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ABSTRACT 

	Aims: Antimicrobial resistance is a pressing global health threat that has intensified the search for novel therapeutic agents, particularly from natural sources. Combretum hispidum, a medicinal shrub widely used in West African ethnomedicine, has been traditionally employed in treating infections, fever, wounds, and gastrointestinal ailments.
Methodology: This study evaluated the phytochemical composition and antimicrobial potential of C. hispidum leaf extract using experimental rat models and in vitro assays. Fresh leaves of C. hispidum were collected, authenticated, shade-dried, and extracted using ethanol via Soxhlet apparatus. Phytochemical constituents were determined through standard qualitative and quantitative techniques, including gas chromatography–mass spectrometry (GC-MS). Antimicrobial activity was assessed against clinical and standard strains of Enterobacter spp., Klebsiella spp., Salmonella typhi, Cytrobacter spp., and Shigella spp. using the disc diffusion method and determination of minimum inhibitory concentration (MIC).
Results: Quantitative phytochemical analysis revealed alkaloids (37.14 ± 0.39 mg/100 g) as the most abundant compound, followed by flavonoids (19.73 ± 0.61 mg/100 g), phenols (14.36 ± 0.33 mg/100 g), and saponins (12.71 ± 0.16 mg/100 g), while glycosides (4.90 ± 0.09 mg/100 g) were least abundant. GC-MS analysis identified 23 bioactive compounds, with oleic acid being most prominent. Antimicrobial assays showed dose-dependent inhibition, with the highest zone of inhibition observed against Enterobacter spp. (7.58 ± 0.50 mm at 50% concentration) and Salmonella typhi (7.33 ± 0.45 mm at 50%), while Shigella spp. showed moderate sensitivity (5.83 ± 0.98 mm at 100%).
Conclusion: The study confirms that Combretum hispidum leaf extract contains a diverse range of bioactive phytochemicals with measurable antimicrobial activity, supporting its ethnomedicinal use. The results suggest its potential as a source of plant-derived antimicrobial agents. Further studies should explore the isolation and characterization of the active compounds, evaluate their mechanisms of action, and assess in vivo efficacy and safety to facilitate the development of standardized phytomedicines from C. hispidum.
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1. INTRODUCTION 

Medicinal plants remain a cornerstone of healthcare systems globally, especially in low-resource settings where access to modern medicine is limited. The World Health Organization (WHO) estimates that approximately 80% of populations in developing countries rely on traditional medicine for primary healthcare, with plant-based remedies forming the core of these practices (WHO, 2018; Akinyemi et al., 2018). This dependence arises from factors like affordability, cultural relevance, and perceived reduced side effects compared to synthetic pharmaceuticals (Monib, 2024). In resource-constrained regions, traditional medicinal plants provide critical therapeutic options due to economic barriers and inadequate healthcare infrastructure (Karunamoorthi et al., 2013; Akinyemi et al., 2018). Indigenous communities have preserved extensive ethnobotanical knowledge, utilizing over 50,000 identified plant species to treat diverse ailments through empirically validated practices (Monib, 2024; IUCN, 2023). These plants are repositories of bioactive phytochemicals such as alkaloids, flavonoids, and terpenoids which exhibit antimicrobial, anti-inflammatory, and antioxidative properties (Gu et al., 2014). Modern drug discovery increasingly leverages these compounds, isolating them for development into novel pharmaceuticals or using them as templates for synthetic analogs (Gu et al., 2014; Karunamoorthi et al., 2013).
One of the most pressing global health challenges today is antimicrobial resistance (AMR). AMR has escalated into a severe crisis, with resistant pathogens causing an estimated 1.27 million deaths in 2019 and contributing to nearly 5 million fatalities overall (Murray et al., 2022). The World Health Organization categorizes AMR as one of the greatest threats to health, food security, and development, as misuse and overuse of antibiotics especially in low- and middle-income countries continue to drive resistance. Predictions estimate that, by 2050, AMR could claim up to 10 million lives annually and incur economic losses up to USD 100 trillion, intensifying the urgency for discovering new antimicrobial agents (Chanel and Doherty, 2020).
This dire therapeutic landscape underscores an urgent need for novel antimicrobial compounds, particularly from natural sources. Plants produce complex phytochemicals such as flavonoids, alkaloids, tannins, and saponins that have evolved as defense mechanisms against microbial pathogens (Robino, 2024; Ushie et al., 2019). These compounds exhibit diverse mechanisms of action, including disruption of bacterial cell membranes, inhibition of energy metabolism, and interference with nucleic acid synthesis, making them promising candidates against multidrug-resistant strains (Sweet et al., 2023; Robino, 2024; Ushie et al., 2019). For instance, phytochemical screening of plants like Terminalia rhynchocarpum has revealed extracts with minimum inhibitory concentrations (MIC) as low as 0.48 μg/mL against S. aureus and E. coli, surpassing the efficacy of conventional antibiotics like gentamicin (Dubale et al., 2023). Similarly, thymol—a monoterpene phenol demonstrates broad-spectrum activity, reducing viable populations of Salmonella enterica by 66.8% and Listeria monocytogenes by 70.2% at 0.5 mg/mL concentrations (Sweet et al., 2023). These phytochemicals offer a chemically diverse scaffold for developing new antimicrobials, with synergistic interactions enhancing their potency against resistant pathogens (Nascimento et al., 2000).
Within this context, Combretum hispidum emerges as a promising candidate for scientific exploration. It is a shrub species within the Combretaceae family, a taxon comprising approximately 600 species of trees, shrubs, and lianas predominantly distributed across tropical regions (Ogbole et al., 2016; de Morais Lima et al., 2012). Ethnomedical practices in West Africa historically utilize this plant for treating infections, fever, wound management, and diarrheal diseases, aligning with broader regional applications of Combretum species as antimicrobial agents (Silén et al., 2023; Ejidike et al., 2023). Prior phytochemical analyses of congeners like Combretum micranthum reveal 155 bioactive compounds—including flavonoids, phenolic acids, and alkaloids that demonstrate broad-spectrum antibacterial and antiviral activities (Tine et al., 2024; Taura et al., 2009). Similarly, Combretum molle bark extracts exhibit significant efficacy against Gram-positive and Gram-negative pathogens, with acetone extracts showing minimum inhibitory concentrations as low as 1.25 mg/mL against Streptococcus pyogenes and Escherichia coli (Ally, 2021; Parusnath et al., 2023). These findings not only affirm the antimicrobial potential of Combretum species but also support the hypothesis that C. hispidum may harbor similar or even novel bioactive agents.
Despite this promise, Combretum hispidum remains largely uncharacterized in terms of phytochemistry and in vivo pharmacological validation. This study is justified because, despite ethnopharmacological evidence, C. hispidum has yet to undergo comprehensive phytochemical profiling or in vivo pharmacological validation to substantiate its traditional antimicrobial uses.
This study therefore aims to evaluate the phytochemical composition and antimicrobial potential of Combretum hispidum leaf extract thereby contributing to the search for novel plant-based therapeutic agents.

2. material and methods 

2.1	Collection and identification of the plant
Fresh leaves of C. hispidum were plucked from a farm settlement in Ahaba Oloko in Ikwuano Local Government Area, Umuahia Abia State, Nigeria and were authenticated at the Department of Forestry, College of Natural Resources and Environmental Management, Michael Okpara University of Agriculture, Umudike in the month of June, 2022 by Dr. Emmanuel Udoka. The leaves were washed with distilled water and spread on a clean mat in a well-ventilated room with regular turning to enhance even drying and to avoid decaying. Drying of the leaves took place over a period of 21 days. Plant material was validated on http://www.worldfloraonline.or/taxon/wfo-0001328093, accessed on: August, 7th 2024. Dried sample of the material was assigned voucher number MOUAU/ZEB/HERB/22/002 and preserved in the herbarium of the Department of Zoology and Environmental Biology, Michael Okpara University of Agriculture, Umudike.
2.2	Preparation of plant extracts
The leaf extract was prepared using a soxhlet extractor. Briefly, fresh leaves were dried under shade for 14 days, after which they were pulverised to fine powder using a manual blender. Eighty (80) grams of the powdered sample was introduced into the extraction chamber of the soxhlet extractor and extraction was done using ethanol as solvent. Temperature was maintained at 70oC through-out the extraction period of 48 hours. At the end of the period, the collected extract in ethanol was dried in a laboratory oven at 40oC to obtain a brown pasty extract which weighed 8.89 g representing an extract yield of 11.11%.
2.3	Phytochemical analysis of C. hispidum leaf extract
Qualitative and quantitative phytochemical studies of C. hispidum leaf extract were carried out using the methods of Harborne (1998) as reported by Deka and Kalita, (2012), while gas chromatography mass spectrometry (GCMS) analysis of the extract was carried out as was reported by Ukpai et al., (2023).
2.4	Determination of antimicrobial activity of C. hispidum
2.4.1	Microorganisms
The Microorganisms used were the strains of Esherichia coli (ATCC 25922 gram negative), Staphylococcus aureus (ATCC 25923 gram positive), Enterococus fecalis (ATCC 7080 gram positive), Pseudomonas aeruginosa (ATCC 27853 gram negative) and Salmonella typhi (clinical isolate). The organisms were obtained from the Center for Molecular Biosciences and Biotechnology, Michael Okpara University of Agriculture, Umudike.
2.4.2	Reactivation of stock cultures of test organisms
The test organisms were reactivated from nutrient agar slants onto freshly prepared nutrient agar plates. A cell suspension of each microorganism was prepared by transferring 3-5 colonies from the nutrient agar plates to a sterile bottle containing physiological saline. The turbidity of the suspension was adjusted to 0.5 McFarland turbidity standards with sterile physiological saline.
2.4.3	Inoculation of test organisms
Plates of Mueller-Hinton agar (MHA) were prepared following the manufacturer's directives. The MHA plates were allowed to set and using a sterile swab stick, the cell suspension of each test organisms was aseptically spread on the agar surface.
2.4.4	Testing for anti-microbial activity
The Kirby-Bauer disc diffusion technique was employed for anti-microbial testing (Yao et al., 2021). This is a method used to determine the sensitivity of microorganisms to specific antimicrobial drugs. Greater drug efficacy yields larger microbe-free zones surrounding drug-containing disks after overnight growth on solid media. The method involves the placing of antimicrobial impregnated paper discs onto the surface of agar which has previously been seeded with the bacteria to be tested. The antimicrobial agent subsequently diffuses into the agar where it may inhibit bacterial growth in a zone surrounding the disc.
Paper disc measuring 6mm in size, obtained by perforating filter paper (Whatmann No l), were sterilised in hot air oven set at 140°C for 1 hour. Thereafter, each paper disc was impregnated with 20µ of the plant extracts and fractions solutions at the various concentrations of I mg/ml, l0 mg/ml and l00 mg/ml. The discs were left in an incubator set at 50°C to dry. Gentamicin discs and discs impregnated with DMSO were also set up as controls. Each treatment was replicated twice.
The discs containing the extracts and the control were placed on the MHA plates where the respective test organisms have been inoculated and the plates appropriately labelled.
The plates were incubated at 37°C for 24 hours the diameter of any clear zone obtained around the discs were measured with a metre rule. This was according to the method of Strika et al., 2017 and Ikpeama et al., 2014.
2.4.5 Determination of minimum inhibitory concentration
Minimum inhibitory concentration (MIC) is the lowest concentration of an antimicrobial drug that prevents visible bacteria growth of a microorganism after overnight incubation in a media. For each test micro-organism to be studied 126 test tubes with each containing 1 ml of sterile Mueller Hinton broth were set up 18 test tubes in a row of 7 rows; One milliliter of the plant extract and of the fraction (100 mg/ml) was then respectively added in triplicate to the test tubes in the 1st row. These were serially diluted row by row by transferring 1ml from each test tubes in the first row to each test tubes of the 2nd row serially and from each test tubes in the second row 1 ml was taken and serially transferred to the test tubes in the 3rd row down to the last test tube of the 7th row from where 1 ml was taken and discarded. The 1st row down to the 7th row contained concentrations of 50 mg/ml, 25 mg/ml, 12.5 mg/ml, 6.25 mg/ml, 3.13 mg/ml, 1.51 mg/ml and 0.76 respectively. Similarly, the same procedure was carried out for gentamicin (positive control) during which 1 ml of 0.005 mg/ml of dissolved gentamicin was taken in triplicate into test tubes labelled antibiotic control containing 1 ml of Mueller Hinton broth, 1 ml was taken out and discarded. Two sets of negative control were prepared; the first set of three test tubes containing 1 ml of Mueller Hinton broth and no plant extract was labelled as organism control and another three sets containing 1 ml of Mueller Hinton broth and 1 ml of DMSO labelled DMSO control. Each of the test tubes was inoculated with 50 µ of the test bacterial suspension except the sterile control (containing only Mueller Hinton broth). All test tubes were incubated at 37°C for 18 hours. The MIC was defined as the lowest concentration that prevented visible growth of the organisms in the test tubes.
The MIC values were confirmed by streaking the incubated culture tubes on freshly prepared nutrient agar plates. Scanty growth on the plate around the point of streak suggested MIC while complete absence of growth was indicative of MBC (Minimum Bactericidal Concentration).
2.5	Statistical analysis
Results were presented as mean values ± standard deviations (mean ± SD). The replicates in each treatment were subjected to one-way analysis of variance (ANOVA) and the difference between the samples mean were tested by LSD post-hoc test using Statistical Package for Social Sciences (SPSS) software version 25. P-values ≤ 0.05 were considered statistically significant.).

3. results and discussion

3.1	Phytochemical composition of C. hispidum
The most abundant phytochemical found in leaf extract of C. hispidum was alkaloids (37.14±0.39 mg/100 g) followed by flavonoids (19.73±0.61 mg/100 g), phenols (14.36±0.33 mg/100 g) and saponins (12.71±0.16 mg/100 g) while the least in abundance was glycosides (4.90±0.09 mg/100 g). Others were tannins (7.86±0.46 mg/100 g), steroids (6.82±0.14 mg/100 g) and terpenoids (5.29±0.09 mg/100 g) (Table 1). The chromatogram of the mass spectra result of the extract presented in Fig. 1 showed the presence of 23 bioactive compounds: 2,4-Di-tert-butylphenol, 13-Octdecenal, 17-pentatriacontene, 1-Decanol, 1-Docosene, 1-Ethanone, 1-Nonadecene, 3-Eicosene, 9,12-Octadecadienal, 9-Octadecenal, 9-Octadecenoic acid, Benzene, Carbonic acid, Cyclohexadecane, Dibutyl phthalate, Erucic, Heptane, Hexadecane, Hydroxylamine, Oleic acid, Palmitic acid, Tetracosane and Undecane with oleic acid as the most occurring member (Fig. 1).
The phytochemical composition of Combretum hispidum leaf extract in this study aligns with findings from other studies on C. hispidum and related species, which consistently report the presence of these key secondary metabolites known for their antimicrobial and pharmacological properties. For instance, Ikpeazu et al. (2020) identified nineteen bioactive compounds in C. hispidum leaves via GC-MS, including phenolic compounds and fatty acids such as oleic acid, which was also the most prevalent compound in the chromatogram of the present study. The presence of oleic acid and other fatty acids corroborates their role in antimicrobial activity, as these compounds can disrupt microbial membranes and inhibit pathogen growth. Comparatively, GC-MS analysis of C. hispidum roots by other researchers also revealed diverse bioactive compounds, including benzoic acid derivatives and triazine compounds, highlighting the chemical complexity within different plant parts and supporting the ethnomedicinal use of the species (Ikpeazu et al., 2020). This chemical diversity is consistent with the genus Combretum, where species such as Combretum molle have been reported to contain over 200 isolated compounds, including alkaloids, flavonoids, tannins, and terpenoids, all contributing to their antimicrobial and antioxidant activities (Parusnath et al., 2023; Mathipa et al., 2022). The quantitative abundance of alkaloids and flavonoids in C. hispidum leaves parallels findings in other Combretum species, where these phytochemicals are principal contributors to antimicrobial efficacy. The detection of tannins, steroids, and terpenoids in moderate quantities also aligns with previous phytochemical screenings of Combretum species, which emphasize their synergistic roles in antimicrobial and anti-inflammatory effects. For example, tannins have been shown to precipitate microbial proteins and inhibit enzymes, while terpenoids disrupt microbial membranes, collectively enhancing antimicrobial potency (Mathipa et al., 2022). The relatively lower concentration of glycosides in C. hispidum is consistent with reports from other Combretum species, where glycosides are often present but not dominant (Mathipa et al., 2022).
Table 1: Phytochemical content of C. hispidum ethanol leaf extract
	Phytochemicals
	Qualitative test inferences
	Quantitative availability (mg/100 g)

	Saponins 
	++
	12.71±0.16

	Tannins 
	+
	7.86±0.46

	Phenolic 
	++
	14.36±0.33

	Flavonoids 
	+++
	19.73±0.61

	Steroids 
	+
	6.82±0.14

	Terpenoids 
	+
	5.29±0.09

	Glycosides 
	              +
	4.90±0.09

	Alkaloids 
	+++
	37.14±0.39


*Keys: + = present in low amount, ++ = present in moderate amount, +++ = present in high amount. Values of quantitative test results are as means ± standard deviation (n = 3). 


Fig. 1: Chromatogram showing peaks of compounds present in C. hispidum ethanol leaf extract 
[image: C:\Users\User\Desktop\2023 WORKS\ARINZECHUKWU\IMG-20230113-WA0005.jpg]

Table 2: Bioactive compounds identified in C. hispidum leaf extract by GCMS 
	PEAK
	Retention
Time
	COMPOUND NAME
	STRUCTURE
	% COMPOSITION

	1.
	5.238 
	9,12 Octadecadienal 
	[image: ]
	9.10 

	2. 
	6.884 
	Hexadecane  
	[image: ]
	1.23 

	3. 
	7.426 
	Benzene 
	[image: ]
	0.45 

	4. 
	8.522 
	Carbonic acid 
	[image: ]
	1.45 

	5. 
	8.878 
	17 pentatriacontene  
	[image: ]
	3.58 

	6.
	8.985 
	Undecane 
	[image: ]
	3.35 

	7. 
	9.138 
	Tetracosane  
	[image: ]
	1.18 

	8. 
	9.430 
	Carbonic acid 
	[image: ]
	9.06 

	9. 
	9.558 
	17-Pentatriacontene 
	[image: ]
	1.37 

	10. 
	9.621 
	Heptane  
	[image: ]
	3.22 

	11. 
	9.815 
	Carbonic acid 
	[image: ]
	8.64 

	12. 
	10.159 
	Undecane  
	[image: ]
	8.30 

	13. 
	10.579 
	Hydroxylamine  
	[image: ]
	2.09 

	14. 
	12.804 
	Hexadecane  
	[image: ]
	1.71 

	15. 
	15.708 
	Hexadecane  
	[image: ]
	1.72 

	16. 
	18.284 
	Cyclohexadecane  
	[image: ]
	1.78 

	17. 
	18.478 
	Palmitic acid 
	
	1.94 

	18. 
	21.107 
	1-Decanol  
	[image: ]
	0.93 

	19. 
	22.130 
	2,4-Di-tert-butylphenol 
	[image: ]
	9.67 

	20. 
	23.442 
	Erucic  
	[image: ]
	2.24 

	21. 
	28.091 
	1-Nonadecene 
	[image: ]
	2.97 

	22. 
	30.529 
	Dibutyl phthalate  
	[image: ]
	1.60 

	23. 
	30.704 
	3-Eicosene 
	[image: ]
	2.54 

	24. 
	30.886 
	1-Ethanone  
	
	0.64 

	25. 
	32.036 
	Oleic acid 
	[image: ]
	0.57 

	26. 
	32.181 
	1-Docosene  
	
	1.27 

	27. 
	32.591 
	9-Octadecenal  
	
	2.05 

	28. 
	32.934 
	9-Octadecenal 
	
	3.41 

	29. 
	33.106 
	Oleic acid 
	[image: ]
	2.36 

	30. 
	33.225 
	Oleic acid 
	[image: ]
	0.64 

	31. 
	33.375 
	Oleic acid 
	[image: ]
	2.11 

	32. 
	33.679 
	9-Octadecenoic acid 
	[image: ]
	1.61 

	33. 
	33.875 
	9-Octadecenoic acid 
	[image: ]
	0.97 

	34. 
	34.000 
	Oleic acid 
	[image: ]
	0.95 

	35. 
	34.116 
	Oleic acid 
	[image: ]
	1.42 

	36.
	34.544 
	Oleic acid 
	[image: ]
	1.45 

	37. 
	37.065 
	13-Octdecenal 
	
	-0.25 



3.2	Antimicrobial activity of C. hispidum leaf extract against some common pathogenic bacteria 
Results of antimicrobial activity of C. hispidum leaf extract presented in Table 3 showed that the extract significantly inhibited microbial growth in in vitro media with inhibition zones ranging from 2.77 – 7.58 mm. The maximum zone of inhibition diameter (7.58±0.50 mm) produced by the extract was against Enterobacter spp at 50% extract concentration, followed by an inhibition zone diameter of 7.33±0.45 mm against Salmonella typhi also at 50% extract concentration. The minimum zone of inhibition diameter of 5.83±0.98 mm was also observed against Shigella spp following 100% extract application. 
The antimicrobial assessment of Combretum hispidum leaf extract exhibited dose-dependent efficacy against Gram-negative pathogens, with inhibition zones (IZDs) increasing from 6.25% to 50% concentrations before plateauing or declining—a trend that resonates with observations in other Combretum species. Notably, Enterobacter spp. showed IZDs rising from 3.21 mm to 7.58 mm, while Klebsiella spp. reached up to 7.05 mm. This mirrors the dose-responsive behavior reported for C. molle acetone extracts, where IZDs ranged from approximately 11–18 mm across various bacteria and correlated with increasing concentrations (Asres et al., 2006)). Furthermore, Salmonella typhi and Shigella spp. achieved IZDs above 7 mm at higher extract dosages, comparable to the inhibition of Escherichia coli and Shigella spp. by C. molle stem bark, which were as effective as ciprofloxacin in certain assays (Asres et al., 2006). The antibacterial action against both S. typhi and Shigella spp. in C. hispidum is consistent with prior studies noting broad-spectrum activity of Combretum species, especially against gastrointestinal pathogens.
The moderate but clear inhibitory activity at 12.5% and 25% concentrations supports findings in Combretum pincianum, where methanol extracts yielded IZDs between 10–20 mm at 25 mg/mL, along with MICs aligned with conventional antibiotics (Silén et al., 2023). Although C. hispidum produced smaller zones (~4–6 mm at mid concentrations), these results remain significant given the lower doses applied. The bactericidal capacity suggested by ZID amplitude parallels the mechanisms attributed to C. molle extracts, where hydrolysable tannins were identified as key antimicrobials (Ikpeazu et al., 2020; Asres et al., 2006). The rich phytochemical content in C. hispidum including alkaloids, flavonoids, phenols, and saponins likely contributes to its antimicrobial efficacy, supporting established roles of these compounds in membrane disruption, enzyme inhibition, and oxidative damage to pathogens. The slight decrease in IZD at 100% concentration (notably with Enterobacter and S. typhi) may reflect a plateau effect often observed in plant extract studies, possibly due to compound precipitation or microbial adaptation at higher extract loads—phenomena previously documented in dose-response analyses of crude botanical extracts (Mgonja and Ally, 2021).

Table 3: Diameter of zones of inhibition of the extract against some bacteria isolates
	 Test isolates
	IZD in mm at 6.25%
	IZD in mm at 12.5 %
	IZD in mm at 25%
	IZD in mm at 50 %
	IZD in mm at 100%

	Control
	0.00±0.00a
	0.00±0.00a
	0.00±0.00a
	0.00±0.00a
	0.00±0.00a

	Enterobacter spp
	3.21±0.26b
	4.33±0.36c
	7.24±0.62b
	7.58±0.50c
	6.60±0.61b

	Klebsiala spp
	3.08±0.21b
	4.12±0.36c
	4.51±0.39c
	6.16±0.42b
	7.05±0.59b

	Salmonella typhi
	4.39±0.22c
	3.51±0.37c
	6.03±0.72b
	7.33±0.45d
	2.77±0.32c

	Cytrobacter
	3.66±0.37b
	4.32±0.41b
	4.39±0.48c
	5.19±0.19e
	3.03±0.55c

	Shigella spp
	3.21±0.23b
	5.58±0.34d
	3.72±0.43d
	4.98±0.33e
	5.83±0.98b


Values are presented as mean ± standard deviation (n = 3) and values with different superscripts are significantly (P<.05) different from any paired mean within each column. Means on the same row with different number superscripts are significantly different (P<.05) from any paired mean across the row. 


4. Conclusion

The findings of this study confirm that Combretum hispidum leaf extract contains diverse bioactive phytochemicals, with alkaloids, flavonoids, phenols, and saponins being the most abundant. These compounds likely contribute to its observed antimicrobial effects. The extract demonstrated dose-dependent inhibitory activity against multiple Gram-negative pathogens, reinforcing its ethnomedicinal use in treating infections. While its antimicrobial potency was moderate, the results support C. hispidum as a promising source of plant-based antimicrobial agents and provide a foundation for further pharmacological and toxicological investigations.
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