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Exploration of Reliability measures and profit Analysis of a System with the Prerequisite of Rest


Abstract
This study examines the reliability measures of a system where two identical or similar units (or components) are used, with one serving as a backup for the other in case of failure, ensuring continued operation of a two-unit redundant system enhanced by a resting mechanism designed to improve performance. The system consists of two units, with one unit operating actively while the other remains in a cold standby mode. A distinctive aspect of the model is the inclusion of periodic rest for the active unit, during which it is not considered failed. The failure, repair, and rest rates are modeled using exponential distributions. Key reliability metrics such as MTSF, availability, and the busy period of the server are analyzed through linear differential equations. To evaluate the system’s performance, graphs are employed to demonstrate how varying rest rates influence reliability measures and profitability. The findings reveal that the resting mechanism plays a critical role in enhancing system availability and operational efficiency. This analysis establishes a mathematical foundation for assessing system performance and provides strategies for optimizing reliability and profitability in redundant systems.
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1. Introduction
Evaluating system performance is essential for assessing effectiveness and identifying key metrics. Two-unit redundant systems have garnered significant interest in reliability studies due to their extensive use in industrial and commercial applications. Researchers have explored various configurations of these systems, focusing on metrics such as MTSF, steady-state availability, repairman busy periods, and cost analysis. These investigations often employ the regeneration point technique and the Markov renewal process. Previous studies have addressed different aspects of two-unit redundant systems.[2] Garg and Garg (2022) analyzed availability metrics and profit optimization in systems with a single unit featuring a suboptimal switch-over device. [10] Malhotra et al. (2021) examined the dependability of a two-unit cold standby system with preventive maintenance in the pharmaceutical sector. [9] Lawan et al. (2022) investigated the reliability and performance of a two-unit active parallel system with two repairable machines. [11] Saini et al. (2021) conducted a stochastic evaluation of two-unit redundant systems incorporating different repair strategies. [8] Kumar et al. (2023) studied the reliability of spare standby systems with refreshment, using linear differential equations for computing reliability measures an approach that simplifies calculations and is often implemented using software like MATLAB. For instance,[6] Khaled and El-Said (2008) used linear differential equations to analyze cost performance in systems with preventive maintenance, while [ 1] Ali et al. (2013) applied the Kolmogorov forward equation technique to evaluate a system with two units, where one unit operates while the other remains powered off as a backup system with three operational modes. [4] Haggag M.Y.  (2009) also employed Equations describing linear relationships between derivatives to assess the cost of systems with preventive maintenance. Similarly,[13] Ibrahim Yusuf (2012) compared reliability characteristics across spare systems with supporting units, and [5] Joshi et al. (2013) conducted stochastic analyses of redundant systems with rest periods, leveraging the regenerative point technique and Markov renewal processes.
This paper focuses on a detailed analysis of the reliability measures of a two-unit system that has a backup that includes a rest mechanism. In this model, one unit operates actively while the other remains in cold standby, ensuring it does not fail while inactive. The active unit transitions to a rest state after operating continuously for a random period. During rest, the system halts operation without experiencing failure. A complete system failure happens only when both units fail at the same time. This study examines the effects of rest rates on MTSF, steady-state availability, repairman busy periods, and profit functions by analyzing numerical examples with specific system parameters.
2. Model Description and Assumption
The mathematical model has been developed based on the given assumption assumptions.  
• The setup consists of two distinct units, The system after continuously operating for an arbitrary amount of time enters rest, 
• The system enters a resting state after an uncertain Period, and the system becomes down but not failed during this interval. The system restarts after rest, and the process is repeated with alternate intervals of rest and operation.
• The standby mode is quickly transitioned to operational mode.
• It is assumed that the failure time, repair time, and the rate at which the system's rest provision applies follow an exponential distribution. 
• Repaired to like-new condition
•  Only one modification is permitted at a time.
3. Notation and Symbol
Si : State of transition for the system , i =0,1 , 2 ,3 ,4 ,
N0  ; Normal unit kept as operative
NS  ; Normal unit kept as cold standby
Nrest ; Normal operative unit in the position of rest due to proviso of rest to the system
Fr  ; Failed unit under repair
rate of failure for the initial unit
 – second unit failure rate
γ- first unit repair rate
μ- repair rate of second
 - constant rate of time after which rest is applicable to the first unit
 δ - constant rate of time after which rest is applicable to the second unit
                η - constant rate of end of rest first unit
- constant rate of end of rest second unit
     4. States within the system
            Up State ;  S0 ≡ ( N0, NS) ,     S2 ≡ ( Fr, N0)   
              Rest State   S1 ≡ ( Nrest, NS)  S3≡ ( Fr, ,Nrest)
            Down State ;   S4 ≡ ( Fr,, ,Fr) 
    

[image: C:\Users\HP\Downloads\img2.png]

                   Figure 1. State Transition Diagram 

5. Mean time to failure of the system (MTSF).
In the context of Figure 1, P(t) denotes the row vector of probabilities at time t, where each element Pi(t) signifies the probability of the system residing in state Si at that time. The problem's primary conditions are then given as.
	
P(0)= [ P0 (0), P1 (0), P2 (0), P3 (0), P4 (0),],  = [ 1, 0 , 0 ,0, 0  ]   
                                   
	
(1)


Based on the preceding information, the following differential equations are obtained:
	 = -λ P0(t)+ η P1(t)+ γP2(t)+ θ P4(t)                 
= -( + α)P1(t)+  λ P0(t)    
= -( )P2(t) + α P1(t)+η1 P3(t)                 
= -( η1+β) P3(t)     + P2(t) 
  =-θ P4(t)  +β P3(t)



The matrix representation of above differential equation is as follows. 
	 = A P                                                                                                  
	(2)


where
	A =
	



Directly calculating the transient solution is overly complex. Therefore, we opt for an alternative method to determine the MTSF. This involves creating a new matrix, Q, by transposing matrix A, and then removing the rows and columns associated with the absorbing state.
The anticipated duration for attaining a terminal state is derived from
[bookmark: _Hlk73725083]E[TP(0) →(absorbing)] = P(0)								     (3)
and
[bookmark: _Hlk73725057][bookmark: _Hlk73725143] = -Q-1,since Q-1< 0                                                                                                      (4)  
where
	Q  =  
	



 The MTSF has an Explicit expression provided by
	           
       
	  
(5)

	MTSF   =             
	(6)


 
7. Steady -State Availability
In the availability analysis for Figure 1, we use the same initial state as in the reliability evaluation. This means the system begins in state P0, represented by the vector P(0) = [1, 0, 0, 0, 0]. The system's dynamics are then described by the following differential equation:  
 =A P

The value of steady-state availability is provided by                                      
	                                                                                           
Since the rate of change of state probabilities approaches zero in steady-state, therefore
	
(7)




	 A P = 0	                                                                                        
	(8)


The matrix representation is given by
                                         (9)
                                                                   (10)

To determine P4(∞) by reducing the complexity of equation (9). This is achieved by replacing a redundant equation with the expression from equation (10). The resulting linear system, presented as a matrix, is then solved.
.                                          (11)                                                               
For fig.1 "Equation (9)'s solution provides the availability. The precise expression for .
   A                                                (12)
8 Busy period Evaluation
The starting condition for this issue is identical to that of the reliability event
                                                         (13)

The following process can be used to find the busy period. the derivatives of the state probabilities with respect to time become negligible. By setting these derivatives to zero. 
B                                                                                                 (14)                                                      
A P = 0                                                                                                                                   (15)
Alternatively as a matrix
    	
 The given system, equation (15), along with the normalizing condition must be solved in order to get 
                                                                     (16) 
By replacing a redundant row in equation (15) with equation (16), we obtain
               
B the average length of time the system is unavailable is   given by
 B                       (17)
   9 Profit Analysis
The anticipated cumulative gain per unit of time invested in the state’s system is provided thru 
Profit = Gross revenue –total cost
PFC0 A   - C1 B                     (18)
where,	
P F ; represents the system’s profit incurred
C0 ; is the system’s revenue per unit  of uptime
C1 ; is the price per minute that the system needs to be repaired .
10 Numerical and Graphical Representation of Different Reliability Measure 
Table 1 presents a comprehensive analysis of the model performance, focusing on the interplay between the rest rate (λ) and key reliability and economic metrics. Specifically, the table compares MTSF, Availability A (), the server's Busy period B(), and the Profit incurred across varying rest rates. This comparison is conducted under a fixed set of system parameters, ensuring a controlled environment for observing the impact of λ. The fixed parameters include: α =1.5 ,β =2 γ =2.5 ,η =2 θ=1 , δ = 3 ,η₁ =3.5 C0 =1000 ,C1 =100.
Table 1 :   Effect of Rest rate on MTSF , Availability and Profit
	λ
	MTSF
	
	

	0.1
	80.417
	0.9877
	973.898

	0.2
	42.014
	0.9767
	962.219

	0.3
	29.213
	0.9669
	951.729

	0.4
	22.813
	0.9580
	942.254

	0.5
	18.972
	0.9499
	933.654

	0.6
	16.412
	0.9425
	925.813

	0.7
	14.583
	0.9358
	918.636

	0.8
	13.212
	0.9296
	912.041

	0.9
	12.145
	0.9239
	905.959

	1.0
	11.291
	0.9186
	900.335
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Graphs of MTSF, availability, and profit function against varying rest rates are plotted. These visuals clearly illustrated the nonlinear dependencies and provided actionable insights for parameter tuning.
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Figure 2 :  MTSF Vs Rest rate (λ) Relationship            

[image: E:\hemlata\Fig2_paper4.jpg]
Figure 3: Availability Vs. Rest rate (λ) Relationship
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Figure: 4 Profit Vs. Rest rate (λ) Relationship

11 Result and Discussion 
The analysis of a system incorporating a rest mechanism reveals crucial insights into its reliability, with rest rates playing a pivotal role. Notably, the Mean Time to System Failure (MTSF) significantly improves with increased rest rates, indicating that strategic resting intervals prolong operational lifespan by mitigating stress on active units and preventing premature failures. However, the relationship between steady-state availability and rest rates is nonlinear. While low rest rates maintain high availability, exceeding an optimal threshold leads to decreased availability due to extended downtime, emphasizing the need for a balanced approach. Furthermore, the server's busy period decreases with optimal rest rates as fewer failures necessitate repairs, while excessively long rest intervals result in increased idle periods, negatively impacting profitability. Consequently, the profit function demonstrates a positive trend with moderate rest rates, which minimize failure and repair costs while maintaining high availability. Conversely, excessive resting intervals diminish profit due to lost operational time, underscoring the importance of meticulous parameter optimization to achieve optimal system performance.
The results validate the efficiency of incorporating rest mechanisms in redundant systems. Rest rates must be carefully selected based on system-specific operational and cost parameters to maximize reliability and profit. The findings align with earlier studies, demonstrating that mathematical modeling using linear differential equations provides an effective tool for analyzing complex systems.
 13. Conclusion
This study analyzed a two-unit redundant system with a provision for rest, employing linear differential equations to compute reliability measures. The results highlight that the resting mechanism significantly influences system performance by enhancing availability and reliability metrics. The system benefits from the introduction of rest intervals, as it allows components to rejuvenate, reducing overall wear and tear. The mathematical modeling and analysis demonstrated that appropriate parameter optimization, particularly the rest rate, can effectively balance system performance and profit. In future the model could be expanded to include energy consumption and environmental factors, which are critical in modern industrial systems.
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