorphology, slope angle, soil texture, distance from 

streams, distance from roads, distance from landmarks, topographic wetness index (TWI), rainfall, land 

use/land cover, and slope curvature, which were extracted from the spatial database. 

Initially, the study presenteds a very comprehensive approach by mapping landslide-prone areas using 

relative frequency and prediction rate, which generateds a Landslide Prone Area Index (LSI) and a 

susceptibility map. Furthermore, the study revealeds that the southwest part of the study area is prone to 

landslides becausedue ofto the extensive influence of the 65Á slope, intense rainfall, soil texture, 

topography moisture index, curvature, lithology, and geomorphology. It also includes the distances to 

roads, lines, and streams. The predicted pattern is highly similar to the area where landslides have occurred 

in the past, and it helps in future conservation planning and sustainable land use planning to mitigate 

landslide risk in the south-western Western Ghats. 

 Keywords: Landslide Susceptibility, Frequency Ratio (FR), Remote Sensing (RS), Western Ghats, Land 

Use/Land Cover (LULC)  
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1. INTRODUCTION 

A common but devastating natural disaster, a landslide, represents the downward and outward movement 

of slope-forming materials, such as rock, soil, and debris. (Gerrard 1994). Landslides occur when the 

stability of slopes is compromised bydue to natural and anthropogenicman-made factors. The sheer force 

of a landslide can havecause devastating consequences, including loss of life, damage to infrastructure, 

and significant economic losses. (A. Saha et al. 2023; Tien Bui et al. 2012; Nadim et al. 2006). The 

underlying causes of landslides are multifaceted, including seismic conditions, hydrological changes, 

seismic activity, and human interventions, leading to natural imbalances. Mountainous areas around the 

world are prone to landslides, and as a measure, from 1995 to 2014, more than 3850 landslides were 

recorded, resulting in the loss of more than 11,500 human lives and the death of approximately 1,63,500 

people. (Haque et al. 2019). It has been recorded that approximately 95% of landslide incidents occur in 

developed countries and cause damage of 0.05% of the country's annual income. (Glade et al. 2005). 

Therefore, it is necessary to take decisive and effective steps to adopt precautionary measures and 

mitigation measures related to landslides. Landslide hazard assessment and mapping are crucial 

processes forin understanding and mitigating landslide-related risks. Sensitivity assessment ofregarding 

the spatial division of landslide-prone areas dependsing on the topographic-ecological situation. (Merghadi 

et al.2020). 

Growing awareness of landslide impacts and the need for urban development in challenging mountainous 

terrain haves increased scientific interest in LSZ mapping. (Batar and Watanabe 2021; Chawla et al. 2019; 

Dikshit et al. 2020; Peethambaran et al. 2020; Pham et al. 2017). LSZ mapping methods have evolved by, 

incorporating heuristic, semi-quantitative, statistical, or probabilistic approaches. (Shano et al. 2020). In the 

coming era, and still today, machine learning (ML) algorithms have gained importance as advanced tools 

for modelling complex relationships between geo-ecological components (Pham et al. 2016a, b; Pradhan, 

2013a). Despite their many advantages, these algorithms often do not perform well and currently face 

several limitations, such as the low interpretability of the influence of factors, the possibility of overfitting in 

unbalanced datasets, and high computational requirements. (Hong et al. 2019; Pradhan et al. 2023; Tang 

et al. 2023). These challenges underscore the critical need for expert validation to improve the reliability 

and practical applicability of these models. Conversely, while explainable, methods based solely on expert 

opinions may introduce biases and variations. (Erener et al. 2016; Yalcin 2008). 

The objective of this research is to explore the effectiveness of using the frequency ratio model and 

prediction rate to analyzse the landslide hazard of the Kamati River, a tributary of the Cauvery River that 

flowsing through southern India. The main objective of this research is to identify their strengths and 

weaknesses and explore their potential to influence successful risk reduction measures. In this studywork, 

a comprehensive point mapping of landslide susceptibility in this area using the relative frequency (RF) 

and prediction rate (PR) is reported.  

The site is a hilly area that has already experienced several landslides, mainly in the south-western part, 

and no research has been conducted in this area of the basin or the region situated inby western the part 

of the basinhat has ever been done. Therefore, determining the condition of slopes and identifying 
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landslide-prone areas iswere a crucial tasks. Thise study presents a very comprehensive approach forby 

mapping landslide-prone areas using relative frequency and prediction rate, which generates a landslide-

prone area index (LSI) and a susceptibility map. The evaluation of the modelôs effectiveness of the model 

and the identification of high-risk areas on the south-western slopes of the Kabani River Bbasin provide 

valuable insights into precautionary measures to mitigate the impact of landslides due to the nature of 

rainfall and erosion. By improving landslide anticipation and management, this research contributes to the 

reliability and safety of the region, not only in the studied region, but also beyond its geographical 

boundaries. 

2. MATERIALS AND METHODS 

In this study, a landslide occurrence table was created by collecting as much data as possible on recent 

and past landslides, and evaluating the relationship between each conditioning factor and landslide 

probability. Using the provided methodology chart (Figure 1), the landslide probability was assessed, and 

the main factors that have caused landslides in the past were identified. The frequency ratio model was 

used to predict the probability of their occurrence in the future, owing due to the influence of the same 

factors. 

2.1 Methodology 

 

Fig 1: Methodology of Frequency ratio 

2.2 Frequency ratio (FR) method 

The FR method is used to rely on the concept of a favourable function and to calculate the statistics 

between previous landslides and the occurrence of landslides, and the statistics between the conditioning 

factors of the landslide (Chung and Fabbri 1999; Vijith and Madhu 2008). Values greater than FR 1 indicate 

a strong relationship between the factor and the occurrence of landslides, whereaswhile a value below 1 

reflects a weak relationship (Lee and Sambath 2006; Vijith and Madhu 2008; Sharma and Mahajan 2018). 
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A contingency table was prepared to calculate the corresponding FR for each landslide conditioning factor, 

and the ratio of landslide occurrence to non-occurrence was calculated using Eqs. (1), as follows: 

W ij =FL ij / FN ij      (1) 

where Wij is the FR of the ith class attribute of the jth causal factor, FLij is the FR of the landslides that 

occurred in the ith class of the factor j, and FNij is the FR of the non-occurred landslides in the class óiô of 

the factor ój.ô The landslide susceptibility index (LSI) was computed by the summation of the FRs of all the 

landslide conditioning factors, followed by Eq. 2. ,3) В ὡὭὮ   (2) 

3. STUDY AREA 

The Kabani Rriver is an eastward- flowing river (KRB area=1685 kmĮ), an integral part of the southern 

Indian Cauvery Rriver system, also known as Dakshina Ganga. The selected drains werein between the 

latitudes of 11Á29ô37.75ǌ òN andto 11Á59ô5.93ǌ òN and the longitudes of 74Á46ô44.54ǌ òE andto 76Á18ô1.26ǌ 

òE (figure 2). The KRB characterizsed the dendritic pattern, and the channel wais in the 7th order. The 

Kabani River originates from the northern Wayanad high range of elevations (2140 m above MSL) from 

the Western Ghats, by the confluence of two rivers, the Panamaram and Mananthavady Rivers. Wayanad 

is a tableland in the state of Kerala, with the elevations ranging from 700 to 2100 mmeters above the Mean 

Sea Level, in the state of Kerala. The regional geology is dominated by Precambrian rocks,; and the 

predominant rock types include gneisses, schists, and granites (Nagaraju and Papanna, 2009). 

 

Fig 2. Location Map of the Study Area 



 

 

The Wayanad Pplateau is very complex, it leadings to the formation of different landscapes through 

tectonicthe activities of tectonics such as faults, folds, and joints, and also continues denudation activities 

moulding their structure. The following climate of the KRB in theo predominant tropical monsoon condition 

is, characterized by distinct wet and dry seasons, with marked high temperature variation. 

 The period fromof June to September resultedbrings into a high amount of precipitation, whileand the post-

monsoon period from October to November experienceds a reduction in the quantity of rainfall. The mean 

annual rainfall isextended between the range of 1200 mm and 2500 mm. Rainfall is more in the south-west, 

as it moves to the north-east, it movinges from a heavy to low rainfall distribution. The highest temperature 

is found along the gently undulating terrain of the plateau, and the mean annual temperature is between 

22.5ÁC and 35.8ÁC (Achu et al., 2021). Thisat remarkably controls the region's hydrological pattern, and it 

is also directly influenced by the diverse soil types, from clay to loam in texture. It together promotes the 

different land- use practices, such as agroforestry, paddy, plantation crops, and tree plantations. 

The study area is rich in diverse systems and lush topography aligned withfrom evergreen and deciduous 

forests in the Western Ghats, and this region (Anoop and Ganesh., 2023) supports a wide range of flora 

and fauna, including several types of endemic and endangered species. 

4. RESULTS AND DISCUSSIONS  

4.1 Data preparation and Landslide causative data and Factor selection 

4.1.1 Lithology 

Lithology is a major factor that directly controls landslide events, and variations in its composition also 

cause changes in the permeability of rocks and soil, which controls slope stability (Kavzoglu et al. 2014). 

The study area, which is associated with the Precambrian Metamorphic Shield of Southern India, 

revealsdiscloses the dominance of high-grade metamorphic rocks. 

 

Fig: 3 Lithology 

4.1.2 Geomorphology 
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Geomorphology displays the surface features and characteristics of an area and indicates its susceptibility 

to hilly slopes and denudational processes. Different landforms have different susceptibilitiesy to mass 

movements and;, therefore, geomorphology is considered to be an essential factor in the initiation of 

shallow landslides (Krishnan et al. 2015). Among the various landforms, the rolling plain covers roughly 

50% of the study area, followed by the highly dissected hills and valleys, and valley fills (areal coverage = 

24% and 20%) (Fig. 4a).  

 

Figure 4a, source: Geological Survey of India 

4.1.3 Slope Angle 

Slope angle is widely used in landslide probability modelling, and is considered to be the most critical 

(Anpazhagan and Sajinkumar 2011; Achu et al. 2020; Febi et al. 2020). BecauseSince the magnitude of 

the sliding mass is directly related to the slope angle (Meaton et al. 2015; Chen et al. 2018), the slope angle 

is considered to be one of the most important landslide factors. The slope angle of the study was inare the 

steepness ranges from 0Á to 65.56Á. The slope angle was reclassified into six different classes: Ò, such as 

<= 5Á, 6ï10Á, 11ï20Á, 21ï30Á, 31ï40Á, and >Ó =41Á. 

 

Figure 4b, source: SRTM DEM 

4.1.4 Soil Texture 
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The porosity and permeability of soil play a crucial role in the case of shallow landslide acceleration. In this 

region, the majority of the previously occurringed landslides through werethe influenced byof intense rainfall 

triggered by the excess pore-water pressure generated in the soil (Kuriakose et al. 2009). Four soil textural 

classes characterizse the soils of the study area:, viz., clay (69.43% area), loam (18.36%), gravelly clay 

(11.28%), and gravelly loam (0.93%) (Fig. 4c).  

 

Figure 4c, Soil Texture, source: Kerala State Survey Organisation 

4.1.5 Slope Curvature 

The curvature of the slope signifies the morphology, convergence, and divergence of the surficial water 

flow and identifies the slope stability (Ding et al. 2017). The nNormal curvature is a combination of the plan 

curvature and profile curvatures, which was established in thise study. Convex slopes are often considered 

more stable thancompared to concave slopes because the former quickly drains the water into the lower 

slope area, whereaswhile the latter is more likely to be unstable because water concentrates on the lower 

slope, leading to slope instability. (Stocking 1972). 

 

Figure. 4d, Curvature, source: SRTM DEM 

4.1.6 Topographic Wetness Index (TWI) 
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One of the important topographic variables is TWI, which indicatesimplies the saturation and runoff 

concentration of the soil (Beven and Kirkby 1979). The TWI wais calculated based on the local slope and 

upslope contributing area affecting the soil moisture content in a calculation unit, where Ŭ represents the 

upslope area and ɓ represents the slope angle (Devkota et al. 2013). The TWI of the study area werewas 

reclassified into three classes. We classified the values asof low, medium, and high for the analysis 

purposes, that isi.e., < 5, 6ï10, and >10, respectively. 

 

Figure. 4e:  Topographic Wetness Index, source: SRTM DEM 

4.1.7 Land use/Land cover 

Specifically, in rugged landscapes, unplanned land use/ land cover modification often leads to topographic 

changes that affecting slope stability (Kayastha et al. 2013). The land use/land cover map was generated 

using the Sentinel 2A satellite images. Among the different land use/land cover types, cCoffee agro-forestry 

(40.82%) was dominantdominates, followed by Deciduous Forest (20.88%), aAgriculture (12.00%), 

Evergreen Forest (11.84%), tTea (4.96%), bBarren land (4.29%), HA Grasslands (1.27%), pPaddy fields 

(1.09%), wWater bodiesy (1.03%), tTree plantations (1.00%), bBuilt-up areas (0.55%), and fForest 

plantations (0.26%). 

 

Figure.4f:  LULC, source: Sentinel 2A Image 

4.1.8 Rainfall 



 

 

This nature of rainfall events is the most critical landslide triggering factor in the southern WG, andalong 

with the majority of past landslide occurrences in the region were correlated with extreme rainfall events 

(Thampi et al. 1995). AThe rainfall choropleth map was generated using the IDW technique, andthrough 

the rainfall data of twenty-four rain gauge stations for 2019 were collected from the IMD. The annual rainfall 

over the area was reclassified into three zones:, namely, < 2500 mm, 2501ï3500 mm, and > 3501 mm for 

the analysis. 

 

Fig 4g : Rainfall, source: IMD IMDAA Era 5 

4.1.9 Distance to Lineaments 

The distance from the lLineaments map wais obtainedprepared from the Geological Survey of India (GSI). 

The relationship between the lineament distance and landslides was determinedis found out using <200, 

200ï400, 400ï 600, 600ï800, and >800 m, and the distance between the lineaments wais calculated using 

the Euclidean distance due to the risk of slopethe imbalance of slope. 

 

Figure. 4h : Lineaments, source: Geological Survey of India 

4.1.10 Distance to Roads 

Road construction is a human-made processcut and creation that causes slope instability (Bui et al., 2011). 

Road construction with a steeper slopes is associated with a higher risk of accidents. OwingDue to the 

potential for slope instability, the distance between roads was calculated using Euclidean distance. The 



 

 

study area wais classified into five5 groups based on the, distancesuch from the road:as; <100, 101-200, 

201-300, 301-500 and >500 based on the distance from the road. 

 

Fig. 4i: Road, source: Open Series Map 

1.1.1 Distance to Streams 

Rivers in a watershed are the result of long-term interactions between creations that trigger slope instability, 

geographical features in the impact of water, and topography, and slope (Bui et al., 2011). The distance 

from the streams is one of the proximity parameters, and the distance between the streams is calculated 

using the Euclidean distance becausedue ofto the risk of slopethe instability of the slopes. They weare 

classified asinto <100, 101-200, 201-300, 301-500, and >500 (Fig. 4j) for the analysis. 

 

Fig. 4j: Rivers, source: SRTM DEM 

1.2 Analysis of the factors influencing landslides 

The frequency ratio and prediction rate for all classes were obtained from all the prepared conditioning 

factors of the training dataset. The ratio of landslides and domains, frequency ratio, relative frequency, and 

prediction rate for each class and factor are ldistplayed in Table 5a. The Ffrequency ratios areis frequently 

used in landslide susceptibility studiesresearch. However, in this case, standardizsation between 0 and 1 

was applied to allow for a better comparison and understanding of the impact on the LSI calculation. As 
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such, the prediction rate providesoffers a weighting of the variables that affect the landslide susceptibility 

index. 

Table. 1: The ratio of landslides and domains, frequency ratio, relative frequency, and prediction rate for 

each class and factor 

  Count Fnij Previous FLij Wij FR 

CURVATURE 

Concave 638464 0.34106 107 0.601 1.762 176.2 

Flat 638256 0.34095 35 0.196 0.576 57.67 

Convex 595256 0.31798 36 0.202 0.636 63.6 

LU/LC 

Agriculture 225015 0.12018 38 0.213 1.776 177.6 

Tea 92970 0.04965 15 0.084 1.697 169.7 

Paddy 20410 0.0109 1 0.005 0.515 51.53 

Rocky 80326 0.0429 6 0.033 0.785 78.57 

Built-up 10350 0.00553 2 0.011 2.032 203.2 

Deciduous Forest 390954 0.2088 26 0.146 0.699 69.95 

Coffee (agroforestry) 764104 0.4081 79 0.443 1.087 108.7 

Evergreen Forest 221525 0.11831 10 0.056 0.474 47.48 

Water body 19367 0.01034 0 0 0 0 

Forest Plantation 4829 0.00258 0 0 0 0 

H.A Grasslands 23747 0.01268 1 0.005 0.442 44.29 

Tree plantation 18764 0.01002 0 0 0 0 

SOILTEXTURE 

Clay 1299961 0.69429 142 0.797 1.149 114.9 

Loam 343856 0.18365 6 0.033 0.183 18.35 

Gravelly Clay 211215 0.11281 12 0.067 0.597 59.76 

Gravelly Loam 17328 0.00926 18 0.101 10.92 1092 

GEOMORPHOLOGY 

Pediment 10966 0.00586 1 0.005 0.959 95.92 

Valley Fill 378476 0.20214 23 0.129 0.639 63.92 

Water Body - River 27079 0.01446 3 0.016 1.165 116.5 

Rolling Plain 935137 0.49944 72 0.404 0.809 80.98 

Active Quarry 320 0.00017 0 0 0 0 

Residual Mound 39361 0.02102 3 0.016 0.801 80.17 

Pedi plain 9791 0.00523 0 0 0 0 

Channel Bar 2625 0.0014 0 0 0 0 

Residual Hill 2808 0.0015 0 0 0 0 

Plateau Remnant 10505 0.00561 0 0 0 0 

Ridge 4584 0.00245 0 0 0 0 

Hills and Valleys 450709 0.24072 76 0.426 1.773 177.3 

LITHOLOGY 
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Garnet-Sillimanite- Gneiss 50951 0.02725 0 0 0 0 

Sericite Schist 97442 0.05211 4 0.022 0.431 43.12 

Amphibolite 5520 0.00295 0 0 0 0 

Pink Granite 14909 0.00797 0 0 0 0 

Diorite 52066 0.02784 5 0.028 1.008 100.8 

Granite Gneiss 1172789 0.62712 61 0.342 0.546 54.64 

Grey Hornblenblende 136386 0.07293 30 0.168 2.31 231 

Biotite Gneiss       539 995 995 

Talc Tremolite Actinolite 13629 0.00729 1 0.005 0.77 77.08 

Schst       618 874 744 

Pegmatite 127 6.79E-05 0 0 0 0 

Quartz Vein/Reef 2295 0.00123 1 0.005 4.577 457.7 

Acid to Intermediate 252525 0.13503 74 0.415 3.078 307.8 

Charnockite       73 754 754 

Silimanite-Kyanite- 345 0.00018 0 0 0 0 

Quartz Schist             

Anorthosite Gabbro 66526 0.03557 1 0.005 0.157 15.79 

Graphite-Biotite Schist 1646 0.00088 1 0.005 6.382 638.2 

Fuchsite-Kyanite 2956 0.00158 0 0 0 0 

Quartzite             

SLOPE ANGLE 

0-5 583398 0.31165 9 0.05 0.162 16.22 

5.1-10 644301 0.34418 41 0.23 0.669 66.92 

10.1-20 498176 0.26612 96 0.539 2.026 202.6 

20.1-30 117967 0.06302 30 0.168 2.674 267.4 

30.1-40 25976 0.01388 2 0.011 0.809 80.97 

> 40.1 2158 0.00115 0 0 0 0 

RAINFALL 

< 2,500 540558 0.2887 0 0 0 0 

2,501 - 3,500 527551 0.28176 21 0.117 0.418 41.87 

> 3,500 804252 0.42954 157 0.882 2.053 205.3 

TWI 

Low 1158069 0.61864 146 0.82 1.325 132.5 

Medium 584369 0.31217 31 0.174 0.557 55.78 

High 129515 0.06919 1 0.005 0.081 8.119 

DISTANCE FROM STREAMS 

Very Near 300503 0.16049 34 0.191 1.19 119 

Near 253602 0.13545 25 0.14 1.036 103.6 

Average 260174 0.13896 21 0.117 0.849 84.9 

Far 410488 0.21924 41 0.23 1.05 105 

Very Far 647594 0.34587 57 0.32 0.925 92.58 

DISTANCE FROM ROAD 

Very Near 897595 0.47939 139 0.78 1.628 162.8 
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Near 333893 0.17833 19 0.106 0.598 59.85 

Average 145550 0.07774 14 0.078 1.011 101.1 

Far 123485 0.06595 4 0.022 0.34 34.07 

Very Far 371838 0.19859 2 0.011 0.056 5.657 

DISTANCE FROM LINEAMENT 

Very Near 112219 0.05993 6 0.033 0.562 56.24 

Near 123530 0.06598 12 0.067 1.021 102.1 

Average 132972 0.07102 5 0.028 0.395 39.55 

Far 129427 0.06913 3 0.016 0.243 24.38 

Very Far 1374213 0.73395 152 0.853 1.163 116.3 

LSI (sum of wij) = 73.61519 

Regarding the elevation factor, the area between 700 and 2028.67 metres exhibits a high RF value, which 

suggests that this region is susceptible to landslides and that such events have occurred more frequently 

in the past, particularly during periods of heavy rainfall. The RF value wais greater for slopes ranging from 

0Á to 65.56Á. Most global case studies have shown that high relief and steep slopes are primary causes of 

landslides (Y. Hong et al., 2007). Research indicates a distribution of landslides on flat surfaces, caused 

by the base of the landslide or the underlying bedrock (Cestras et al., 2022). Similarly, landslides tend to 

occur more often on concave slopes than on steep onesslopes. Concave slopes often concentrate water 

at their lower edges; however, they are generally more stable because the water flow is more evenly 

distributed (Gimire & Timalsina, 2020). The TWI represents the relationship between the amount of water 

accumulated in a specific area and the slope of the stream (Bevan & Kirkby, 1979; Benzogag et al., 2020). 

TWI also showed that landslides weare likely in our scenario, with TWI ranging from 3.01 to 27.41, 

indicating large landslides. BecauseDue ofto the ease of construction, and slope cutting, and evacuation, 

especially in the study area, most roads are built on river banks. This may be due to the high risk in the 

upper reaches. 

Rainfall naturally causes landslides. The annual average rainfall also increases with anthe increase in the 

study area, and the relative frequency suggests that rainfall above 3312 mm is more likely to cause 

landslides. BecauseSince our region is known for its frequent rainfall events, in some areas, the possibility 

of landslides may occurring more frequently is possible if rainfall exceeds this figure (SestraŚ et al., 2019). 

Finally, from a structural perspective, there is a correlation between the relative frequency values and the 

road crossing faults; landslides are also likely to occur in areas located within 200 m of the road, stream, 

and lineament. 

1.3 Landslide susceptibility map and validation 

The landslide susceptibility map of the Kabani River Basin displays a clear spatial pattern, where the 

western and southwestern regions show high and intense landslide susceptibility, as indicated by the red 

to orange areas. These areas certainly fit the distribution of previous landslide events, as shown as black 

dots on the map. In contrast, the northeastern and eastern parts of the river basin, which are green, 

remained relatively stable. This spatial distribution highlights the dominant influence of the topographic, 

climatic, and geological parameters. 



 

 

One of the primary contributors to this pattern is the high rainfall in the western part, where the Kabani 

River Basin is located oin the lee side of the Western Ghats. The region receives intense monsoon rainfall, 

which increases the soil saturation and reduces the slope stability. In addition, the presence of loamy soils, 

which retain water and become unstable when wet, rendersmakes this region particularly vulnerable to 

landslides. Loamy soils are fertile but structurally weak under saturated conditions, especially on sloping 

terrains. The sSloping structure is an important factor, becauseas sloping areas are more susceptible to 

gravitational movement. 

The more the terrain is disturbed, the more sensitive are the sloped areas are. Steep slopes accelerate 

surface runoff, erosion, and the downward movement of soil and debris. This is evident in the south and 

southwest, where extreme susceptibility overlaps with the steep terrain. In addition, the curvature of the 

terrain also plays a role: concave slopes collect water and increase saturation, whereaswhile steep slopes 

may be more susceptible to mass movement. 

 

Fig. 5 : Landslide Susceptibility Map 

The Topographic Wetness Index (TWI), which measures the moisture accumulation and is partially 

relatedconnected to the instability of the surface. High potentials in the valleys and depressions are often 

associated with areas of moderate to high potential. In addition, distance to streams affects drainage and 

erosion processes, with areas near streams experiencing more intense subsoil erosion, and proximity to 

roads introducinges man-made instability from slope cutting and construction. The gGeological and 

structural constraints also contributed significantlymake an important contribution. The type and 

composition of the lithology ï andthe bedrock ï influences the strength of the slope and the nature of the 

weathering; weaker and weathered rocks, such as phyllites or schists, are more likely to fail. Similarly, in 

terms of land use, different types of cultivation can accelerate landslides in some places, while 

simultaneouslyat the same time decreasing the impact of landslides oin others. Distance to lineament and, 

structural features, such as faults and fractures, can indicate areas of weakness where landslides are more 

likely to be initiated. Geomorphology, which includes landform classifications, such as escarpments, 



 

 

pediments, and valleys, can help explain why some areas naturally initiate mass movement. For example, 

rugged hills and escarpments exhibit high landslide densities becausedue ofto the instability of the area. 

The integration of diverse factors, such as climatology, topography, hydrology, and geology, demonstrates 

a holistic approach toused in the vulnerability assessment, which helps to more accurately identify areas 

at risk in the Kabani River Basin. The correlation between the slope, soil type, and historical landslide 

locations confirms the effectiveness of this geospatial model in identifying hazardous areas, aiding disaster 

mitigation, and land use planning in the Kabani River Basin. 

5. SUMMARY AND CONCLUSION 

The Llandslide susceptibility assessment in the Kabani River Basin highlights thea complex interplay of 

natural and anthropogenic factors that influenceing slope stability. The western and southwestern regions, 

characterizsed by steep slopes, high rainfall, loamy and clay soils, and weak geomorphology, showed 

higher or more severe susceptibility than the northeastern regions. Key contributing parameters such as 

curvature;, topographic wetness index (TWI);, proximity to roads, streams, and lineaments;, and lithological 

and geomorphological distributions and variations make the hazard mapping more accurate. The close 

alignment of past landslide events with areas identified as having high -probability particularly confirms the 

reliability of the model. This analysis also underscores the importance of integrated geospatial approaches 

toin landslide hazard zoning. Effective mitigation strategies in the river basins, land use planning, and 

infrastructure development should be prioritizsed for these high-risk areas to reduce potential landslides in 

the future. 
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