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DIVERSITY OF SELECTED SORGHUM GENOTYPES USING AGRO-MORPHOLOGICAL TRAITS 



ABSTRACT

	
[bookmark: _Hlk200721543][bookmark: _Hlk199326330]Sorghum (Sorghum bicolor) is a very important cereal crop cultivated globally, primarily in arid and semi-arid regions. It ranks fifth among the most important cereal crops globally, after wheat, rice, maize, and barley. Despite its crucial role in food security and climate resilience in arid and semi-arid regions, sorghum production remains suboptimal, with yields consistently falling below the crop’s genetic potential. Understanding its morphological diversity is essential for effective breeding programs and genetic resource conservation. This study aimed to determine valuable morphological variation among selected sorghum genotypes against released varieties using a diverse set of traits and their correlations. Experiments were laid out using Randomized complete block design with three replications13 genotypes sourced from University of Eldoret and three checks from Kenya Seed Company. The genotypes were grown in Endebess and Sigor for one season and evaluated based on morphological traits. Principal component analysis revealed three most important PCs that contributed 81.78%, 15.33% and 1.5% of the total variation, respectively. Plant height (0.889) was the trait that contributed most to the variation in the first PC. Number of days to harvest (0.814) contributed most to the variation in the second PC, whereas leaf length (0.842) was the largest contributor to the variation observed in the third PC. Correlation analysis showed significant positive relationships between 50% days to emergence to 50% days to flowering and days to maturity (r=0.7 and r=0.9) respectively suggesting that these traits can be used as selection criteria in breeding programs. The frequency distribution analysis indicat8ed a high occurrence of pigmented leaves (93.75%) and brown grain color (68.75%), reflecting the natural variability within the studied population. The phenotypic evaluation of sixteen sorghum genotypes revealed significant agro-morphological diversity, confirming the genetic variability. These findings support informed selection and genetic improvement to boost yield and stress resilience in sorghum breeding for Kenya and similar regions.
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1. INTRODUCTION 
Sorghum (Sorghum bicolor (L.) Moench) is a cereal crop of immense global importance, particularly in arid and semi-arid regions (Kazungu et al., 2023). Believed to have been domesticated more than 5,000 years ago in northeastern Africa, Sorghum has since spread to all corners of the world, adapting to a wide range of environmental conditions (Burgarella et al., 2021). Today, Sorghum (Sorghum bicolor) is ranked fifth in world cereal crop production after maize, wheat, rice, and barley (Ngidi et al., 2024). Its genetic versatility has enabled sorghum to support millions of livelihoods, from smallholder farmers in Africa and Asia to commercial producers in the United States and Australia (Pereira & Hawkes, 2022).
Sorghum is vital for food security in many developing countries, particularly where rainfall is low and soils are poor. It serves as a staple food grain for more than 500 million people, providing essential calories and nutrients (Khalifa & Eltahir, 2023). In addition to its role as a food crop, sorghum is an important source of fodder for livestock (Julian et al., 2025) especially in mixed farming systems. Its adaptability also makes it suitable for industrial purposes, including ethanol production, biodegradable packaging materials, and brewing industries (Xiao et al., 2021).
Despite its crucial role in food security and climate resilience in arid and semi-arid regions, sorghum production remains suboptimal, with yields consistently falling below the crop’s genetic potential (Mwamahonje et al., 2024).This persistent yield stagnation is largely attributed to lack of Identification of higher yielding varieties and lack of improved research in the cultivated varieties, making them highly vulnerable to emerging pests, diseases, and increasing environmental stresses exacerbated by climate change (Allan et al., 2020). To develop superior cultivars that are high-yielding, drought-tolerant, and nutritionally enhanced, there is a critical need to harness the full spectrum of genetic diversity available within cultivated sorghum (Akinola et al., 2020). Understanding of the genetic architecture and variation among breeding lines and commercial varieties will not only support breeding for resilience and productivity but also ensure long-term sustainability of sorghum improvement efforts.
This study is therefore justified by the need to identify and quantify genetic diversity among selected sorghum breeding lines and varieties, strengthen variety protection through characterization and enhance the overall efficiency and impact of sorghum breeding programs through informed, data-driven selection. The outputs will ultimately support food and income security for smallholder farmers in Kenya and similar dryland ecosystems.


2. MATERIAL AND METHODS
[bookmark: _Toc198135732]2.1 Experimental materials/Plant Materials
[bookmark: _Toc199174723]The study comprised of 16 sorghum genotypes which were selected for their differences in grain colour and different sources constituting of research institutions and Universities in Kenya. These materials were selected to ensure a comprehensive assessment of genetic diversity, agronomic performance, and adaptability across environments. The inclusion of released varieties provided a benchmark for evaluating the performance of advanced lines, while the elite lines represented potential candidates for release or use as parental materials in breeding
[bookmark: _Toc163823404][bookmark: _Toc198135733]2.2 Experimental sites
[bookmark: _Toc199174724][bookmark: _Hlk201614262][bookmark: _Toc163823405][bookmark: _Toc198135734]The field screening of the selected sorghum genotypes was conducted in West Pokot County (Sigor) and Trans Nzoia County (Endebess) agro-ecological zones in Kenya. These sites were chosen to capture a broad spectrum of environmental conditions that could influence the performance of sorghum genotypes, particularly in terms of morphological traits. West Pokot (Sigor) is situated at an altitude of 1200–1600 meters above sea level (ASL), with geographical coordinates 35°28'10" E longitude and 1°29'17" N latitude. The area receives a relatively low annual average rainfall of 450 mm, characteristic of arid and semi-arid lands (ASALs). The soils are predominantly sandy loam with a reddish-brown coloration, and the mean annual temperature is approximately 25.02°C. Trans Nzoia (Endebess) is located at a higher altitude range of 1600–1800 m ASL, at 34°51'24" E longitude and 1°4'26" N latitude. The region receives a higher annual average rainfall of about 1000 mm, and is characterized by black cotton soils, which are generally fertile and have good moisture retention capacity. The mean annual temperature in Endebess is lower, at approximately 20.47°C. (NEMA, 2013).  
2.3 Experimental design and field management
The experiment was laid out in Randomized Complete Block Design (RCBD) replicated three times. Each experimental plot area consisted of 4 rows of 2.5 m length with 0.6 m spacing between rows (inter-row spacing) and 0.20 m between plants (intra-row spacing). The total area of each plot having a size of 6m2. There was a 1m2 distance between each plot. Fertilizer was administered at a rate of 50 kg/acre (Ayako et al., 2021).To avoid direct contact with the seed, fertilizer was spread at the time of seed sowing and thoroughly mixed with the soil. Urea was applied as a side dressing after 35 to 40 days of seedling emergence (knee height stage). To maintain plant spacing and balance plant density, thinning was done three weeks following planting.
[bookmark: _Toc198135735][bookmark: _Toc148980240] 2.4 Data collection
Data was collected on morphological characters used to characterize sorghum genotypes according to descriptors for sorghum (Sorghum bicolar (L.) Moench)(IBPGR & ICRISAT, 1993). These characters included leaf midrib colour, panicle compactness,  glume colour, grain colour,  leaf orientation, glume covering, awns, threshability, plant height, 100-seed weight, number of days to emergence, flowering and harvest, number of leaves,   seed size, plant dry weight, panicle length and width,  grain  yield and plant dry weight.

[bookmark: _Toc198135736][bookmark: _Toc163823406]2.5. Data analysis
Using GenStat statistical software 14th Edition, data on qualitative and quantitative traits were analyzed at 5% level of significance. The significant differences among the sorghum genotypes were tested using analysis of variance (ANOVA). The average variations between the experimental genotypes as well as the relationships between these two variables were tested using Fishers’ test to ascertain whether the observed differences were significant.  Correlation Matrices, first, second and third principal component (PCA) were performed. The frequency distribution of the traits on each genotype were also performed and ranked (Gebre et al., 2025)
3. RESULTS
[bookmark: _Toc198135737]3.1 Mean response of sorghum genotypes in two locations
Data of the quantitative traits was analyzed using Analysis of Variance (ANOVA) and results are indicated in Table 1,2 & 3.  The findings demonstrate the presence of significant genetic variability among the genotypes, as well as environmental influence on trait performance. Highly significant differences (p≤0.001) were noted among the sorghum genotypes in seed weight, 50% days to flowering, days to harvest, grain yield, leaf length, leaf width, number of leaves, panicle length, panicle width, plant dry weight and plant height. 
At the Endebess site, grain yield exhibited the highest genotypic variation among the evaluated sorghum genotypes. Notably, genotype N57 recorded the highest grain yield (3.10 t/ha), while Kalatur registered the lowest yield (0.35 t/ha). Analysis also revealed significant differences in plant height among genotypes (p < 0.001), with T30B being the tallest (158.4 cm) and E1 the shortest (85.4 cm).
Foliage traits including leaf length, leaf width, and number of leaves per plant also showed significant variation among the genotypes. E1291 recorded the longest leaves (67.87 cm), whereas Kalatur exhibited the shortest (36.13 cm). Leaf width was greatest in E1 (8.33 cm) and narrowest in Kalatur (3.29 cm). The number of leaves per plant ranged significantly, with E95A producing the highest number (10.6 leaves), while Kalatur had the fewest (5.33 leaves).
Panicle traits varied significantly across genotypes as well. The longest panicles were observed in E5 (25.93 cm), while N57 had the shortest (18.93 cm). Significant differences (p < 0.001) were also noted in plant dry weight, where E1291 recorded the highest weight (1.93 kg), and Foehn the lowest (0.73 kg). Stem thickness varied significantly across genotypes, with T30B exhibiting the thickest stems (7.28 cm) and N68 the thinnest (5.06 cm).
Phenological traits, including days to emergence, flowering, and maturity, also displayed highly significant variation (p < 0.001). E1291 and C26 emerged earliest (21 days after sowing), while E117B emerged latest (28 days). The shortest duration to flowering was recorded in Foehn, whereas the longest was noted in both E118B and E117B (97.67 days). Maturity duration was longest in T30B, MUK 60, and Gadam (174.3 days), and shortest in E118B (168.3 days). Additionally, 100-seed weight showed highly significant differences, with Foehn recording the highest weight (1.5 g) and E117B the lowest (0.65 g).
Similarly, at Sigor, highly significant differences (p ≤ 0.001) were observed among sorghum genotypes in grain yield, leaf width, plant height, and plant dry weight. Genotype E118B achieved the highest grain yield (3.31 t/ha), while Kalatur again recorded the lowest yield (1.017 t/ha), demonstrating poor performance across both sites. Plant height varied significantly among genotypes, with N57 attaining the greatest height (246.4 cm), whereas Foehn was the shortest (139.9 cm). Plant dry weight also differed significantly, with Kalatur surprisingly recording the highest weight (1.7 kg), while MUK 60 had the lowest (0.77 kg). For leaf width, E95A recorded the broadest leaves (13.22 cm), whereas Kalatur had the narrowest (5.27 cm), consistent with its generally poor vegetative performance.
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[bookmark: _Hlk201599909]Mean comparisons between the two environments showed that Sigor recorded higher mean grain yield (2.01 t ha⁻¹) compared to Elgon Downs (1.73 t ha⁻¹). Similarly, plants at Sigor were taller (190.3 cm) than those at Elgon Downs (120.7 cm), with larger leaf dimensions (LL: 69.27 cm vs. 55.22 cm; LW: 9.28 cm vs. 6.04 cm). Moreover, sorghum genotypes matured earlier at Sigor (105.96 days) compared to Elgon Downs (173.25 days). Sigor recorded the earliest emergence (DE: 8.85 vs. 23.75) respectively. Sigor site recorded the highest plant dry weight (1.28 vs 1.15) respectively. These findings point to both substantial genetic variability and pronounced environmental influence on sorghum trait expression.

____________________________________________________________________________________________




[bookmark: _Hlk201617572]
Table 1: Mean of thirteen quantitative traits of the sixteen selected sorghum genotypes evaluated at Endebess
	[bookmark: _Hlk200746549][bookmark: _Hlk201617651][bookmark: _Hlk201083354]Genotype
	100-SDW
	DE
	DF
	DH
	GYLD
	LL
	LW
	NL
	PAL
	PAW
	PDW
	PH
	STK

	E117B
	0.65a
	28fg
	97.67h
	169ab
	1.17cd
	56.4cde
	7.3gh
	9.2efg
	24.6def
	7.67bcd
	1.43ef
	101.1b
	6.43de

	N68
	0.67a
	24.33cd
	96.67fgh
	172.7de
	1.82efg
	58.87cde
	6.47fg
	8.93efg
	19.13ab
	5.47a
	0.97abcd
	144.8d
	5.06a

	T30B
	0.7ab
	22.67abc
	93.33defg
	174.3efg
	2.17gh
	62.13ef
	5.33bc
	8.67def
	19.4abc
	8.27cde
	1.2cdef
	158.4ef
	7.28f

	E95A
	0.733abc
	23bc
	92.67def
	174ef
	1.94fgh
	61.87def
	6.87fgh
	10.6h
	25.33ef
	8.4de
	1.37ef
	118.5c
	6.44de

	N57
	0.733abc
	23bc
	92de
	174.7fg
	3.10jk
	55.27cde
	6.4efg
	9.07efg
	18.93a
	7.07bcd
	0.87abc
	146.9de
	5.78abcd

	T53B
	0.77abc
	22.67abc
	92de
	174.3efg
	1.41de
	57.07cde
	5.33bc
	7.8cd
	20.47abc
	9.27e
	1.17bcdef
	137.3d
	5.66abc

	E5
	0.8abc
	22.67abc
	91.67cde
	174.3efg
	3.57k
	54.8cd
	6.27cdef
	8.53de
	25.93ef
	7.6bcd
	1.53f
	108.2bc
	5.98bcde

	E1291(check)
	0.83abc
	21a
	85b
	176g
	2.36hi
	67.87f
	7.47hi
	9.93gh
	26.27f
	7.73bcd
	1.93g
	171.3f
	6.06bcde

	C26
	0.9bc
	21a
	92de
	176g
	2.40hi
	66.78f
	5.47bcde
	9.13efg
	22.53bcde
	8.13cde
	1.27def
	117.4c
	6.4cde

	E1
	0.9bc
	26.67ef
	95efgh
	170.3bc
	1.55def
	61.2def
	8.33i
	9.67fgh
	24.93def
	8.2cde
	0.93abcd
	85.4a
	6.6ef

	E118B
	0.9bc
	28.67g
	97.67h
	168.3a
	0.22a
	55.04cde
	6.53fgh
	8.93efg
	22.88cdef
	6.87abc
	0.8ab
	110.8bc
	5.56ab

	MUK-60
	0.93c
	22.67abc
	92de
	174.3efg
	2.67ij
	56.27cde
	6.33def
	9.33efg
	21.8abcd
	6.53ab
	1.37ef
	105.2bc
	6.39cde

	Kari Mtama 1(check)
	1.33d
	23.33bc
	90cd
	173.7ef
	0.6ab
	53.47c
	5.31b
	7.27bc
	25.4ef
	7.6bcd
	1.13bcde
	116.1c
	5.89bcde

	Kalatur
	1.43d
	25.33de
	87.67bc
	171.7cd
	0.35ab
	36.13a
	3.29a
	5.33a
	24.53def
	7.33bcd
	0.73a
	110.8bc
	5.94bcde

	Gadam(check)
	1.47d
	22.67abc
	80.33a
	174.3efg
	0.75bc
	43.57b
	3.34a
	6.33ab
	19.4abc
	6.6ab
	0.99abcd
	112.1bc
	5.78abcd

	Foehn
	1.5d
	23bc
	77a
	174ef
	1.54def
	36.87ab
	5.42bcd
	5.67a
	24.73def
	7.87bcde
	0.73a
	112.1bc
	6.5de

	Means
	0.95
	23.75
	90.77
	173.25
	1.73
	55.22
	6.04
	8.40
	22.89
	7.54
	1.15
	120.70
	6.11

	F pr.
	**
	**
	**
	**
	**
	**
	**
	**
	**
	**
	**
	**
	**

	L.S.D 5%
	0.23
	1.83
	4.05
	1.83
	0.48
	7.17
	0.95
	1.01
	3.50
	1.48
	0.38
	13.37
	0.76

	S.E
	0.14
	1.10
	2.43
	1.10
	0.29
	4.30
	0.57
	0.61
	2.10
	0.89
	0.23
	8.02
	0.46

	CV%
	14.40
	4.60
	2.70
	0.60
	16.70
	7.80
	9.40
	7.20
	9.20
	11.80
	19.50
	6.60
	7.50



* Significant at 5% level (p ≤ 0.05), ** = Highly significant (p ≤ 0.01), NS = Not significant (p ≥ 0.05 where; SDW- 100-seed weight (g), DEM- 50% days to emergence, DF- 50% days to flowering, GYLD-Grain yield (tha-1), LL- Leaf length (cm), LW-Leaf width (cm), NLVS- Number of leaves, PAL- Panicle length (cm), PAW- Panicle width (cm), PDW- Plant dry weight (tha-1), PHT- Plant height (cm), STM-T- Stem thickness (cm), LSD- Least Significant Difference, Fpr- F Probabilities, CV%- percentage of coefficient of variation. *Means with the same letter are not significantly different
[bookmark: _Hlk202626892]Table 2: Mean of thirteen quantitative traits of the sixteen selected sorghum genotypes evaluated at Sigor

	Genotype 
	SDW
	DE
	DF
	DH
	GYLD
	LL
	LW
	NLVS
	PAL
	PAW
	PDW
	PH
	STK

	N68
	0.70ᵃ
	8.33ab
	74ᵃᵇ
	111ᵃᵇ
	1.77ᵇᶜᵈ
	65ᵃᵇᶜ
	9.34ᵇᶜ
	10.67ᵃ
	23.67ᵃᵇ
	8.6ᵇᶜ
	1.4ᵇᶜ
	206.2ᵈᵉ
	5.6ᵃᵇ

	E117B
	0.73ᵃᵇ
	8.00ab
	85ᵇ
	108ᵃᵇ
	2.72ᶠᵍ
	70.75ᵃᵇᶜᵈ
	9.78ᵇᶜᵈ
	12.44ᵃ
	23.08ᵃᵇ
	8.3ᵇᶜ
	1.47ᵇᶜ
	243.8ᶠᵍ
	6.61ᵃᵇᶜ

	T53B
	0.83ᵃᵇᶜ
	9.00ab
	69.33ᵃᵇ
	98ᵃ
	1.02ᵃ
	65.67ᵃᵇᶜ
	11.41ᵈ
	11.17ᵃ
	28.42ᵇ
	6.6ᵃᵇ
	1.67ᶜ
	184.1ᵇᶜ
	8.14ᶜ

	E1
	0.83ᵃᵇᶜ
	9.00ab
	72.33ᵃᵇ
	108.7ᵃᵇ
	1.34ᵃᵇ
	73.58ᶜᵈ
	9.28ᵇᶜ
	10.25ᵃ
	22.42ᵃᵇ
	6.53ᵃᵇ
	1.45ᵇᶜ
	195.6ᶜᵈ
	5.24ᵃ

	E95A
	0.87abc
	10ab
	77ab
	101ab
	1.5abc
	73.5cd
	9.56bc
	13.22a
	19.42a
	7.73bc
	0.87a
	224.6ef
	6.46abc

	N57
	0.87abc
	8.67ab
	80.67ab
	105ab
	2.592ef
	68.47abcd
	10.25bcd
	11.92a
	24.25ab
	8.13bc
	1.5bc
	246.4g
	6.73abc

	C26
	0.97abcd
	8.67ab
	77.33ab
	98.3a
	2.323def
	73.78cd
	10.56cd
	11.94a
	19.42a
	8.23bc
	1.53c
	170.9b
	6ab

	E118B
	0.97abcd
	7.67a
	75.33ab
	134.7c
	3.312g
	67.08abcd
	10.56cd
	11.75a
	19.92a
	7.47abc
	1.2b
	173.6b
	6.67abc

	GADAM(check)
	0.97abcd
	7.67a
	69.33ab
	112.7ab
	2.108cdef
	67.58abcd
	5.73a
	11.89a
	23.87ab
	8.4bc
	1.4bc
	174.3b
	7.47bc

	E5
	1bcd
	9.33ab
	69.33ab
	101ab
	2.383def
	71.75bcd
	9.17bc
	11.33a
	23.67ab
	6.53ab
	0.8a
	179.3bc
	6.4abc

	Kari Mtama 1(check)
	1bcd
	7.67a
	77.67ab
	102ab
	2.032cde
	72.33bcd
	9.97bcg
	10.92a
	22.93ab
	7.7bc
	1.47bc
	182.4bc
	5.98ab

	Kalatur
	1.07cd
	10.33ab
	75.67ab
	99a
	1.017a
	71.58abcd
	5.27a
	12.17a
	25.92ab
	7.2abc
	1.7c
	183.6bc
	6.5abc

	Foehn
	1.17d
	9.67ab
	60.33a
	93a
	1.873bcd
	65.64abc
	8.6b
	10.75a
	23.53ab
	5.53a
	0.87a
	139.9a
	5.42a

	T30B
	1.17d
	10.67ab
	70ab
	106.7ab
	2.087cde
	63.75ab
	9.41bc
	11a
	24.17ab
	9c
	0.87a
	197.7cd
	5.52a

	E1291(check)
	1.2d
	10.67ab
	69.67ab
	121.7bc
	1.507abc
	62.75a
	9.53bc
	10.56a
	27.13b
	6.87ab
	1.6c
	195.1cd
	6.27abc

	MUK-60
	1.2d
	8.33ab
	70.33ab
	94.7a
	2.303def
	75.17d
	10bcd
	12.22a
	24.15ab
	7.13abc
	0.77a
	147a
	7.03abc

	Means
	0.97
	8.85
	73.3
	106
	1.993
	69.27
	9.28
	11.51
	23.5
	7.5
	1.284
	190.3
	6.38

	F pr.
	*
	NS
	NS
	NS
	**
	NS
	**
	NS
	NS
	NS
	**
	**
	NS

	L.S.D 5%
	0.28
	2.69
	19.08
	21.98
	0.61
	8.98
	1.81
	3.29
	6.86
	2.07
	0.31
	19.87
	1.92

	S.E
	0.17
	1.62
	11.44
	13.18
	0.37
	5.38
	1.08
	1.98
	4.12
	1.24
	0.19
	11.92
	1.15

	CV%
	17.30
	18.20
	15.60
	12.40
	18.40
	7.80
	11.70
	17.20
	17.50
	16.60
	14.40
	6.30
	18.10


[bookmark: _Hlk201617962]
[bookmark: _Hlk202473973]* Significant at 5% level (p ≤ 0.05), ** = Highly significant (p ≤ 0.01), NS = Not significant (p > 0.05) Where; SDW- 100-seed weight (g), DEM- 50% days to emergence, DF- 50% days to flowering, GYLD-Grain yield (tha-1), LL- Leaf length (cm), LW-Leaf width (cm), NLVS- Number of leaves, PAL- Panicle length (cm), PAW- Panicle width (cm), PDW- Plant dry weight (tha-1), PHT- Plant height (cm), STM-T- Stem thickness (cm), LSD- Least Significant Difference, Fpr- F Probabilities, CV%- percentage of coefficient of variation. *Means with the same letter are not significantly different

Table 3: Mean response of the selected sorghum genotypes at the two sites

	Genotype
	100- SDW
	DE
	DF
	DH
	GYLD
	LL
	LW
	NL
	PAL
	PAW
	PDW
	PH
	STK

	Foehn
	1.33a
	16.33abc
	68.67d
	133.50c
	1.71ef
	51.25e
	7.01b
	8.21d
	24.13ab
	6.70b
	0.80e
	113.60g
	5.96ab

	Kalatur
	1.25ab
	17.83ab
	81.67abc
	135.30c
	0.69h
	53.86e
	4.28c
	8.75cd
	25.23ab
	7.27ab
	1.21bcd
	147.20e
	6.22ab

	GADAM(check)
	1.22ab
	15.17c
	74.83cd
	143.5abc
	1.42efg
	55.58de
	4.54c
	9.11bcd
	21.63b
	7.50ab
	1.19bcd
	143.20e
	6.62ab

	Kari Mtama 1(check)
	1.167abc
	15.50bc
	83.83abc
	137.8bc
	1.35fg
	62.90bc
	7.64ab
	9.09bcd
	24.17ab
	7.65ab
	1.30bc
	149.20de
	5.93ab

	MUK-60
	1.07bcd
	15.50bc
	81.17abc
	134.50c
	2.49b
	65.72abc
	8.17ab
	10.78abc
	22.98ab
	6.83b
	1.07cd
	126.10f
	6.71a

	E1291(check)
	1.02cd
	14.83c
	77.33bcd
	148.80ab
	1.93cd
	65.31abc
	8.50a
	10.25abc
	26.70a
	7.30ab
	1.77a
	183.20b
	6.16ab

	C26
	0.93de
	14.83c
	84.67abc
	137.20bc
	2.36b
	70.28a
	8.01ab
	10.54abc
	20.98b
	8.18ab
	1.40b
	144.20e
	6.20ab

	E118B
	0.93de
	18.17a
	86.33ab
	151.50a
	1.79cde
	61.06bcd
	8.55a
	10.34abc
	21.40b
	7.17ab
	1.00de
	142.20e
	6.11ab

	T30B
	0.93de
	16.67abc
	81.67abc
	140.50abc
	2.16bc
	62.94bc
	7.99ab
	9.83bcd
	21.78b
	8.63a
	1.03cde
	178.10b
	6.40ab

	E5
	0.90de
	16abc
	80.50abc
	137.70bc
	2.98a
	64.41abc
	7.72ab
	9.93abcd
	24.80ab
	7.07b
	1.17bcd
	143.80e
	6.19ab

	E1
	0.87def
	17.83ab
	83.67abc
	139.50abc
	1.47efg
	67.39ab
	8.81a
	9.96abcd
	23.68ab
	7.37ab
	1.18bcd
	140.50e
	5.92ab

	E95A
	0.80ef
	16.50abc
	84.83abc
	137.50bc
	1.72cdef
	67.68ab
	8.21ab
	11.91a
	22.38ab
	8.07ab
	1.12cd
	171.50bc
	6.45ab

	N57
	0.80ef
	15.50bc
	86.33ab
	139.80abc
	2.89a
	61.87bcd
	8.33a
	10.49abc
	21.59b
	7.60ab
	1.18bcd
	196.70a
	6.26ab

	T53B
	0.80ef
	15.83abc
	80.67abc
	136.20bc
	1.21g
	60.23cd
	8.38a
	9.48bcd
	24.44ab
	7.93ab
	1.42b
	160.70cd
	6.90a

	E117B
	0.69f
	18a
	91.33a
	138.50bc
	1.94cd
	63.58abc
	8.53a
	10.82ab
	23.84ab
	7.98ab
	1.45b
	172.40bc
	6.52ab

	N68
	0.68f
	16.33abc
	85.33abc
	141.80abc
	1.79cde
	61.93bcd
	7.91ab
	9.80bcd
	21.40b
	7.03b
	1.18bcd
	175.50b
	5.33b

	Mean
	0.96
	16.30
	82.05
	139.60
	1.87
	62.25
	7.66
	9.96
	23.19
	7.52
	1.22
	155.50
	6.24

	Fpr
	**
	**
	NS
	**
	**
	**
	**
	*
	*
	**
	**
	**
	*

	L.S.D
	0.25
	2.85
	13.28
	15.04
	0.55
	8.31
	1.48
	2.4
	5.34
	1.83
	0.34
	16.54
	1.60

	S.E
	0.15
	1.75
	8.14
	9.21
	0.34
	5.09
	0.91
	1.47
	3.27
	1.12
	0.21
	10.13
	0.98

	CV%
	15.8
	10.7
	9.9
	6.6
	18
	8.2
	11.9
	14.8
	14.1
	14.9
	17.2
	6.5
	15.7



** Highly significant (p ≤ 0.01), * = Significant (0.01 < p ≤ 0.05), NS = Not significant (p > 0.05) Where; SDW- 100-seed weight (g), DEM- 50% days to emergence, DF- 50% days to flowering, GYLD-Grain yield (tha-1), LL- Leaf length (cm), LW-Leaf width (cm), NLVS- Number of leaves, PAL- Panicle length (cm), PAW- Panicle width (cm), PDW- Plant dry weight (tha-1), PHT- Plant height (cm), STM-T- Stem thickness (cm), LSD- Least Significant Difference, Fpr- F Probabilities, CV%- percentage of coefficient of variation. *Means with the same letter are not significantly different.
3.2 Principal component analysis 
[bookmark: _Hlk194319705]The quantitative data were subjected to principal component analysis (PCA), which revealed that the three most important PCs contributed PC1 (81.78%), PC2 (15.33%) and PC3 (1.5%) of the total variation. Plant height (0.889) was the trait that contributed most to the variation in the first PC. Number of days to harvest (0.814) contributed most to the variation in the second PC, whereas leaf length (0.842) was the largest contributor to the variation observed in the third PC.
[bookmark: _Toc199174728]Table 4: A factor loading of the quantitative morphological traits in sixteen sorghum genotypes evaluated across two locations showing most important PCs
	Factor loadings

	Traits
	PC1
	PC2
	PC3

	%100_SDW_g
	-0.001 
	-0.005 
	-0.015 

	DE
	-0.103 
	0.119 
	0.055 

	DF
	-0.064 
	0.346 
	0.491 

	DH
	-0.426 
	0.814 
	-0.069 

	GYLD_t
	0.005 
	0.002 
	0.031 

	LL
	0.109 
	-0.090 
	0.842 

	LW
	0.028 
	-0.027 
	0.106 

	NL
	0.027 
	-0.005 
	0.116 

	PAL
	-0.006 
	-0.044 
	-0.070 

	PAW
	0.004 
	0.020 
	0.017 

	PDW
	0.003 
	0.005 
	0.013 

	PH
	0.889 
	0.440 
	-0.102 

	STK
	0.002 
	-0.002 
	0.006 

	% variation
	81.780 
	15.330 
	1.500 

	Latent roots
	388506.000 
	72840.000 
	7114.000 


[bookmark: _Toc198135739]*SDW-seed weight, DE- 50% days to emergence, DF- 50% days to flowering, GYLD- Grain yield, LL- leaf length, LW- Leaf width, NL- Number of leaves, PAL- Panicle length, PAW- Panicle width, PDW- Plant dry weight, PH- Plant height. 


[bookmark: _Hlk187932368]3.3 Combined Spearman’s rank correlation analysis of qualitative and quantitative traits 
Thirteen important qualitative traits and fourteen quantitative traits were analyzed using Spearman’s rank correlation coefficients (table 5). The qualitative traits were grain and midrib colors, inflorescence shape and compactness, glume covering, glume color and either presence or absence of awns, leaf orientation, leaf pigmentation, seedling vigour, seed size, threshability, pest (Sucking bugs, fall armyworm, stem borer), disease (Anthracnose, smut, bacterial stripe and blight), and drought resistance. 
[bookmark: _Hlk194319204][bookmark: _Hlk176444256]Number of days to 50% flowering was strongly negatively correlated to 1000-seed weight (r=-0.5) at P˂0.01. Days to emergence was significantly positively correlated to 50% days to flowering and days to maturity (r=0.7 and r=0.9) respectively while it is strongly negatively correlated to leaf length (r=-0.6), leaf width (r=-0.7), number of leaves in a plant (r=-0.6) and plant height (r=-0.7) at P˂0.01. Number of days to 50% flowering is strongly positively correlated to number of days to the harvest of the crop (r=0.7) at P˂0.01.
The number of days to harvest is strongly negatively correlated to leaf length (r=-0.6), leaf width (r=-0.8), number of plant leaves (r=-0.6) and height of the plant (r=-0.6) at P˂0.01. Disease resistance is strongly positively correlated to pest resistance (r=0.5) and strongly negatively correlated to seedling colour (r=-0.5) at p˂0.01. Drought resistance is strongly negatively correlated to ear head shape and compactness (r=-0.6) at P˂0.01. Ear head shape and compactness of the sorghum genotypes is strongly negatively correlated to orientation of the leaves (r=-0.6) and colour of the seeds (r=-0.6) while it is strongly positively correlated to the ability to thresh (r=0.6) at p˂0.01. 
[bookmark: _Hlk177046671][bookmark: _Hlk177047845]Colour of glumes was strongly negatively correlated to seedling vigor (r=-0.5) at p˂0.01. length of leaves was strongly positively correlated to width of leaves (r=0.8), number of leaves (r=0.8) and the height of plants (r=0.6) at p˂0.01. Orientation of leaves showed a strong negative correlation to threshability (r=-0.6) at p˂0.01. The colour of the midrib exhibited a strong positive correlation to the size of the seed (r=0.5) at P˂0.01.  
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The number of leaves also exhibited a significantly positive correlation to plant dry weight (r=0.5) and height of plant (r=0.7) at P˂0.01. Total plant height showed a strong positive correlation to plant height (r=0.5) while seedling vigor was strongly negatively correlated with seed size (r=-0.5) at P˂0.01
[bookmark: _Toc199174729]Table 5 Spearman’s rank correlation analysis of qualitative and quantitative traits
	[bookmark: _Hlk193807102]t
	_SDW
	DE
	DF
	DH
	DR
	DRR
	EHSC
	GCL
	GCV
	GY
	LL
	LOR
	LP
	LW
	MDC
	NL
	PAL
	PAW
	PDW
	PH
	PR
	SC
	SS
	STK
	SV
	TSH

	SW
	 -
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	DE
	0.0 
	 -
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	DF
	-0.5*** 
	0.7***
	 -
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	DH
	-0.1 
	0.9*** 
	0.7*** 
	 -
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	DR
	0.2 
	0.0 
	-0.1 
	0.0 
	 -
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	DRR
	-0.4 
	0.0 
	0.1 
	0.0 
	-0.1 
	 -
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	EHSC
	0.3 
	0.0 
	-0.1 
	0.0 
	0.0 
	-0.6*** 
	 -
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	GCL
	-0.1 
	0.1 
	0.1 
	0.0 
	0.2 
	0.3 
	-0.1 
	 -
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	GCV
	-0.3 
	0.0 
	0.1 
	0.0 
	-0.1 
	0.4 
	-0.1 
	0.2 
	 -
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	GY
	-0.2 
	-0.3 
	0.0 
	-0.1 
	0.0 
	0.0 
	0.0 
	-0.1 
	0.1 
	 -
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	LL
	-0.3 
	-0.6*** 
	-0.3 
	-0.6***
	-0.2 
	0.0 
	0.0 
	-0.1 
	0.0 
	0.3 
	 -
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	LOR
	-0.1 
	0.0 
	0.1 
	0.0 
	-0.2 
	0.3 
	-0.5*** 
	0.1 
	-0.2 
	-0.1 
	0.0 
	 -
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	LP
	0.0 
	0.0 
	0.1 
	0.0 
	-0.4 
	0.1 
	0.3 
	-0.3 
	-0.2 
	0.0 
	0.1 
	0.2 
	 -
	
	
	
	
	
	
	
	
	
	
	
	
	

	LW
	-0.3 
	-0.7*** 
	-0.4 
	-0.8*** 
	-0.1 
	0.0 
	0.0 
	0.0 
	0.1 
	0.3 
	0.8*** 
	0.0 
	0.0 
	 -
	
	
	
	
	
	
	
	
	
	
	
	

	MDC
	0.3 
	0.0 
	-0.1 
	0.0 
	0.1 
	0.0 
	-0.2 
	0.2 
	-0.3 
	-0.2 
	-0.2 
	0.4 
	-0.1 
	-0.1 
	 -
	
	
	
	
	
	
	
	
	
	
	

	NL
	-0.4 
	-0.6*** 
	-0.1 
	-0.6*** 
	-0.1 
	0.1 
	0.0 
	0.1 
	0.1 
	0.3 
	0.8*** 
	0.0 
	0.1 
	0.8*** 
	-0.3 
	 -
	
	
	
	
	
	
	
	
	
	

	PAL
	0.2 
	0.0 
	-0.3 
	-0.1 
	0.0 
	-0.1 
	0.2 
	-0.1 
	0.0 
	-0.3 
	-0.1 
	-0.3 
	0.0 
	0.0 
	-0.1 
	-0.1 
	 -
	
	
	
	
	
	
	
	
	

	PAW
	-0.3 
	0.0 
	0.4 
	0.1 
	-0.1 
	0.1 
	0.0 
	0.1 
	0.0 
	0.2 
	0.0 
	0.1 
	0.1 
	0.1 
	0.0 
	0.3 
	-0.1 
	 -
	
	
	
	
	
	
	
	

	PDW
	-0.4 
	-0.2 
	0.2 
	-0.1 
	0.0 
	0.1 
	0.0 
	-0.1 
	0.1 
	0.2 
	0.4 
	-0.1 
	0.1 
	0.4 
	-0.2 
	0.5*** 
	0.1 
	0.4 
	 -
	
	
	
	
	
	
	

	PH
	-0.3 
	-0.7*** 
	-0.2 
	-0.6*** 
	0.0 
	0.2 
	-0.1 
	0.0 
	0.0 
	0.2 
	0.6*** 
	0.1 
	0.0 
	0.6*** 
	-0.1 
	0.7*** 
	-0.2 
	0.3 
	0.5*** 
	 -
	
	
	
	
	
	

	PR
	0.0 
	0.0 
	0.0 
	0.1 
	0.5*** 
	0.1 
	0.1 
	0.3 
	0.2 
	0.0 
	-0.1 
	0.3 
	-0.2 
	0.0 
	0.1 
	0.0 
	-0.1 
	0.0 
	0.0 
	0.0 
	 -
	
	
	
	
	

	SC
	-0.4 
	0.0 
	0.1 
	0.0 
	-0.5*** 
	0.3 
	-0.6*** 
	0.1 
	0.2 
	0.0 
	0.2 
	0.3 
	-0.2 
	0.1 
	-0.2 
	0.2 
	-0.1 
	0.0 
	-0.1 
	0.0 
	-0.4 
	 -
	
	
	
	

	SS
	0.3 
	0.1 
	0.0 
	-0.1 
	0.2 
	0.0 
	-0.1 
	0.3 
	-0.2 
	-0.1 
	-0.3 
	0.3 
	0.0 
	-0.2 
	0.5***
	-0.1 
	-0.1 
	0.0 
	-0.2 
	-0.1 
	0.0 
	-0.1 
	 -
	
	
	

	STK
	-0.1 
	-0.2 
	-0.1 
	-0.1 
	0.0 
	0.1 
	0.1 
	0.1 
	0.1 
	0.1 
	0.1 
	0.0 
	0.0 
	0.3 
	-0.1 
	0.1 
	0.1 
	0.3 
	0.1 
	0.1 
	0.1 
	0.0 
	0.0 
	 -
	
	

	SV
	0.0 
	-0.1 
	-0.1 
	0.0 
	-0.2 
	-0.3 
	0.0 
	-0.5*** 
	-0.2 
	0.2 
	0.2 
	-0.3 
	-0.1 
	0.0 
	-0.2 
	0.1 
	0.0 
	-0.1 
	0.0 
	0.0 
	-0.4 
	0.1 
	-0.5*** 
	-0.1 
	 -
	

	TSH
	0.1 
	0.0 
	-0.1 
	-0.1 
	-0.1 
	-0.4 
	0.6*** 
	-0.2 
	0.2 
	0.2 
	0.0 
	-0.6*** 
	0.1 
	0.0 
	-0.4 
	0.0 
	0.3 
	-0.1 
	0.1 
	-0.1 
	-0.1 
	-0.3 
	-0.1 
	0.1 
	0.3 
	 -

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


[bookmark: _Hlk199333346]*SDW-seed weight, DE- 50% days to emergence, DF- 50% days to flowering, DR- disease resistance, DRR- Drought resistance, EHSC- Ear head shape and compactness, GCL- Glume colour, GCV-Glume covering, GYLD- Grain yield, LL- leaf length, LOR- Leaf orientation, LP- Leaf pigmentation, LW- Leaf width, MDC- Midrib colour, NL- Number of leaves, PAL- Panicle length, PAW- Panicle width, PDW- Plant dry weight, PH- Plant height, PR- Pest resistance, SC- Seed colour, SS- Seed size, STK- Stem thickness, SV- Seedling vigour, TSH- Threshability.
[bookmark: _Toc198135740]3.4 Frequency distribution of qualitative traits
The frequency distributions of the sorghum accessions for the qualitative traits are presented in Table 6. Fifteen (93.75%) selected sorghum genotypes were pigmented while one (6.25%) were tan. Six (37.5%) were erect and ten (62.5%) were horizontal in terms of their leaf orientation. Ear head compactness and shape (EHCS) showed variation with five (51.25%) accessions being compact elliptic, two (12.5%) compact erect, three (18.75%) semi-compact elliptic, five (31.25%) semi-compact erect and one (6.25%) being semi-compact drooping. None of the genotypes had awns at maturity. There was also variation in the midrib colour among the accessions, in that five (31.25%) accessions had dull green midribs followed by eleven (68.75) accessions with white midribs. In terms of the glume colour, two (12.5%) genotypes had black glumes, one (6,25%) brown, one (6.25%) grey, six (37.5%) purple, four (25%) red, and two (12.5%) siena. eight (50%) of the genotypes had 25% glume covering and the rest eight (50%) had 50% glume covering. There was also variation in the seed sizes with one (6.25%) large, seven (43.75%) medium and eight (50%) small. With seed colour; eleven (68.75%) had brown colour, one (6.25%) chalky white, one (6.25%) cream, two (12.5%) red and one (6.25%) speckled white. The genotypes were also tested for threshability and one (6.25%) had very good threshability, nine (56.25%) good, four (25%) medium and two (12.5%) with poor threshability. 
Table 6: Frequency distribution of the qualitative traits of the sorghum genotypes observed at Elgon downs farm and Sigor

	Trait
	Descriptor
	Genotypes out of 16 selected  
	Frequency %

	Leaf pigmentation
	Tan
	1
	6.25

	 
	Pigmented
	15
	93.75

	Leaf orientation
	Erect
	6
	37.5

	 
	Horizontal
	10
	62.5

	Midrib colour
	Dull green
	5
	31.25

	 
	white
	11
	68.75

	Glume colour
	Black
	2
	12.5

	 
	Brown
	1
	6.25

	 
	Grey
	1
	6.25

	 
	Purple
	6
	37.5

	 
	Red
	4
	25

	 
	Siena
	2
	12.5

	Glume covering
	25
	8
	50

	 
	50
	8
	50

	awns
	absent
	16
	100

	seed size
	large
	1
	6.25

	 
	Medium
	7
	43.75

	 
	small
	8
	50

	seed colour
	Brown
	11
	68.75

	 
	Chalky white
	1
	6.25

	 
	Cream 
	1
	6.25

	 
	Red
	2
	12.5

	 
	Speckled white
	1
	6.25

	Threshability
	Good
	9
	56.25

	 
	Very good
	1
	6.25

	 
	Medium
	4
	25

	 
	Poor
	2
	12.5

	EHCS
	Compact erect
	2
	12.5

	 
	Compact elliptic
	5
	31.25

	 
	Semi -compact elliptic
	3
	18.75

	 
	Semi -compact erect
	5
	31.25

	 
	Semi -compact drooping
	1
	6.25


[bookmark: _Toc198135741]

3.5 Morphological Variability Based on qualitative traits
Field evaluation of the 16 sorghum genotypes revealed notable phenotypic diversity in traits related to grain and panicle morphology. Clear differences were observed in seed color, ranging from white and cream to reddish-brown. Seed sizes also varied among the genotypes, with some producing large, bold grains and others yielding smaller, compact seeds. In terms of panicle shape, the genotypes displayed a spectrum ranging from compact and semi-compact to lose and open panicles. Compact panicles, as observed in genotypes E5 and E1 (Fig.1), are generally associated with higher grain density and reduced susceptibility to grain mold in humid areas. 

	[bookmark: _Hlk197634338][image: ]    [image: ]            [image: ]
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Figure 1: Sorghum genotypes indicating variability in seed size,colour and panicle shapes i.e Foehn(Large, brown ), Gadam (Medium,chalky white), E95A (Medium, speckled Brown, semi-compact elliptic), E1(Small, brown compact panicle), E5 (small,brown seeded and compact elliptic panicle), 
[bookmark: _Toc198135742]4. DISCUSSION
[bookmark: _Hlk357547676]The use of morphological markers is effective and only reliable if they give a wide range of variation between accessions (Karugu, 2009). Morphological markers positively correlated to yield or other important traits that contribute to yield would be very useful, to aid in early generation selection. Sixteen sorghum accessions were described and assessed for agro-morphological traits where qualitative and quantitative features showed a wide range of variation. Crop germplasm has been subjected to phenotypic study using both qualitative and quantitative parameters, (Kisilu & Ngugi, 2021) reported using phenotypic data to access diversity in 148 sorghum accessions, (Apunyo et al., 2022), also reported phenotypic diversity of sorghum accessions on farmers’ fields in Northern and Eastern Uganda. 
[bookmark: _Hlk197631076][bookmark: _Toc198135747]Quantitative traits such as seed mass, yield, plant height and earliness are mostly used by farmers and breeders to determine desirable traits for future cropping and improved varieties (Porcuna-Ferrer et al., 2025). Understanding the significant correlation among the characters is crucial for many breeding programs since it allows for the simultaneous selection of desired genotypes and desirable phenotypes (Mofokeng, 2015) .
The high performance of some varieties in grain yield is consistent with their superior panicle length and plant dry weight. Yield is a complex trait influenced by multiple components, including panicle morphology and biomass production. Previous studies have reported significant positive correlations between grain yield and traits such as panicle length and plant dry weight in sorghum (Santhiya et al., 2021; Vinoth et al., 2021) . These findings support the selection of high-yielding genotypes with favorable morpho-physiological characteristics.  Early flowering and days to harvest, observed in some genotypes are beneficial in regions with short rainfall durations or terminal drought. Early maturing genotypes are better suited to drought-prone environments as they can complete their life cycle before the onset of stress (El Mannai et al., 2011). This trait also enables double cropping in some regions. The delayed flowering might be advantageous in areas with extended growing periods. The delayed flowering observed in some genotypes may confer a significant adaptive advantage in environments with extended growing periods. In such regions, prolonged vegetative growth allows these genotypes to fully utilize the available resources throughout the season. This extended duration before the onset of reproductive development enables greater biomass accumulation, enhanced root development, and improved nutrient uptake, all of which contribute to better grain filling and potentially higher yields (Carillo, 2025. Moreover, delayed flowering may help these genotypes avoid early-season environmental stresses, such as transient droughts or pest pressures, by aligning critical reproductive stages with more favorable climatic conditions later in the season (Kazan & Lyons, 2015). Therefore, the late flowering trait may be particularly valuable in breeding programs targeting highland or tropical agro-ecologies where the growing season is long and uninterrupted, and where early-maturing varieties might fail to exploit the full productive potential of the environment (Ceccarelli, 2015).
Leaf size and number directly impact the plant’s photosynthetic capacity. Genotypes with longer and wider leaves, are expected to accumulate more biomass due to a larger photosynthetic surface area  (Santhiya et al., 2021). Similarly, genotypes with more leaves, may support sustained growth and assimilate production, contributing indirectly to higher yields.
Panicle length and width influence the number of grains per panicle and overall yield. Genotypes with longer and wider panicles, exemplify desirable architecture for improving yield. Wider panicles, may accommodate more florets, increasing reproductive success (Parida et al., 2022). Selection for improved panicle traits remains a vital component of yield enhancement strategies.
Plant height and stem thickness are important traits for biomass production and lodging resistance. Tallest genotypes could be suited for fodder production or biomass-related breeding programs. However, taller plants are generally more prone to lodging. The thicker stems may offer structural integrity, reducing the risk of lodging (Ren et al., 2024). Combining moderate height with stem robustness should be a target in breeding programs.
The differential performance of genotypes across the two environments indicates a strong genotype × environment (G × E) interaction. This interaction is evident in traits such as grain yield, plant height, and days to harvest, where genotypes responded differently depending on site conditions. The better performance at Sigor suggests that this environment provided more favorable conditions for sorghum growth, which could be attributed to factors such as soil fertility, temperature, and moisture availability. These findings align with the work of (Demelash, 2024) who reported significant G × E interactions in multi-environment trials of sorghum, necessitating careful consideration of environment-specific selection.
The presence of significant G × E interaction highlights the importance of evaluating genotypes across diverse environments to identify stable and widely adaptable lines. This is particularly crucial in breeding programs targeting marginal and variable agro-ecologies, where environmental stresses are common (Yuru et al., 2024).
Furthermore, the pronounced site effects on yield and maturity highlight the potential for tailoring genotype recommendations to specific production environments. As observed, genotypes that matured earlier and produced higher yields at Sigor may be better suited for drier or short-season environments, whereas genotypes adapted to Elgon Downs could be exploited for longer growing periods or higher altitude conditions
Principal Component Analysis (PCA) is a common technique for reducing data dimensionality, but it involves subjective decisions at various stages. These include choosing which variables to analyze, how to standardize the data, and how many components to retain. Such decisions can influence both the interpretation and the outcome of the analysis, making transparency essential (Gebre et al., 2024).
 Plant height is a major contributor to genetic diversity. Plant height is the most significant trait influencing diversity, playing a crucial role in genotype differentiation. Similarly, Mofokeng et al., (2017) reported that plant height, panicle weight and grain yield significantly influence sorghum diversity. Days to harvest (DH) and days to flowering (DF) contribute to variability in reproductive timing, which is vital for adaptation and breeding.
Principal Component Analysis (PCA) has been extensively utilized to evaluate genetic diversity in sorghum through agro-morphological traits. Various studies have identified key traits contributing to variability. (Kavithamani et al., 2019) conducted PCA on 100 sorghum germplasm accessions and found that 100-seed weight, plant height, leaf blade length, and leaf blade width were significant contributors to genetic diversity. Similarly, (Sejake et al., 2020) assessed 100 sorghum accessions and reported that traits such as plant height, panicle length, and grain weight per panicle played crucial roles in genetic variation. In another study, (Ngugi & Maswili, 2011) evaluated 148 Kenyan sorghum landraces and observed that panicle branches, panicle length, and grain weight were significant in determining phenotypic diversity. A study on Moroccan sorghum ecotypes revealed that plant height, leaf length, and panicle length were among the primary traits contributing to agro-morphological variation (Bouargalne et al., 2022). These studies collectively affirm that PCA is an effective tool for identifying key traits that influence genetic variation in sorghum, aiding in the selection of superior genotypes for breeding and conservation programs.
The Pearson correlation analysis revealed several statistically significant relationships among key plant traits, which provide valuable insights for plant breeding strategies. These correlations can help breeders identify traits that can be simultaneously improved or indicate potential trade-offs.
In order to enhance plant structure or crop output, selection needs to be based on the association of relevant characteristics, which measures the associations or correlations between various plant attributes and identifies key traits that may be used as the basis for breeding to increase crop seed yield (Tilahun et al., 2024). To select ecotypes that are promising which combine different agronomically important characters, correlation analysis has been used as an important indicator (Bouargalne et al., 2022).
[bookmark: _Hlk357547968]A strong positive correlation between days to flowering and days to harvest suggests that plants that flower later also mature later. Similar results were exhibited in wheat, grain yield per plant showed a significant positive correlation with biological yield per plant, plant height, and thousand-grain weight, indicating that traits influencing plant development stages are interrelated (Devesh, 2021). These results are also similar to those of (Mallu, 2015) who evaluated chick pea genotypes for yield and selection of agronomic traits in Kenya.
Negative correlation showed that the late flowering plants had better seed weight as compared to the early flowering genotypes. Similar to our results, (Ouma & Akuja, 2013)  showed that number of days to flowering was significantly and positively correlated with height and yield but not 100- seed weight. The earlier maturing genotypes had lower seed number and yield than medium and late- maturing genotypes, but greater seed size. 
Significant negative correlations between leaf dimensions and days to flowering and harvest suggest that plants with larger leaves tend to mature earlier. In Populus deltoides, collar diameter exhibited a significant positive correlation with plant height highlighting the association between vegetative growth traits (Singh et al., 2016). A negative correlation between the number of leaves and days to flowering/harvest indicates that plants with more leaves mature earlier. Similar results by (Dhurai., 2014) indicated that in rice, grain yield was significantly associated with harvest index and number of grains per panicle, suggesting that traits contributing to yield are interconnected.
A positive correlation between pest and drought resistance suggests that plants tolerant to drought may also exhibit pest resilience. Diseases like anthracnose, smut, blight, ergot are more likely to strike plants with pest infestations. Plants that have been harmed by pests are more vulnerable to infection by pathogens. Aphids, caterpillars, fall army worm, stem borer and other pests can harm leaves, increasing the likelihood that disease-causing organisms will infect them. Aphids cover leaves with honeydew, a sugary fluid that draws insects and dangerous fungus (Nazarov et al., 2020)
A significant correlation between seed size and panicle length indicates that larger seeds are associated with longer panicles. Similarly, in maize, plant height, ear length, and number of kernels per row recorded significantly positive genetic correlations with grain yield per plant, emphasizing the relationship between structural traits and yield components (Mahesh et al., 2022). A positive correlation between plant dry weight and panicle width suggests that plants with greater biomass tend to have wider panicles. In wheat, grain yield per plant showed significant positive correlations with biological yield per plant and plant height, indicating that biomass-related traits are crucial for yield improvement (Devesh et al., 2021).
The diversity of accessions for grain color observed in this study aligns with the findings of (Sejake et al., 2020), who reported that 46% of 100 landraces exhibited brown grain sorghum, and (Alade & Obilana, 2022), who found that only 2% of 98 accessions had brown grain. In the present study, 68.25% of the genotypes displayed a brown grain color. Brown grain sorghum is typically associated with a relatively high tannin content, which makes it less attractive to birds (Sejake et al., 2020). In Kenya, brown sorghum serves as a staple food and is consumed in various forms, including porridge and ugali (a cooked dough). It is also widely used as animal feed, particularly for livestock, due to its ability to thrive in semi-arid regions. Additionally, brown sorghum is a key ingredient in the production of traditional alcoholic beverages such as sorghum beer (Kazungu et al., 2023)
White grain sorghum, on the other hand, has a lower tannin content, making it more suitable for milling into flour for baking. However, its lack of tannins makes it more susceptible to bird predation (Sejake et al., 2020). Notably, all sorghum accessions in this study lacked awns at maturity. The absence of awns in sorghum is often associated with reduced evapotranspiration, which is beneficial in dry lowland areas Verma et al., 2017). Awnless sorghum genotypes are preferred due to the reduced effort required for cleaning. This preference is further supported by the fact that a significant proportion of the genotypes examined in this study exhibited good (56.25%) or very good (6.25%) threshability.
Threshability is also influenced by glume coverage, as increased grain coverage tends to reduce threshability (Alade & Obilana, 2022). In this study, 50% of the assessed sorghum genotypes had 25% glume coverage, while the remaining 50% had 50% coverage. Typically, grain sorghums exhibit less glume coverage than fodder sorghums. Furthermore, darker glumes have been associated with resistance to grain mold (Alade & Obilana, 2022). In this study, the distribution of glume colors among the genotypes was as follows: black (12.5%), brown (6.25%), gray (6.25%), purple (37.5%), red (25%), and sienna (12.5%). The variation in glume color could serve as a useful trait for screening sorghum genotypes for grain mold resistance. Variations in panicle shape have also been documented by (Raj et al., 2018)
The present study found that accessions with compact panicles tended to have higher grain yields compared to other panicle types. This finding aligns with previous research, which suggests that compact panicles contain more seeds than open panicles, contributing to their higher yield potential. Additionally, genotypes with loosely branched panicles may be better suited for humid regions with high rainfa.ll, as they are less susceptible to diseases such as ergot and grain mold (Ringo et al., 2014)
Leaf midrib color is an important characteristic that farmers use to differentiate between sweet sorghum and grain sorghum (Sejake et al., 2020). The color of the leaf midrib serves as an indicator of the stem's internal properties. Green midribs are typically associated with more succulent stems containing higher moisture content, indicating juiciness. In contrast, white midribs are associated with drier, pithier stems that contain more air pockets and less moisture (Boukrouh et al., 2023). This pithy nature of white-midrib stems affects their palatability and digestibility, making them less suitable as livestock feed. Given its significance in distinguishing sorghum varieties, leaf midrib color remains a crucial visual characteristic for farmers in sorghum selection 
5. CONCLUSION
The phenotypic evaluation of sixteen sorghum genotypes revealed significant agro-morphological diversity, confirming the genetic variability that can be exploited for breeding. Traits such as yield potential, maturity period, and dual-purpose use (grain and fodder) varied notably among genotypes, with E1, E5, MUK-60, and T30B showing superior performance. Correlation and principal component analyses identified key trait relationships such as the positive links between plant height, leaf traits, and maturity time which can guide in direct selection for early maturity and yield improvement. The observed diversity supports the objective of classifying genotypes and identifying breeding candidates for specific ecological zones. Integrating phenotypic with molecular data is recommended to enhance selection precision in future breeding programs.
[bookmark: _GoBack]
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