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PCA-driven Insights into Hybrid-Parent Performance in Okra [Abelmoschus esculentus (L.) Moench.]
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ABSTRACT  

	[bookmark: _GoBack]Aims: The study aimed to evaluate genetic diversity and identify trait relationships among okra (Abelmoschus esculentus L. Moench) F1 hybrids and their parental lines using principal component analysis (PCA). It sought to uncover key traits contributing to yield variability and to support breeding efforts by identifying superior hybrids and combining parents suited to Sudanese agro-ecologies.
Study Design: The study used a line × tester mating design involving 10 parental lines and their 21 resulting F1 hybrids. Multivariate statistical tools, including PCA and hierarchical clustering, were employed to assess trait variability, relationships, and genotype grouping based on multiple morphological and yield-related parameters.
Place of Study: The research was conducted at the demonstration farm of the Faculty of Agriculture, University of Al Zaeim Al Azhari, located in Khartoum North, Sudan.
Methodology: Eleven agronomic traits were recorded, including plant height, number of fruits per plant, yield per plant, and others. Data were analyzed using analysis of variance and principal component analysis. The first four principal components were extracted, and their eigenvalues, trait loadings, and correlations were studied. Standardized Euclidean Distance and Ward’s method were used for hierarchical clustering to group genotypes based on similarity.
Results & Discussion: Substantial phenotypic variation was observed, with yield per plant (CV = 21.2%), fruit fresh weight (18.9%), and number of lateral branches (16.3%) showing the highest variability. PCA revealed four principal components explaining 71.85% of the total variance. PC1 (27.48%) was highly associated with yield traits, while PC2 (22.14%) captured architectural and earliness traits. PC3 and PC4 explained structural variation. Cluster analysis grouped genotypes into four major clusters. Sinnar-derived hybrids formed a compact, high-yielding group, indicating superior combining ability. Clemson crosses exhibited wide variability and heterotic potential, while Hjerat lines showed genetic divergence useful for broadening the gene pool.
Conclusion: Principal Component Analysis effectively revealed genetic diversity and critical trait associations among okra hybrids and parents. Sinnar was identified as a superior parent for yield improvement, while other testers contributed unique traits. The results support the use of PCA in trait prioritization, selection of promising genotypes, and development of improved okra cultivars adaptable to Sudanese and similar environments.
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1. INTRODUCTION  

Okra [Abelmoschus esculentus (L.) Moench], a warm-season vegetable crop of tropical and subtropical origin, is widely grown across Asia, Africa, and the Middle East for its edible immature pods, nutritional value, and medicinal uses. Rich in vitamins A, C, and K, as well as calcium, magnesium, and mucilage, okra contributes significantly to food and nutritional security, especially in low-income communities (Dhankhar et al., 2022). Globally, okra is cultivated on over two million hectares, with India, Nigeria, and Sudan among the top producers (FAOSTAT, 2022). In Sudan, okra is one of the most popular traditional vegetables, cultivated under both irrigated and rain fed conditions and consumed in fresh and dried forms. Despite its importance, yield levels remain low due to limited genetic improvement, poor seed systems, and a lack of systematic breeding strategies. Most farmers grow local landraces that are genetically diverse but largely uncharacterized, with little data available on hybrid performance or parent-hybrid relationships.
To address these challenges, hybridization programs have been initiated to develop improved cultivars with better yield, quality, and adaptability. However, the selection of promising hybrids and parents requires a deeper understanding of the genetic architecture of yield and morphological traits. Most of these traits are quantitatively inherited, complex, and highly influenced by environmental factors, making direct phenotypic selection difficult. In this context, Principal Component Analysis (PCA) offers a powerful multivariate statistical approach to unravel the underlying structure of trait variability, reduce data dimensionality, and reveal hidden patterns of trait association. PCA transforms correlated traits into a set of orthogonal principal components that capture the maximum variance, thereby facilitating genotype classification and trait prioritization .Its application in crop breeding has proven effective in identifying trait combinations that explain most of the variability, simplifying the selection process and supporting genetic improvement.
In okra breeding, PCA can also be used to explore the clustering of hybrids about one or both of their parents, providing insights into genetic relationships, heterosis, and transgressive segregation. However, despite its utility, the application of PCA in okra breeding remains limited in Sudan, especially in studies comparing hybrids with their parental lines. This gap restricts breeders' ability to exploit the full potential of multivariate analysis for selection and cultivar development. Therefore, this study was conducted to analyze the morphological and yield-related variation in okra hybrids and their parents using Principal Component Analysis to provide insight into genetic diversity, determine the relative contribution of each trait to total variation, examine the clustering patterns of hybrids near one or both parents and identify superior hybrids based on multivariate trait performance. The findings are expected to inform selection strategies and support ongoing efforts to enhance okra breeding efficiency and genetic gain in Sudan and similar agro-ecological regions.

2. material and methods  	

The present investigation was conducted at the demonstration farm of the Faculty of Agriculture at the University of Al Zaeim Al Azhari, located in Khartoum North. A total of ten genetically diverse parental lines of okra were crossed using the line × tester method developed by Kempthorne in 1957. Seven lines, namely HSD 1835, HSD1834, HSD1839, HSD 2543, HSD 2482, HSD 1840, and HSD 2550, were used as female lines, while Sinnar, Hjerat, and Clemson Spineless served as male lines/testers. 
The crossing was performed in standard crossing blocks, with emasculation and pollination conducted before flower opening. Standard procedures for emasculation and pollination were adhered to, utilizing a cutter, forceps, tags, and paper bags. In total, twenty-one F1 hybrids, along with the ten parental lines, were arranged in a Complete Randomized Block Design (CRBD) with three replications. Each plot consisted of three ridges, extending three meters. The spacing adopted was 75 cm between ridges and 30 cm between plants.
Observations on the number of days to flowering were recorded on a plot basis, noting the time from the sowing date to the onset of flowering. Additionally, plant height (cm), fruit length (cm), number of nodes per plant, number of lateral branches, number of fruits per plant, fruit dry weight (g), fruit fresh weight (g), number of seeds per fruit, and yield per plant (g) were recorded as averages from ten randomly selected plants in each plot across the three replicates. The weight of the hundred-seed count (g) was measured using a sensitive balance.
Data were analyzed using Analysis of Variance (ANOVA) as described by Gomez and Gomez (1984) through the online software package Grapes 1.1.0, developed by Gopinath et al. (2021) at Kerala Agricultural University. Additionally, Principal Component Analysis (PCA) was performed to assess trait divergence, variability, and genotype clustering, as outlined by Pearson (1901) and Hotelling (1933). Trait-based clustering among genotypes was examined by Ward (1963), a hierarchical clustering method. The differences in scales or units across variables (traits) were adjusted using the Standardized Euclidean Distance formula, suggested by Gower (1966) and Kaufman & Rousseeuw (1990).

 
3. results and discussion
3.1 Trait variability  
Table 1 presents the descriptive statistics for 11 morphological and yield-related traits among okra genotypes. The results indicate considerable phenotypic variation, which is essential for effective selection in breeding programs. For instance, plant height ranged from 23.2 cm to 45.6 cm (mean = 31.15 cm), and yield per plant ranged from 12.1 g to 27.0 g (mean = 20.29 g). The coefficient of variation (CV %) was notably high for yield per plant (21.2%), fruit fresh weight (18.9%), and number of lateral branches (16.3%), suggesting these traits are more influenced by genetic diversity and thus valuable for selection. In contrast, days to flowering exhibited a low CV (2.8%), indicating this trait was relatively stable across genotypes.















Table 1. Descriptive statistics of morphological and yield traits in okra hybrids and their parents
	Variance
	Number of days to flowering
	Number of lateral branches
	Plant height (cm)
	Number of nodes per plant
	Fruit length (cm)
	Number of fruits per plant
	Fruit dry weight(g)
	Fruit fresh weight(g)
	Number of seeds per fruit
	Weight of hundred-seeds(g)
	Yield per plant (g)

	Minimum
	41.700
	4.300
	23.200
	6.700
	3.600
	3.000
	0.400
	3.900
	35.300
	3.900
	12.100

	Maximum
	48.000
	8.300
	45.600
	11.000
	5.800
	6.000
	0.600
	5.500
	64.700
	6.300
	27.000

	Mean
	45.603
	5.958
	31.145
	8.677
	4.713
	4.539
	0.497
	4.848
	49.339
	5.116
	20.294

	Standard error mean
	0.230
	0.174
	0.947
	0.229
	0.106
	0.154
	0.011
	0.061
	1.273
	0.104
	0.774

	Standard deviation
	1.278
	0.971
	5.270
	1.274
	0.593
	0.859
	0.060
	0.342
	7.087
	0.580
	4.308

	Coefficient of variation %
	 2.8
	 16.3
	 16.9
	 14.7
	 12.6
	 18.9
	 12.2
	 7.1
	 14.4
	 11.3
	 21.2










3.2 Eigenvalue structure and total variation
Table 2 summarizes the eigenvalues and variance explained by each principal component. The first four principal components (PC1 to PC4) had eigenvalues >1 and jointly accounted for 71.85% of the total variation. The first principle component PC1 (27.48%) was the most influential, followed by PC2 (22.14%), PC3 (11.83%), and PC4 (10.39%). This pattern indicates that the first four components effectively summarize the multidimensional data and can be used to classify genotypes and interpret trait interrelationships. The drop in eigenvalues after PC4 supports retaining these components for further biological interpretation, consistent with the report by Idehen & Ola, (2021) on the Kaiser criterion (Kaiser, 1960).
Across various okra studies, PC1 alone explained a significant portion of the total variance. The first principle component (PC1) values reported ranged from (25.38%- 42.50%) was recorded in several works (Das et al., 2022; Mohammed et al., 2022; Kenaw et al., 2023;  Abhilash et al., 2023).  This confirms and is in lieu of the result obtained in this study.
Several researchers have reported that the first four principal components (PCs) effectively summarize multidimensional data, classify genotypes, and interpret trait interrelationships in okra (Dos Santos et al., 2013; Das et al., 2022; Idehen & Ola, 2021; Murtadha et al., 2023; Abhilash et al., 2023; Kenaw et al., 2023; Syfullah et al., 2025). The first four PCs frequently account for over 60% and sometimes up to 85% of the total variation (Murtadha et al., 2023; Mohammed et al., 2022; Kenaw et al., 2023; Nwangburuka et al., 2011).  In Nigeria, Olayiwola et al.(2021) found the first four PCs accounted for 80% of the total variation, with PC1 having the highest discriminatory power. Another report from India by Ranga, et al.(2021) recorded as high as 84.28% cumulative variance across the first four PCs.



Table 2. Eigenvalues and variance explained by principal components for morphological and yield traits in okra

	Principle components
	Eigen value
	percentage of variance
	Cumulative variance percentage

	PC1
	3.023
	27.48
	27.48

	PC2
	2.436
	22.142
	49.622

	PC3
	1.301
	11.83
	61.452

	PC4
	1.143
	10.394
	71.846

	PC5
	0.728
	6.615
	78.461

	PC6
	0.689
	6.266
	84.727

	PC7
	0.607
	5.52
	90.247

	PC8
	0.379
	3.446
	93.694

	PC9
	0.361
	3.284
	96.978

	PC10
	0.24
	2.186
	99.164

	PC11
	0.092
	0.836
	100











3.3 Contribution of traits to principal components
Table 3 details the percentage contribution of each trait to the first eight PCs. Yield per plant followed by number of fruits per plant (22.31%),   had the highest contribution to PC1 (25.75%), confirming its role as a primary determinant of genetic divergence among the studied genotypes. The specific trait identified as the highest contributor to PC1 varies from one study to another depending on the specific germplasm, traits measured, and environmental conditions of the study. However, yield-related traits such as "yield per plant," "pod yield," or "fruit yield per hectare" are consistently highlighted as major, and often the highest, contributors to PC1 in many investigations (Badiger et al., 2018; Ranga, et al., 2021;  Idehen & Ola, 2021; Mohammed et al., 2022; Kenaw et al., 2023;  Abhilash et al., 2023 ). Other major contributors to PC1 included the number of seeds per fruit (19.07%), and fruit dry weight (14.92%). This indicates that PC1 largely represents yield performance and associated reproductive traits. Consensus from the sources indicates that yield performance and associated reproductive traits (such as number of fruits/pods per plant, fruit/pod yield, fruit/pod length, fruit/pod weight, and seed weight) are generally major, and often the most influential, contributors to the first principal component in genetic diversity analyses of okra. This makes PC1 a crucial indicator for identifying superior genotypes for breeding programs aimed at improving yield (Ranga et al., 2022; Yadav et al., 2024). PC2 was dominated by days to flowering (25.01%) and the number of lateral branches (23.87%), suggesting that it represents a dimension of plant architecture and earliness. Several studies indicate that PC2 is significantly influenced by, or largely loaded with a combination of plant architectural traits (e.g., plant height, branching) and earliness traits (e.g., days to flowering, days to maturity), often alongside important reproductive or yield components (Idehen & Ola, 2021; Ranga, et al.,2021; Mohammed et al., 2022 ).The third principle component (PC3) captured variation in plant height (27.17%) and fruit fresh weight (37.14%), while PC4 was mainly explained by fruit length (34.98%) and number of nodes per plant (25.87%).


Table 3. Percentage contributions of variables on principal components (PC1–PC8) in okra

	Variables
	PC1
	PC2
	PC3
	PC4
	PC5
	PC6
	PC7
	PC8

	Number of days to flowering
	0.923
	25.009
	1.697
	2.647
	0.048
	16.644
	2.155
	0.011

	Number of lateral branches
	0.496
	23.875
	5.416
	7.331
	5.275
	4.296
	1.815
	18.74

	Plant height (cm)
	0.044
	12.308
	27.173
	15.277
	0.342
	6.156
	4.247
	7.805

	Number of nodes per plant
	0.758
	17.802
	0.352
	25.869
	18.454
	2.614
	0.121
	10.892

	Fruit length (cm)
	2.142
	9.819
	1.701
	34.975
	0.095
	26.181
	7.075
	4.083

	Number of fruits per plant
	22.314
	0.564
	0.348
	4.334
	6.8
	0.163
	18.071
	16.002

	Fruit dry weight(g)
	14.924
	2.285
	7.276
	0
	15.317
	12.083
	17.544
	18.246

	Fruit fresh weight(g)
	3.652
	1.154
	37.141
	5.742
	33.185
	3.164
	3.612
	0.517

	Number of seeds per fruit
	19.072
	4.1
	0.052
	2.58
	0.147
	21.28
	1.277
	9.424

	Weight of hundred-seeds(g)
	9.927
	1.628
	18.137
	1.17
	18.558
	2.838
	33.566
	13.572

	Yield per plant (g)
	25.749
	1.455
	0.708
	0.076
	1.779
	4.579
	10.517
	0.707








3.4 Trait–Principal component correlations
Table 4 provides the correlation coefficients between each trait and the first eight PCs. High correlations between a trait and a PC indicate the trait’s influence on that component. Yield per plant showed a strong positive correlation with PC1 (r = 0.882), followed by number of fruits per plant (r = 0.821) and number of seeds per fruit (r = 0.759), reinforcing their contribution to PC1 variation and their relevance for yield improvement.
 Days to flowering were strongly negatively correlated with PC2 (r = -0.780), reflecting variation in earliness among genotypes. This aligns with the findings of Abhilash et al.(2023), which demonstrate strong positive correlations between the number of fruits per plant and fruit yield per plant with Principal Component 1 (PC1). Additionally, recorded strong positive correlations for earliness with Principal Component 2 (PC2), which includes days to first flowering, days to 50% flowering, and days to the first fruit harvest. 
Plant height and fruit fresh weight had substantial contributions to PC3, with respective correlations of −0.595 and 0.695 respectively. Fruit length was negatively correlated with PC4 (r = -0.632), and nodes per plant had a positive association (r = 0.544), defining structural variation in this axis. These patterns affirm that PCA not only reduces data complexity but also identifies trait combinations that most influence genotype classification, which is critical in early-generation selection.

Table 4. Trait–Principal component correlation matrix (PC1–PC8) for okra genotypes

	Variables
	PC1
	PC2
	PC3
	PC4
	PC5
	PC6
	PC7
	PC8

	Number of days to flowering
	0.167
	-0.78
	-0.149
	0.174
	0.019
	0.339
	-0.114
	0.006

	Number of lateral branches
	-0.122
	0.763
	0.265
	0.289
	-0.196
	-0.172
	0.105
	0.267

	Plant height (cm)
	0.036
	0.548
	-0.595
	-0.418
	0.05
	-0.206
	-0.161
	-0.172

	Number of nodes per plant
	-0.151
	0.658
	0.068
	0.544
	0.366
	0.134
	0.027
	-0.203

	Fruit length (cm)
	0.254
	0.489
	0.149
	-0.632
	-0.026
	0.425
	0.207
	0.124

	Number of fruits per plant
	0.821
	0.117
	-0.067
	0.223
	-0.222
	0.034
	-0.331
	0.246

	Fruit dry weight(g)
	0.672
	-0.236
	0.308
	-0.001
	-0.334
	-0.289
	0.326
	-0.263

	Fruit fresh weight(g)
	0.332
	-0.168
	0.695
	-0.256
	0.491
	-0.148
	-0.148
	0.044

	Number of seeds per fruit
	0.759
	0.316
	0.026
	0.172
	-0.033
	0.383
	0.088
	-0.189

	Weight of hundred-seeds(g)
	0.548
	-0.199
	-0.486
	0.116
	0.367
	-0.14
	0.451
	0.227

	Yield per plant (g)
	0.882
	0.188
	-0.096
	-0.029
	0.114
	-0.178
	-0.253
	-0.052




3.5 Cluster and bi-plot analysis of okra hybrids and their parents 

Figure 1 shows the Bi-Plot (PC1-PC2) for Okra Hybrids and Parental Lines, while Figure 2 displays the cluster dendrogram of Okra Genotypes using PCA scores. Both figures illustrate the clustering pattern of okra hybrids and their parental lines identifying four clustering groups.  Group A includes the High-Yielding Sinnar Hybrids, HSD2482×Sinnar, HSD1834×Sinnar, HSD1835×Sinnar HSD2550×Sinnar, and Sinnar. These hybrids form a tight cluster, indicating Sinnar's strong combining ability for yield traits. Group B comprises the Clemson-Derived Diverse Hybrids, including HSD1839×Clemson, HSD1835×Clemson, and HSD1834×Clemson. These genotypes are widely separated, reflecting higher variability and heterotic expression. Group C include the divergent Hjerat Lines and Late Maturing Genotypes, which Include HSD1839×Hjerat, HSD2543×Hjerat, HSD1835, and HSD1840. These are genetically divergent, showing unique trait profiles possibly suited for genetic base broadening. Group D represent the core cluster of stable lines that Includes HSD1839, HSD2482, HSD2550, and Hjerat. These genotypes display moderate trait values and genetic stability. The dendrogram confirms PCA findings and highlights Sinnar-derived hybrids for yield improvement. Hjerat and Clemson contribute to broader trait diversity, suggesting their value in heterotic group development. The core genotypes may be used as standard checks or donor parents.  The results align with previous work on these hybrids reporting significant heterosis for yield and yield components for these hybrid combinations HSD2482×Sinnar, HSD1834×Sinnar, HSD1835×Sinnar HSD2550×Sinnar, (Abdalla  & ElKamil,   2025a). The role of sinner as a parent has also been highlighted and recommended as a parent in several studies (Abdalla & AlKamal, 2025b).


[image: ]


Figure 1. Principal component analysis bi-plot (PC1- PC2) of okra hybrids and parental lines  
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Figure 2. Cluster dendrogram of okra genotypes using PCA scores


4. Conclusion

The Principal Component Analysis (PCA) of morphological and yield traits in okra hybrids and their parental lines revealed significant genetic diversity and trait relationships critical for breeding programs. The first four principal components (PC1–PC4) cumulatively explained 71.85% of the total variation, with PC1 (27.48%) primarily associated with yield-related traits such as yield per plant, number of fruits per plant, and seeds per fruit, highlighting their importance for selection. PC2 (22.14%) was linked to earliness (days to flowering) and plant architecture (lateral branches), while PC3 and PC4 captured structural traits like plant height, fruit length, and node number. Hierarchical clustering and biplot analysis grouped the genotypes into four distinct clusters. The high-yielding Sinnar hybrids (HSD2482×Sinnar, HSD1834×Sinnar, HSD1835×Sinnar HSD2550×Sinnar). These findings confirm Sinnar as a superior parent for yield enhancement. This research supports the development of improved cultivars for enhanced productivity and food security. Future work should integrate genomic data to validate clustering patterns and expand trait evaluations across diverse environments to further refine breeding strategies.
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