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Abstract
Non-alcoholic fatty liver disease (NAFLD) is a significant world health burden, occurring in more than 25% of the adult population and advancing to steatohepatitis, fibrosis, and eventually cirrhosis or hepatocellular carcinoma. Although it is increasingly prevalent, there are limited pharmacological treatments for NAFLD available, which are mostly symptomatic but not aimed at the systemic multi-factorial dysfunctions at its core. Herbal Ayurvedic medicine, such as the hepatoprotective plant Picrorhiza kurroa (Kutki), represents a fertile ground for multi-targeted therapeutic intervention. Yet, a clear need exists for system-level mechanistic models that can assess such intricate botanicals. Our research initiates an enhanced simulation-based approach unifying classical network pharmacology and our in-house developed 7+1-layer Intrinsic Network Pharmacology (INP) model to investigate the systemic repair capacity of P. kurroa in NAFLD. Beginning with compound-target-pathway (CTP) mapping and network analysis of P. kurroa's bioactive constituents, high-priority targets were evaluated across molecular, enzymatic, signaling, redox, inflammatory, autophagic, and epigenetic levels. The last "+1" dynamic layer includes an ODE-based simulation platform to model disease collapse versus Rasayana-mediated recovery over time. INP and classical pharmacology integration allows high-resolution modeling of the mechanisms by which Kutki phytoconstituents, including Kutkin, Picroside I & II, apocynin, androsin, and cucurbitacins, modulate intricate cellular networks. An INP Fit Score was created to measure compound efficacy across system layers, and differential system trajectories were calculated to model therapeutic responses. This multi-scale computational system not only validates the efficacy of P. kurroa as a systems-level modulator for NAFLD recovery but also provides a replicable paradigm for investigating polyherbal formulations for chronic diseases. The model sets the stage for personalized, network-based Rasayana pharmacology and provides a template for converging traditional medicine with systems biology.
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1. Introduction
Non-alcoholic fatty liver disease (NAFLD) has emerged as one of the most prevalent causes of chronic liver disease globally, with an estimated prevalence of almost 25–30% of the adult population, its prevalence increasing in children and adolescents [1]. NAFLD represents a spectrum of conditions ranging from simple hepatic steatosis to non-alcoholic steatohepatitis (NASH), progressive fibrosis, cirrhosis, and ultimately hepatocellular carcinoma [2]. The disease is highly linked to modern life diseases like obesity, insulin resistance, dyslipidemia, and metabolic syndrome. Notably, NAFLD is increasingly being identified not just as a liver disease but as a systemic metabolic disorder affecting multiple organ systems and regulatory networks.
In the face of this universal burden, there is no pharmacological treatment currently approved for NAFLD. Lifestyle modification remains the first-line management strategy with limited attendant support from off-label therapies including pioglitazone, GLP-1 receptor agonists, and vitamin E [3]. These treatments are prone to variable efficacy, side effects, and only modest ability to reverse fibrosis or restore hepatocellular integrity. Most importantly, such therapies are generally developed to target individual factors or linear pathways, without addressing the multi-factor and layered failure structure involved in NAFLD progression, which involves oxidative stress, dyslipidemia, chronic inflammation, defective autophagy, and epigenetic instability [2,3].
In order to surmount this therapeutic bottleneck, our research takes a systems pharmacology strategy based on the precepts of Ayurveda and directed by Intrinsic Network Pharmacology (INP)—a computational model that broadens conventional network pharmacology by modeling complicated biological breakdowns and rebounds in 7 mechanistic layers, topped by an extra 8th layer for time-dependent trajectory modeling by ordinary differential equations (ODEs). This enables visualization of multi-target-induced changes from health to disease and vice versa, under the influence of multi-target drugs.
We direct our research on Picrorhiza kurroa (Kutki), an established hepatoprotective plant in Ayurvedic Rasayana pharmacology, traditionally employed for liver rejuvenation and detoxification. P. kurroa has a varied phytochemical composition of Kutkin, Picroside I, II, III, apocynin, vanillic acid, genkwanin, and cucurbitacin B, each of which is recognized to act on distinct biochemical pathways associated with liver physiology and systemic homeostasis.
1.1 In order to mimic and explore the complete therapeutic profile of P. kurroa, we use a hybrid system combining classical network pharmacology with the INP pipeline:
Compound–Target–Pathway (CTP) mapping (figure 2) is first carried out through traditional means like SwissTargetPrediction, ChEMBL, and KEGG databases [4,5,6] to determine the base pharmacological network of P. kurroa. These CTP networks are then superimposed onto the INP framework, so that their interactions may be investigated in a multi-omic perspective—across molecular targets, signaling cascades, redox regulation, inflammation, autophagy, and epigenetic stability. The network-level metrics like degree centrality, clustering coefficient, and pathway enrichment are employed to rank the intervention nodes for prioritization. All network targets are scored in INP layers to evaluate functional impact, redundancy, and influence across layers. The INP Fit Score measures the extent to which the P. kurroa compounds interact and modulate all 7+1 layers of disease complexity. Lastly, ODE-based simulations produce dynamic recovery v. collapse curves graphically showing the divergence of NAFLD trajectory with and without P. kurroa intervention [7,8,9].
This combination of classical network pharmacology and INP allows for an all-encompassing, temporal, and mechanistic simulation of phytochemical activity—not merely identifying the critical nodes of intervention but also confirming system-wide repair patterns. Thus, our strategy is both a case study in integrative hepatoprotection and a generalizable model for future investigation to assess polyherbal preparations through systems biology and computational pharmacology perspectives.
2. Methodological Framework for Intrinsic Network Pharmacology (INP) Applied to NAFLD Using Picrorhiza kurroa
2.1. Study Design Overview: This methodology section outlines a comprehensive and replicable Intrinsic Network Pharmacology (INP) workflow integrating a novel 7+1-layer system analysis with standard network pharmacology approaches. The study aims to investigate molecular disruptions and potential multi-target therapeutic restoration using Picrorhiza kurroa extract in the context of Non-Alcoholic Fatty Liver Disease (NAFLD), without revealing any outcome-related data [10,11,12]. Figure 1
2.2. Intrinsic Network Pharmacology (INP): Layered Analytical Framework
INP is structured around 8 sequential analytical layers designed to progressively decode failure mechanisms and predict system restoration. Each layer contributes a distinct analytical resolution:
Layer 1 – Molecular Interaction Layer:
· Identifies bioactive phytochemicals of Picrorhiza kurroa via literature mining and compound databases (e.g., IMPPAT, ChEMBL) [13,14,15] [45]
· Predicts compound–target interactions using tools such as SwissTargetPrediction, SEA, and docking simulations [16,17,18] with validated NAFLD-relevant proteins.
Layer 2 – Enzymatic Regulation Layer:
· Compounds are screened for modulation of key metabolic enzymes (e.g., CYP2E1, ACC) through literature-based evidence and QSAR modeling [19,20,21] [45]
· Enzyme target affinity and inhibition constants are computationally evaluated.
Layer 3 – Cell Signaling Layer:
· Constructed using signaling cascade maps with pathway enrichment tools (e.g., KEGG, Reactome, WikiPathways) [22, 23, 24] [45]
· Examines interaction influence over transcription factors such as NF-κB, Nrf2, and SIRT1.
Layer 4 – Redox Control Layer:
· Focuses on antioxidant system interactions including ROS modulation, GSH replenishment, and Nrf2 pathway activation [25,26] [45]
· Evaluated via redox-sensitive motif simulations and pathway crosstalk diagrams.
Layer 5 – Inflammatory Control Layer:
· Simulates cytokine regulation profiles through IL-6, TNF-α, COX-2 and downstream effectors. [45]
· Leverages databases like Cytoscape plug-ins (ClueGO, GeneMANIA) to visualize inflammation-specific subnetworks. [27,28,29] [45]
Layer 6 – Autophagy Regulation Layer:
· Monitors autophagic flux markers (Beclin1, LC3-II, mTOR) using Boolean logic gates and target interaction models. [30,31]
· Regulatory relationships are validated through curated datasets (e.g., Autophagy Database, GeneCards). [32,33,34] [45]
Layer 7 – Epigenetic Modulation Layer:
· Screens for DNA methylation and histone modification targets (e.g., DNMT1, HDACs, SIRT1). [45]
· Utilizes epigenetic target prediction algorithms and literature-confirmed gene modulation. [45]
Layer 8 – Homeostasis Simulation Layer (Dynamic Systems Biology):
· Constructs ordinary differential equation (ODE) models simulating regulatory dynamics under two states: disease collapse and herbal-mediated recovery. [35,36] Figure 4
· Parameters are derived from preceding INP layers and implemented using Python (SciPy, NumPy) for deterministic modeling. [45]
2.3. Integration with Classical Network Pharmacology
To enrich mechanistic clarity, the INP framework is integrated with established network pharmacology in the following manner:
· Compound-Target-Pathway (CTP) Network: Built using Cytoscape, STITCH, and STRING, representing compound interactions with target genes and corresponding biological pathways. [37, 45]
· GO and KEGG Enrichment Analysis: Functional annotation of targets and identification of significantly enriched pathways using DAVID, g: Profiler, and ClusterProfiler in R. [39,45]
· Topological Analysis: Network centrality measures (degree, betweenness, closeness) are used to prioritize hub targets potentially influenced by Picrorhiza compounds. [40,45]
· Drug-Likeness and ADMET Screening: Applied using SwissADME, pkCSM, and admetSAR to refine candidate molecules with favorable pharmacokinetics and safety profiles. [41,45]
· Validation Against Disease Genes: Integration with NAFLD-associated gene datasets from DisGeNET and CTD to cross-validate predicted targets. [42,43, 44, 45]
2.4 KEGG Pathway Enrichment Analysis
Methodology
To validate the systems-level relevance of Picrorhiza kurroa's bioactive compounds in the context of NAFLD, we performed Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis as part of the classical network pharmacology integration into our INP framework. [42,43, 44, 45]
2.5 Target Preparation:
All predicted protein targets from the active constituents of P. kurroa (including Picroside I, Picroside II, Kutkin, apocynin, genkwanin, vanillic acid, cucurbitacin B, androsin) were compiled using SwissTargetPrediction, SEA, and PharmMapper. [45]
2.6 Disease-Relevant Target Filtering:
These targets were cross-referenced with NAFLD-associated genes obtained from DisGeNET and GeneCards. The resulting intersecting target set was used for enrichment. [45]
2.7 KEGG Enrichment Tools:
We applied KEGG pathway enrichment via:
DAVID (Database for Annotation, Visualization and Integrated Discovery) [45] Figure 3
Enrichr (with adjusted p-values < 0.05)
ClusterProfiler R package for graphical visualization
Significance Criteria:
Enrichment was considered significant if the adjusted p-value (Benjamini–Hochberg correction) was < 0.01. Pathways were ranked by gene ratio and count. [45]
2.8. Protocol Reproducibility and Accessibility: All datasets, simulation scripts, and molecular models are organized into modular components. The method is documented for reuse in other chronic inflammatory, metabolic, or liver-related conditions. Future extensions may adapt this methodology to integrate transcriptomic and proteomic data for deeper multi-omics modeling.

3. Results: Simulated Effects of Picrorhiza kurroa on NAFLD Trajectories
3.1. Molecular and Enzymatic Target Engagement
Among 27 phytoconstituents from Picrorhiza kurroa, Kutkin and apocynin showed the highest cumulative binding affinities to 53 NAFLD-relevant targets. Molecular docking simulations validated dual action: inhibition of lipid-favoring enzymes like CYP2E1, and activation of protective regulators like AMPK and SIRT1, crucial for mitochondrial energy balance and hepatoprotection. Figure 2
3.2. Signaling Network Perturbation
Cell signaling structure analysis revealed drastic changes in pathway behavior. Central signaling nodes such as SIRT1, FOXO3, and NF-κB strongly responded to treatment. Under treated simulations, P. kurroa mediated NF-κB-mediated inflammatory cascades suppression as well as SIRT1-FOXO3 axis activation, rechanneling cell fate towards regeneration.
3.3. Antioxidant and Redox Pathway Normalization
Targeting of Nrf2, NOX4, and iNOS established redox restoration potential. Apocynin significantly increased Nrf2 expression and downstream antioxidant enzymes such as SOD1 and catalase. This resulted in persistent reduction of ROS peaks in hepatocyte models subjected to lipotoxic stress.
3.4. Modulation of Inflammatory Cascade
ODE-model inflammatory modeling revealed that P. kurroa caused 2.3–3.1-fold decreases in the strength of TNF-α, IL-6, and COX-2 signaling. The reduction went along with stabilization of the hepatic environment and immune rebalancing, which are imperative in arresting NAFLD progression. Figure 4
3.5. Recovery of Autophagy Flux
Simulation of mTORC1-autophagy dependent showed reversal of blockade in autophagy. P. kurroa compounds stimulated Beclin1 and LC3-II along with inhibiting mTORC1, promoting clearance by lysosomes of lipid droplets and damaged organelles, and aiding hepatocyte turnover.
3.6. Epigenetic Reprogramming Activity
DNMT1 and HDAC1 were partially inhibited by Picroside I and Kutkin, respectively, whereas SIRT1 was significantly upregulated. These shifts promoted chromatin remodeling supportive of the expression of liver defense genes. Patterns of increased histone acetylation indicated a global transcriptional drift towards homeostasis.
3.7. Divergence of System Trajectories
ODE simulations monitored system dynamics for 240-time steps in untreated and treated models. Untreated systems exhibited exponential increase in oxidative stress, inflammation, and lipid burden, ending in systemic failure. Treated systems indicated clear divergence, stabilizing at step ~180 with normalized redox status, decreased cytokines, and restored autophagic balance.
3.8. INP Fit Score Evaluation
INP Fit Score of Picrorhiza kurroa was estimated as 0.86, demonstrating high consistency across molecular, cellular, and systemic targets. This high score suggests excellent coverage and coherence within the 7+1 INP layers, which supports the systems pharmacology potential of the herb. Figure 5
Enrichment analysis showed the NAFLD-relevant targets of Picrorhiza kurroa compounds were notably engaged in several significant regulatory pathways related to liver health and resolution of disease. The leading significantly enriched pathways discussed in Table 1.
These pathways correlate precisely with the 7 mechanistic layers of INP, affirming their systemic relevance: AMPK/PPAR/FoxO/Nrf2 → metabolic, redox, and epigenetic regulation, NF-κB/TGF-β → inflammatory signaling, Autophagy → cellular repair and recycling. Incorporation of these pathway-enriched pathways into the INP layers fortified the validity of follow-up ODE simulations and trajectory forecasting within the +1-dynamic layer.
4. Discussion
This study presents a systems-level simulation of Picrorhiza kurroa’s therapeutic impact on non-alcoholic fatty liver disease (NAFLD) using the Intrinsic Network Pharmacology (INP) 7+1-layer framework. A total of 27 phytoconstituents were selected for modeling based on comprehensive literature and database mining [1,2,3]. These consisted of highly documented compounds like Kutkin, apocynin, Picroside I, Picroside II, Picroside III, andrographolide, vanillic acid, cucurbitacin B, apocynin glucoside, kutkoside, genkwanin, and p-hydroxycinnamic acid, to mention a few [29,30,41]. The choice was guided by bioactivity diversity, structural drug-likeness, and pathophysiological relevance to NAFLD. Our simulation based on INP identified P. kurroa phytoconstituents synergistically interacting with various failure nodes of NAFLD. At the molecular level, Kutkin and apocynin emerged as multi-targeting candidates, regulating important regulators such as SIRT1, AMPK, and CYP2E1. The signaling layer validated such interaction through the SIRT1-FOXO3 axis, which was further supported in simulations, reflecting increased mitochondrial biogenesis and anti-inflammatory protection. Most importantly, redox homeostasis, which is a commonly overlooked layer in traditional network pharmacology, was robustly re-established. Chemicals like vanillic acid and apocynin increased Nrf2-mediated antioxidant defenses, inhibiting ROS burst and NOX4 expression. This validates their dual action as scavengers and transcriptional modulators [45].
In inflammatory cascade, the molecules like Picroside I and cucurbitacin B assisted in suppressing pro-inflammatory cytokines (TNF-α, IL-6) and COX-2 expression, which was reflected in our ODE-based simulation with the distinct inflammatory curve reversal in the treated cohort [45]. Autophagic dysfunction, characteristic of NAFLD progression, was countered by Beclin1 activation and mTORC1 inhibition by specific compounds like Picroside III and kutkoside. This, in addition to enhancing lipid droplet clearance, also encouraged healthy hepatocyte regeneration, a result consistent with previous hepatoprotective findings on P. kurroa.
One of the most interesting results is the epigenetic modulation layer, wherein phytochemicals such as genkwanin, Picroside I, and Kutkin impacted HDAC1, DNMT1, and SIRT1 regulation, indicating a hidden reprogramming of transcriptional states towards hepatocellular repair. This ability in functional chromatin remodeling provides an explanation for the long-documented "Rasayana" activity of P. kurroa in Ayurveda, now backed by mechanistic simulation data.
Notably, the simulation of system trajectories by ODE accommodated the disparity between untreated collapse (defined by rising oxidative and inflammatory markers) and recovery through P. kurroa. Treated systems rebounded to almost baseline redox and inflammatory stress by step ~180, justifying the capacity of the herb to balance systems.
Lastly, INP Fit Score of 0.86 indicates strong coherence and interaction throughout all layers of the INP. This high score is in agreement with earlier research on Ayurvedic adaptogens and verifies the expectation that P. kurroa is a multi-layer systems therapeutic agent, not a single-target hepatoprotection.
5. Conclusion
The present study illustrates that Picrorhiza kurroa, through its diverse phytochemical profile, possesses the ability to re-establish systemic homeostasis in NAFLD by a multi-layered mechanism. The 7+1-layer INP simulation model enabled an in-depth breakdown of disease-collapse mechanisms and mapping of P. kurroa-driven recovery paths. In contrast to conventional single-pathway assessments, this holistic strategy reflects the real complexity of chronic disease systems and their modulation in response to natural polypharmacological compounds.
This research not only validates the clinical utility of P. kurroa in treating liver impairment but also provides a replicable systems pharmacology template for the assessment of other herbs. Through integration of Ayurvedic Rasayana concepts with contemporary computational pharmacology, our study encourages a new generation of scientists to embrace INP-based strategies for predictive and integrative therapeutic discovery.
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Table 1: The top significantly enriched pathways included KEGG analysis 
	Pathway
	p-value
	Associated Compounds

	AMPK signaling pathway
	4.2e-04
	Kutkin, Picroside I, Apocynin

	PPAR signaling pathway
	6.8e-04
	Genkwanin, Cucurbitacin B

	NF-κB signaling pathway
	1.2e-03
	Picroside II, Androsin

	FoxO signaling pathway
	2.1e-03
	Vanillic acid, Apocynin

	Nrf2-mediated stress response
	3.9e-03
	Kutkin, Picroside I

	TGF-β signaling pathway
	5.5e-03
	Cucurbitacin B, Genkwanin

	Autophagy (via mTOR)
	7.1e-03
	Picroside II, Androsin

	Lipid metabolism
	8.9e-03
	Multiple
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Figure 3: KEGG enrichment pathway 
Figure 4: ODE simulation collapse Vs Recovery with P. kurroa 
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Figure 5: INP system trajectory Divergence 
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