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A Residual Network based on MLP and its
2	applications in energy forecasting
3



5	Abstract
6	After decades of development, the Multilayer Perceptron (MLP) has made significant strides.
7  However, many MLP models still encounter the issue of degradation as depth increases. Fortunately,
8  recent research has shown that the Residual Network (ResNet) can mitigate or even overcome this
9  phenomenon. In this paper, we propose a Residual Network based on MLP to enhance model appli-
10  cability and stability, thereby improving data forecasting accuracy. We employ the Adam algorithm
11  for model training and the Gridsearch algorithm for hyperparameter tuning. In the Application
12  Section, we validate the effectiveness of our proposed model using three real-world energy-related
13  cases and compare it with 10 other machine learning models. Our results demonstrate that the
14  proposed model outperforms others in all three cases, highlighting its versatility and robustness.

15	Keywords: Residual Network, Multilayer Perceptron, Adaptive Moment Estima-
16  tion, Gridsearch.

[bookmark: Introduction]17	1	Introduction
18	In recent decades, the evolution of deep learning techniques has revolutionized
19  the field of artificial intelligence, paving the way for sophisticated models capable of
20  capturing complex patterns in data. Among these, Multilayer Perceptrons (MLPs) have
21  played a foundational role, serving as the building blocks for various neural network
22  architectures.
23	A layered network of perceptrons is first introduced by Frank Rosenblatt in his
24  book Perceptron [1] [2] [3]. The perceptrons in his book is composed of an input layer,
25  a hidden layer with randomized weights which did not learn, and an output layer with
26  learning connections. But this is seen as a extreme learning machine [4] but not a
27  deep learning network. Although this early form of MLP was not considered a deep
28  learning network, it laid the groundwork for subsequent advancements. In 1965, Alexey
29  Grigorevich Ivakhnenko and Valentin Lapa published the first deep-learning feedforward
30  network, known as the Group Method of Data Handling, which did not yet utilize
31  stochastic gradient descent [5] [6]. Two years later, Shun’ichi Amari introduced a deep-
32  learning network capable of classifying non-linearly separable pattern classes, marking
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33  the first use of stochastic gradient descent in such networks [7]. And his team also
34  built a five-layered feedforward network, demonstrating the feasibility of deep learning
35  architectures. The modern backpropagation method, a crucial component of MLP
36  training, was first published in 1970 by Seppo Linnainmaa [8]. This efficient application
37  of a chain-rule-based supervised learning approach revolutionized the training of neural
38  networks by enabling the propagation of errors through the network to update the model
39  parameters. Subsequent improvements to the backpropagation algorithm, including its
40  standardization by Paul Werbos in 1982 [9], and experimental analyses conducted by
41  David E. Rumelhart et al. in 1985 [10], further solidified its importance in the field of
42  deep learning.
43	So far, The MLP model and its variants have been widely used in many fields ,
44  such as finance [11], bioinformatics [12], transportation [13], agricultur [14], medical [15]
45  and etc.. The MLP especially plays an important role in time series analysis including
46  regression and classification. In 2023, FINANNISA ZHAFIRA and etc. combine LSTM
47  and MLP to establish a model that can effectively reduce training costs [16]. In the
48  same year, Si-An Chen and etc. present Time-Series Mixer (TSMixer) which is a novel
49  architecture designed by stacking multi-layer perceptrons (MLPs) and prove its surpe-
50  rior performance on a real-world retail dataset [17]. Sujan Ghimire and etc. propose an
51  novel hybrid method which integrates convolutional neural network (CNN) with MLP
52  and forecasts global solar radiation (GSR) successfully [18].
53	However, the depth of the MLP model is limited by the vanishing gradient problem,
54  making it difficult to train deeper networks. To solve the problem of vanishing gradient,
55  in 1991, Sepp Hochreiter introduced skip connections or residual connections in the
56  long short-term memory (LSTM) recurrent neural network to solve this problem [29].
57  Subsequently, in 2015, the concept of Highway Networks was proposed, applying the
58  concept of forget gates in LSTM to the feedforward neural network, allowing information
59  to spread in the network and alleviating the vanishing gradient problem [30]. Then,
60  based on Highway Networks, ResNet further simplifies the structure, removes forget
61  gates, and uses simple skip connections directly, so that signals can be propagated
62  directly without the intervention of the gating mechanism. This structure has proven
63  to be very effective in training very deep neural networks [31].
64	This work aims to enhance the applicability of the mlp model so that it can adapt
65  to more situations.  The combination of the MLP and ResNet can synergizing the
66  strengths of two models, making the model has greater versatility and stability.
67	In the rest of the paper, the theory of MLP-ResNet and its solution will be shown
68  in Section 2; applications in 3 real-world cases in energy field will be represented in
69  Section 3; the conclusion of this paper is shown in Secton 4.

[bookmark: Theoretical_Framework][bookmark: _bookmark0]70	2	Theoretical Framework
[bookmark: Knowledge_Background]71  2.1	Knowledge Background
[bookmark: Multiple_Layer_Perceptron_(MLP)]72  2.1.1	Multiple Layer Perceptron (MLP)
73	Formally, an MLP consists of an input layer, one or more hidden layers, and an
74  output layer. Each layer is composed of numerous artificial neurons, also referred
75  to as perceptrons or nodes, interconnected via weighted connections. The primary
76  function of the MLP is to transform input data through successive layers of nonlinear
77  transformations, ultimately producing an output prediction. A simple mlp network
78  structure with one-hidden-layer is shown in Fig.(1).
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Fig. 1. Simple mlp network structure (single hidden layer)

79	Mathematically, the forward propagation process of an MLP can be expressed as
80  follows: for each layer l, the output x(l) is computed as the application of a nonlinear
81  activation function σ to the linear transformation of the previous layer’s output x(l−1),
82 incorporating weights W(l) and biases b(l) :

z(l) = W(l)x(l−1) + b(l)


x(l) = σ z(l) 

(1)

83	During training, the parameters (weights and biases) of the MLP are optimized to
84  minimize a predefined loss function, typically through backpropagation and gradient-
85  based optimization techniques. Backpropagation involves the systematic calculation of
86  gradients with respect to the parameters of the network, facilitating parameter updates
87  in the direction that reduces the loss.
88	MLPs are characterized by their universal approximation capabilities, enabling
89  them to approximate arbitrary functions with sufficient capacity and data. However,
90  their effectiveness is contingent upon various factors, including network architecture
91  design, activation functions, optimization algorithms, and hyperparameter tuning.
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[bookmark: Residual_Network_(ResNet)]
2.1.2	Residual Network (ResNet)
Recent advancements in the field of image recognition have underscored the crit- ical role of network depth, particularly in Convolutional Neural Networks (CNNs), as elucidated by recent studies [32]. However, the efficacy of deeper networks is marred by a phenomenon termed degradation, wherein the accuracy of the model plateaus and subsequently declines rapidly with increasing depth. Notably, this degradation does not stem from overfitting but rather from optimization challenges.
Addressing this inherent limitation, ResNet (Residual Network) presents a pioneer- ing solution by introducing a residual learning framework. Unlike conventional CNNs where each layer aims to directly learn the underlying target function H(x), ResNet adopts a distinctive learning objective defined as F (x) := H(x) − x. This formulation epitomizes residual learning, where the network endeavors to learn the residual informa- tion of x in H(x). Distinguishing between the architectural setups of conventional CNN blocks and ResNet blocks is shown in Fig.(2). By reframing the learning task in terms of residual functions, ResNet facilitates more efficient optimization, as it is inherently easier to learn residuals than to directly learn complex target functions. This approach enables ResNet to navigate around the degradation issue by traversing a detour through residual learning pathways.Weight Layer
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Fig. 2. Distinguishing between the architectural setups of conventional CNN blocks and ResNet blocks.

110	The core architectural feature of ResNet is the incorporation of "shortcut connec-
111  tions" or "skip connections," which facilitate identity mapping. Through these connec-
112  tions, the original input x is added directly to the output of the stacked layers, thereby
113  enabling the flow of information without significant alteration. This mechanism not only
114  fosters smoother gradient flow during backpropagation but also mitigates the vanishing
115  gradient problem commonly encountered in deep networks.

[bookmark: The_proposed_MLP-ResNet_model]116  2.2	The proposed MLP-ResNet model
[bookmark: The_representation_of_MLP-ResNet_model_a]117  2.2.1	The representation of MLP-ResNet model and its solution
118	As we mentioned before, it’s apparent that the most existing machine learning
119  models including MLP often face degradation phenomenon which means the accuracy
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of the model declines rapidly when increasing depth. In order to better forecast and enhance the MLP’s versatility, we propose the model which combines the MLP and the ResNet which is called MLP-ResNet (MLPRS) in this paper. The structure of the MLPRS is shown in Fig.(3) and the ⃝ with number means the neuron index in each layer. The number of MLPRS BLOCK depends on the depth of MLPRS.
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Suppose (X, y) is the input data of the model which X has n1 features, it is composed of (Xt, yt)(t = 1, 2, · · · , n) and we constuct the MLPRS model with k depth. The MLP in the proposed model has one-hidden-layer, we could obtain the output of MLPRS as follows:

[bookmark: _bookmark4]h0 = W (1)X + b(1),	(2)
129  where h0 is the output of ResNet’s input layer.
130	When it come to the first MLPRS BLOCK, we could write the mathematical
131  expression as follows:


h1 = W (2)h0 + b(2),
[bookmark: _bookmark5]h2 = δ(h1), h3 = W (3)h2 + b(3), h4 = W (4)h3 + h0,1




(3)
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where h1, h2, h3 are the state of the nerurons in MLP model (the input layer, hidden layer and output layer of MLP respectively), and h4 is the output of the first block. δ(·) is the activation function of the MLP model.
Similar to the first block, the formula of the second block could be written as


136

follows:



h5 = W (2)h4 + b(2),
[bookmark: _bookmark6]h6 = δ(h5), h7 = W (3)h6 + b(3), h8 = W (4)h7 + h4,2





(4)
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After the iteration of k depth, the k-th block’s output h4k could be obtained:
[bookmark: _bookmark7]h4k = W (4)h4n−1 + h4n−4.	(5)k


Finally, we could calculate the output yˆ of the ResNet:

[bookmark: _bookmark8]yˆ = W (5)h4n + b(5)	(6)

In Eq.(2)(3)(4)(5)(6), W (i)(i = 1, 2, 3, 4, 5) and b(j)(j = 1, 2, 3, 5) are the parame- ters of neural network in MLPRS. W (4)(p = 1, 2, · · · , k) is the k-th element in W (4).The specific shape of the parameter matrix are shown in Tab.1.p

[bookmark: _bookmark9]Table 1: The specific shape of the parameter matrix.

	parameter	W (1)
	W (2)
	W (3)
	W (4)
	W (5)

	shape	(n1, n2)
	(n2, n3)
	(n3, n2)
	(1, k)
	(n2, 1)

	parameter	b(1)
	b(2)
	b(3)
	b(5)
	

	shape	(1, n2)
	(1, n3)
	(1, n2)
	(1, 1)
	



The activation function has a variety of choices which depends on specific applica- tion scenarios, here we use Tanh as the activation function of MLPRS. The output range of the Tanh function is within [−1, 1], which helps to reduce the problem of vanishing gradients and helps the network converge. The Tanh function δ(·) could be express as follows:

δ(x) =

ex − e−x


ex + e−x

(7)

[bookmark: Adam_algorithm_for_training_the_MLP-ResN][bookmark: _bookmark10]147  2.2.2	Adam algorithm for training the MLP-ResNet model
148	Normally, the neural network could not obtain an analytical solution, and the
149  proposed MLPRS model in this paper is no exception. So we need to use optimization
150  algorithms to get its solution such as Gradient Descent [33], Stochastic Gradient Descent
151  [34], Adam [35]. In this paper, we introduce the Adam algorithm to train the proposed
152  model due to its efficiency, robustness, and adaptability.
153	First, we need to define the training error et at each point (Xt, yt):

et = yt − (W	h4n + b	),	(8)
(5)	(5)


154	Thus, we could obtain the sum of training error:
[bookmark: _bookmark11]E(W , b) = 1 Σ e2 = eT e,	(9)n
n
t

t=1


155  where W is composed of W (i) and b is composed of b(j). W and b are the parameters
156  whcih need to be solved by Adam.
157	Then, in order to complete Adam, we need to finish the gradient descent. So we
158  have to get the gradient of E(W , b):
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where L is the gradient.
[bookmark: _bookmark12]
∂E
L = [	,
∂W

∂E ],	(10)
∂b


160

161

162




163


164

Different with ordinary gradient descent, it introduces the concept of the modified bias-corrected first moment estimate mˆ t and bias-corrected second raw moment estimate vˆt to speed up convergence, their mathematical expressions are as follows:
mt = µ1 · mt−1 + (1 − µ1) · L,	(11)
[bookmark: _bookmark13]vt = µ2 · vt−1 + (1 − µ2) · L2,	(12)=	,	(13)
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mˆ t

[bookmark: _bookmark14]vˆt


  mt 
t1 − µ

1  vt	

=	,	(14)

1 − µt2

166  where µ1 and µ2 mean decay rates which are used to control the decay speed of the
167  first and second moments of the gradients, respectively.
168	Finally, we can obtain the iterative formula:

[bookmark: _bookmark15]" W t+1  #=
— l1 · √vˆ
.	(15)
+ ϵ
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where l1 is the learning rate of Adam and ϵ is a small constant. The complete algorithm of Adam is shown in Algorithm 1:

Algorithm 1: The complete process of Adam training MLPRS Input: E(W , b) (Eq.(9)), Learning rate l1, max_epochs Initialize: [W , b] → random();
µ1 → 0.9; µ2 → 0.999;
m0 → 0; v0 → 0;
epoch → 0;
1 while epoch < max_epochs do

171

2	ephoch = ephoch + 1 ;
3	L → Eq.(10);
4	mt, vt → Eq.(13)(14);"^  ^



W t+1
5
bt+1

# → Eq.(15);

6 end
7 return [W , b]


[bookmark: Optimal_Model_Parameter_Selection_Using_][bookmark: _bookmark16]172  2.2.3	Optimal Model Parameter Selection Using Gridsearch algorithm
173	In Section 2.2.2, we obtain the parameter set [W , b] through Adam algorithm, but
174  the depth k, learning rate l2 and the number of nunber of neurons nr(r = 2, 3) are still
175  need to be tuned. Here we introduce the Gridsearch algorithm to tune the parameters.

176	The basic principle of GridSearch is to exhaustively search all possible parameter
177  combinations in the parameter space, then perform cross-validation on each parameter
178  combination, and select the parameter combination with the best performance.
179	Suppose we have a model parameter space Θ, where each parameter combina-
180  tion can be represented by a vector θ which consisting of k, l2, n2, n3. Our goal is to
181  find the best parameter combination θ∗ given the training data set Dtrain, so that the
182  model can perform better on the validation data set Dval for optimal performance. Its
183  mathematical principle can be expressed as follows:

θ∗ = arg minf (θ, Dtrain, Dval),	(16)
θ∈Θ
184  where the term f (θ, Dtrain, Dval) represents the performance metric obtained by training
185  the model with parameter combination θ on the validation set Dval.  Here we use
186  Negative mean square error (NMSE) to calculate the metric:
  1	 Σ	2
f (θ, Dtrain, Dval) = −	(yi − yˆi)	(17)
|Dval| i∈D[image: ]al

[bookmark: Applications][bookmark: _bookmark17]187	3	Applications
188	To verify the applicability and stability of the proposed model, we use 3-real-world
189  data in energy field. The data set has important practical significance and it will be
190  discussed further in later context. Moreover, min-max mapping is used to prevent
191  overflow here. The MAPE metric are used to measure the performance of the model
192  and its mathematical expression is as follows:

1 Σ |yˆ(t) − y(t)|
s
k∈U
|y(t)|



(18)

193  where U is the training or testing set and s is the length of U .
194	10 models are used to compare, and the information is shown in Tab.2.

[bookmark: _bookmark18]Table 2: Information of models used for comparison

	Full Name
	Abbreviation
	Reference
	Year

	Gated Recurrent Unit
	gru
	[19]
	2017

	Random Forest Regression
	rf
	[20]
	2001

	Extreme Gradient Boosting
	xgb
	[21]
	2015

	Long Short-Term Memory
	lstm
	[22]
	2000

	Support Vector Regression
	svr
	[23]
	1996

	Convolution Neural Network
	cnn
	[24]
	2015

	Multilayer Perceptron
	mlp
	[25]
	2009

	CNN-LSTM
	cnnlstm
	[26]
	2019

	Convolutional LSTM
	convlstm
	[27]
	2017

	General Regression Neural Network
	grnn
	[28]
	2004



[bookmark: Case_1:Electricity_Transformer_Oil_Tempe]195  3.1	Case 1:Electricity Transformer Oil Temperature
196	In power distribution problems, the accuracy of voltage distribution is crucial. The
197  distribution of electricity needs to be adjusted according to the needs of different re-
198  gions, and this adjustment often depends on the continuous use of electricity. However,
199  predicting future demand in a specific region is a difficult task as it is affected by various
200  factors such as working days, holidays, seasons, weather, temperature, etc. Any incor-
201  rect prediction may damage the operation of the electrical transformer. As a result,
202  there is currently no very effective way to predict future electricity usage, and managers
203  are forced to make decisions based on empirical numbers, which are often higher than
204  actual demand. This results in unnecessary waste and depreciation of electricity and
205  equipment.
206	The transformer oil temperature can reflect the operating status of the electrical
207  transformer, so in this article we use oil temperature prediction to better solve the
208  voltage distribution problem to avoid unnecessary waste.
209	In this paper, we collect hourly transformer oil temperature data from 1:00 on June
210  1, 2018 to 19:00 on June 26, 2018 from the website https://github.com/zhouhaoyi/ETDataset.
211  The first 496 points are used to train and the rest 124 points are used to test. The
212  training plot is shown in Fig.4 and the testing plot is shown in Fig.5. The MAPE value
213  of all the models are presented in Table 3.
214	From the training and testing plot, we could observe that all the models have
215  good performance and the prediction curve are very close to the curve of raw data. In
216  addition, from Tab.3, it’s clearly that the proposed model has the smallest MAPE value
217  in testing. Only the testing values of gru and svr are close to MLP-ResNet, but both
218  of them perform worse than the proposed model in training. The rf model has the best
219  MAPE value in training but perform bad in testing.
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Fig. 4. Prediction values of Electricity Transformer Oil Temperature training set
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Fig. 5. Prediction values of Electricity Transformer Oil Temperature testing set     
     



[bookmark: _bookmark21]Table 3: MAPE for training and testing of all the models in Case-1

	Model
	MLP-ResNet
	gru
	rf
	xgb
	lstm
	svr
	cnn
	mlp
	cnnlstm
	convlstm
	grnn

	Train
	3.623
	3.684
	1.620
	3.509
	3.800
	4.038
	4.190
	5.744
	3.649
	3.695
	3.221

	Test
	5.132
	5.155
	6.570
	5.966
	5.240
	5.217
	6.609
	7.058
	6.440
	5.538
	5.862



[bookmark: Case_2:U.S._Imports_of_Crude_Oil_and_Pet]220  3.2	Case 2:U.S. Imports of Crude Oil and Petroleum Products
221	Petroleum and its products are a key component of the global economy and have
222  profound impacts on energy markets, trade balances and geopolitics. Therefore, accu-
223  rate forecasts and analysis of U.S. crude oil and petroleum product imports are critical
224  to the stability of international energy markets and the development of the global econ-
225  omy.
226	In this paper, we collect the monthly data from January 15, 1981 to June 15, 2023,
227  and the data comes from the U.S. Energy Information Administration. For convenience

228  of expression, we called the data as ICOP. The first 408 points are used for training     
     
     
     
     
     

229  and the last 102 points are used for testing. The training and testing plot are shown in
230  Fig.6 and Fig.7. The MAPE value are shown in Tab.4.
231	All models’ curves shown in Fig.6 and Fig.7 also fit well both in training and
232  testing. From the MAPE table, while it is evident that MLP-ResNet performs best
233  during testing, its performance during training is suboptimal. The rf model achieves
234  the best MAPE value during training but performs poorly in testing.     
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Fig. 6. Prediction values of ICOP training set     
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Fig. 7. Prediction values of ICOP testing set     
     



[bookmark: _bookmark24]Table 4: MAPE for training and testing of all the models in Case-2

	Model
	MLP-Resnet
	gru
	rf
	xgb
	lstm
	svr
	cnn
	mlp
	cnnlstm
	convlstm
	grnn

	Train
	6.144
	6.169
	3.842
	3.704
	6.516
	5.705
	9.070
	5.941
	5.074
	5.453
	4.922

	Test
	4.495
	4.580
	4.818
	4.637
	4.531
	4.754
	4.709
	4.748
	4.996
	4.514
	4.528



[bookmark: Case_3:Inland_Wind_Turbine_Power_Generat]235  3.3	Case 3:Inland Wind Turbine Power Generation
236	Wind energy is of great significance to combat climate change, reduce carbon emis-
237  sions, and achieve sustainable energy development. Forecasts of inland wind turbine
238  power generation can unveil the potential and feasibility of wind power generation in
239  the region. Similarly, comprehending the power generation of individual turbines in
240  inland wind farms aids in optimizing energy production and supply. By predicting
241  wind power generation and adjusting turbine operating parameters, energy utilization
242  efficiency can be enhanced, power generation costs can be minimized, and sustainable

243  energy production can be achieved.     
     
     

244	Here, we use this hourly Inland Wind Turbine Power Generation data (IWTPG)
245  which is from September 11 to October 7, 2015, and the data is found from the website
246  https://zenodo.org/records/5516539. We use the first 420 points to train and the last
247  105 points to test. The training and testing plot are shown in Fig.8 and Fig.9. The
248  performance of the models are shown in Tab.5.
249	As the MAPE values shown in Tab.5, it’s apparent that MLP-ResNet has a sig-
250  nificantly lower training MAPE than the other models. Although MLP achieves the
251  second-best testing MAPE, its performance in training is much worse than that of MLP-
252  ResNet. Similar to the other two cases, the rf model also achieves the best training
253  MAPE value but performs poorly in testing.
[bookmark: _bookmark25]          
                          
   
                          
  
                          


! ! 
                          
    
                          
   
                          
   
                          
   
                          
       
                          
        
                          
    
                          
     
     
     
     
     
     





Fig. 8. Prediction values of IWTPG training set     
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Fig. 9. Prediction values of IWTPG testing set     
     



[bookmark: _bookmark27]Table 5: MAPE for training and testing of all the models in Case-3

	Model
	MLP-ResNet
	gru
	rf
	xgb
	lstm
	svr
	cnn
	mlp
	cnnlstm
	convlstm
	grnn

	Train
	36.594
	42.239
	28.035
	33.121
	33.447
	37.276
	41.900
	38.910
	43.282
	36.758
	37.357

	Test
	34.914
	59.740
	44.011
	38.140
	69.743
	39.190
	50.164
	36.553
	53.151
	44.628
	39.438



[bookmark: Disscusion]254  3.4	Disscusion
255	Clearly, the proposed MLP-ResNet model performance on the training set is not
256  outstanding, but it performs the best in testing in 3 cases and the prediction curve of
257  MLP-ResNet is very close to the raw curve. This shows that it has strong generalization
258  ability and prediction accuracy. This result shows the reliability and stability of the
259  model in real scenarios. Meanwhile, the rf model achieves the best training MAPE
260  value, but it frequently performs worse in testing. The reason for this may be that the
261  model is not complex enough or overfitting occurs.

[bookmark: Conclusions][bookmark: _bookmark28]262	4	Conclusions
263	In this paper, we introduce the MLP-ResNet model, presenting a comprehensive
264  theoretical framework, model training methodology, and parameter tuning approach.
265  Moreover, according to 3 cases in Sec.3, it shows that the proposed model often performs
266  best in testing and has good versatility. The way combines the ResNet and MLP could
267  effectively improve the prediction accuracy and applicability. We believe that this kind
268  of approach could have deeper research in the future.
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