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Let X be a non-empty  set and (X, τ ) be a semi-normal space.  On this  paper,  we investigated the  relationship be- tween  one-point  compactiﬁcation and  semi-normal  spaces. In addition, we in particular proved that if (X, τ ) is a semi- normal  space,  then  its  one-point  compactiﬁcation,  X ∗    is also semi-normal.  We also extended  our work on establish- ing that, if (X, τ ) is a semi-normal space, then its one-point
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compactiﬁcation, X ∗   of X is compact  if and  only if (X, τ )
is also Hausdorﬀ.
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1    Introduction

A lot of research on the properties  of topological spaces has been done and  many  results  established.   The  properties  (normality[1], regularity  [1], semi regularity  [7], connectedness[9] , compactiﬁca- tion  [5], etc.)   have been studied  and  internal  characterization of some spaces like Tychonoﬀ spaces, established.  Frink [2] described compactiﬁcation  with regard to Wallman  base in a Wallman  space w(Z ). Later, Piekorsz [6] characterized  One-point compactiﬁcation with regard to Wallman base C under the framework of generalized topological spaces.  In this  note,  we have characterized  one-point compactication with respect to semi-normal spaces.


2    Preliminary Notes

Deﬁnition 1.   Consider a space (X, τ ), where X is non-empty set and τ is a topology on X if it satisﬁes the following properties:
(i).  ∅, X ∈ τ .
(ii).  The abitrary union of sets in τ  belong to τ . (iii). Any ﬁnite intersection  of sets of τ  belong to τ .

We made some deﬁnitions which are instrumental to this present paper.

Deﬁnition 2.   ([4], Deﬁnition 3.1)
Let (X, τ ) be a topological space.  If every open covering in X has a countable  sub-covering, then the space is called Lindelof space.

Deﬁnition 3.   ([8], Deﬁnition 7.1.7)
A subset  A of a topological space (X, τ ) is said to be compact  if, every open covering of A has a ﬁnite sub-covering.  If the compact subset A equals to X then,  (X, τ ) is said to be compact space.











Deﬁnition 4.   , ([3], Deﬁnition1)
A topological space (X, τ ) is said to be semi-normal if for each pair of disjoint semi-closed sets A, B ⊆  X , there exist disjoint semi-open sets U, V ⊆  X such that  A ⊆  U and B ⊆  V .

Deﬁnition 5.   ([10], Deﬁnition 1.3)
A topological space (X, τ ) is said to be locally compact  at a point
x ∈ X if, x lies in the interior  of some compact subset of X .


3    One-Point  compactiﬁcation

We begin our results  with  proposition  5 which is a basis for the main results.

Proposition 6.      One-Point  Compactiﬁcation X ∗    of locally compact Semi-Normal Space is Compact  Normal Space.

Proof.  Let  X be a locally compact  semi normal  space and  A and B be disjoint closed subsets of X , such that  there exist disjoint open sets U and V  in X such that  A¯x  ⊆  U and B¯ x ⊆  V .  Let X ∗ be one-point compactiﬁcation  of X with ∞  representing  the point at ∞.  Considering two scenarios of U and V with respect to ∞: (i).  One or both U and V contain ∞.  In this case, extending them with {∞} does not aﬀect their disjointness.  ie. If U ∩ {∞} = ∅ or V ∩ {∞} = ∅ i.e. ∞ belong to either U or V , then extending U and V  with {∞} does not change their  relative positions.  A ∪ {∞} ⊆ U ∪ {∞} and B ∪ {∞} ⊆  V ∪ {∞}.  Since U and V  were disjoint U ∪ {∞} and V ∪ {∞} remain disjoint open sets in X ∗ .
(ii).  Neither U nor V  contain  ∞:  Utilize the local compactness  of X . Since X is locally compact ∀ x ∈ X has compact neighborhood. i.e x ∈ X \ (U ∪ V ), ∃ a compact neighborhood Kx  such that  Kx ⊆ X \ (U ∪ V ) and does not contain  ∞.  Let Ku  = U ∩ (∪{Kx : x ∈ X \ U }) and Kv = V ∩ (∪{Kx : x ∈ X \ V }). These sets are compact because they are intersections  of compact sets and moreover, Ku ⊆ U \ {∞} and  Kv  ⊆  V \ {∞}.   These  guarantee  the  existence of disjoint open sets in X ∗   i.e (U ∪ {∞}) ∪ Ku and (V ∪ {∞}) ∪ Kv .
⇒ X ∗   is compact  by deﬁnition  of one point compactiﬁcation  and the existence of disjoint open sets (U ∪{∞})∪Ku and (V ∪{∞})∪Kv in X ∗ , shows that  X ∗   is normal which completes the proof.











Theorem 7.    If (X, τ ) is a semi-normal  space, then  its one- point compactiﬁcation,  X ∗   is also semi-normal.  .

Proof.  Let  X be  a  semi  normal  space  with  topology  τ  and A, B  ⊆  X be disjoint  closed sets.  By proposition  [5] we  consider two scenarios: (i).A ∩ {∞} = ∅ and B ∩ {∞} = ∅.  ( i.e.  A contains
∞ and B is entirely in X ), then the semi-normality of X guarantees the existence of disjoint sets U and V  in X such that  A¯x  ⊆  U  and B¯x  ⊆  V . Extending  U and V with {∞} in X ∗   creates disjoint sets used in U ∪ {∞} and V in X ∗   that  separates  A and B.
⇒ A ⊆  A ∪ {∞} and B ⊆ V .
(ii).  Both sets contain  ∞:  Analyzing the open sets used in X , con- sider the case when the original open sets in are used to separate  A and B, already contain  ∞, extending  them with {∞} ∈ X ∗   would maintain  their  disjoint property  i.e, Let U ′  and V ′  be two original open sets in X .  Then  U ′  ∪ {∞} and  V ′  ∪ {∞}  are  disjoint  open sets separating  A and B.
(iii).   Both  sets  A  and  B  are entirely  contained  in X i.e Neither A nor B  contain  ∞:  Since X is semi-normal,  ∃ disjoint open sets U and V  in X such that  A ⊆  U , B  ⊆  V , then  U and V  are  also disjoint  open  in  X ∗ .   Therefore,  for a  semi-normal  space  X ,  its One-point compactiﬁcation  X ∗   is semi-normal.

Theorem 8.    If (X, τ ) is a semi-normal  space, then  its one- point compactiﬁcation,  X ∗   of X is compact if and only if (X, τ ) is also Hausdorﬀ.

Proof.  Let X be a Hausdorﬀ and semi-normal space.  We want to show that  its one point compactiﬁcation  X ∗   is compact.  From deﬁnition [1.19], to show that  X ∗ is compact, we consider any open cover {Ui }i∈I  of X ∗ . We split this in to 2 cases:
Case 1:  Some open set Uj  in the  cover contains  ∞.   If one of the open set contain ∞, the remaining set covers X . Moreover, since X is locally compact and Hausdorﬀ, and X is covered by open sets, ∃a ﬁnite subcover that  covers all points  in X .  Hence, combining the subcover with the set Uj  that  contain  ∞, we have a ﬁnite subcover for X ∗ , proving that  X ∗   is compact in this case.
case 2: No open set Ui  contains  ∞.
Here the  open cover {Ui } only covers points  X ∗  \ {∞}, which is
homeomorphic to X . Since X is locally compact and Haudorﬀ, ev-











ery point in X has a compact neighborhood.  Because X ∗  \ {∞} is homeomorphic to X , ∃ a ﬁnite subcover that  covers all of X . Since
∞  is not  covered by any  Ui , this  leads to a contradiction (as all open cover include ∞).
⇒ We can always ﬁnd a ﬁnite subcover for any open cover of X ∗ . This shows that  X ∗   is compact.
Conversely:
Assume that  the  one-point  compactiﬁcation  X ∗   of X is compact. We need to show that  X is Hausdorﬀ.  Suppose X is not Hausdorﬀ. Then,  ∃ distinct  points  x, y ∈ X that  cannot  be separated  by dis- joint open sets.
⇒ no open neighborhoods of x and y are disjoint.
⇒ the  space  X does not  satisfy  the  separation  property  [3.2.1]. However, X ∗   is compact  and  in a compact  space,  distinct  points can  always  be  separated  by  disjoint open  sets  because  compact spaces are normal (by Tychonoﬀ theorem).
Since X ∗   is compact and normal, the points x and y ∈ X must be
separable by disjoint open sets, contradicting our assumption  that
X is not Hausdorﬀ.
Thus,  if X ∗    is compact,  X must  be  Hausdorﬀ,  completing  the proof.


4    Conclusion

Finally,  the  results  we discussed,  outline  clearly  the  relationship between semi normal space and one-point compactiﬁcation.
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