


Geological influence on stream sediments geochemistry from Precambrian terrains of Uruguay


ABSTRACT
The National Mining and Geology Directorate of Uruguay (DINAMIGE) recovered, in 2020, geochemical data of Uruguayan Precambrian terrains collected in the 80’s, involving 31,874 soil and stream sediment samples. These samples were analyzed for 22 elements (Ag, As, B, Ba, Be, Cd, Co, Cr, Cu, Fe, Mn, Mo, Nb, Ni, P, Pb, Sb, Sn, V, W, Y and Zn) by direct current plasma spectrometry. Multivariate statistical methods and geographic information system (GIS) procedures applied on a set of 20786 geochemical samples, 84% of total geochemical regional sampling from Uruguay, aiming characterization of geochemical signatures. The work focused on analyzing the influence of geology on the geochemical signature, considering 34 geological formations. The Chuy Formation appeared as the most impoverished and five geological formations stood out from the rest. 
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1. INTRODUCTION
The mining sector contributes only 0.1% to the Gross Domestic Product (GDP) of Uruguay; a poor mineral resources country according to Eijkelboom and Serre (1983). Anyway, a geochemical exploration program initiated in the 1980s, covered around 20,000 km2 on Precambrian terrains of Uruguay, named the “Inventario Minero” (Midot, 1984). The main territories prospected located in Lavalleja, Maldonado and Rivera Departments. Today, other territories were incorporated to mining activities, involving agate, amethyst, base metals, gold, limestone, sand, syenite and fragmented rocks (CEIC, 2025) reaching 8 to 64 million of metric tons of mineral production in the period 2011 to 2022.
Cernuschi (2014) mentions that: “Although Uruguay's mining history and its geological constitution are consistent with a territory where almost any type of rock or mineral occurs; a large part of Uruguayans believe that mining is almost non-existent and that its contribution will contribute little or nothing to national development”. However, the author highlights the importance of a few mining ventures for the national economy. 
Statistical methods and GIS strategy applied on these geochemical data, overlaying the respective geological units are presented here, focusing to understand the geochemical signatures and its sources. Special attention was given to the relation “geology by geochemistry”, which affected significantly the geochemical reply of stream sediments. 

Brief description of Uruguayan Geology
The Rio de la Plata Craton (RPC) is the oldest and southernmost geological core of South America (Rapela et al., 2011) and it underlies almost all Uruguayan territory, parts of Argentina and Brazil. The study area locates in the east border of the RPC including west part of Dom Feliciano Belt. Two Shear Zones, identified as YIZ to West and SBZ to East (Table 1) delimited the Nico Perez Terrane (NIC) and the NeoProterozoic domains (BNG, LAV, MOG, etc.). The Tierra Alta Terrain located to West of YIZ and NIC located to East of SBZ and between both Shear Zones, compose the RPC. A set of metavulcano-sedimentary rocks, the NPro domains (Table 1), occur adjacent to NIC and it is delimited by SBZ (Masquelin et al. (2017). Mineral occurrences of gold and base metals are usually associated to NIC and LAV.
Table 1. Geological summary based on Bettucci et al. (2003; 2021), Fragoso-Cesar et al. (1987)Demarco et al. (2019a/b), DINAMIGE (1985); Preciozzi et al. (1985); Midot (1984), Fesefeldt et al. (1988), Hartmann et al. (2001), Oyantçabal et al. (2011) and Masquelin et al. (2017). GT = Geological Time (Era, Period or Epoch).

	Symbol
	Name
	Description
	GT

	HOS
	No specific name
	Actual Sediments
	Ce

	DOL
	Dolores Formation
	Mudstones and clayey sandstones
	Ple

	LIB
	Libertad Formation
	Mudstones and loess
	Ple

	CHU
	Chuy Formation
	Yellowish-white and reddish sandy sediments and sandy clays
	Ple

	RAI
	Raigon Formation
	Fine, conglomerate sandstones with parallel cross-stratification of light cor
	Pli

	PUE
	Paso del Puerto Formation
	Poorly sorted and massive fine to conglomeratic sandstone with brown and red clay intercalations
	Pli

	BNG
	Barriga Negra Group
	Pelitic-volcanic rocks
	C-N

	MIG
	Migues Formation
	Stratified clays, calcareous sandstones and black or brown shales
	CIN

	ARE
	Arequita Formation
	Rhyolites, dacites and micro-pegmatites.
	CIN

	VCH
	Valle Chico Formation 
	(Micro)sienites, trachyte porphyries.
	CIN

	PGO
	Puerto Gomez Formation
	Tholeiitic basalts and andesites
	Jur

	F3I
	Tres Islas Formation
	Clear regularly sorted massive clays and conglomeratic sands.
	Jur

	SGR 
	San Gregorio Formation
	Fluvic-torrential, lacustrine and glacial sediments.
	P-C

	CSA
	Sierra de las Animas Complex
	Eruptive rocks granites and syenites (CSAG) and basalt (CSAB)
	CO?

	BNG
	Barriga Negra Group
	Sedimentary rocks of low grade metamorphism
	NPro

	SBZ
	Sierra Ballena Shear Zone
	Diversified milonites
	NPro

	
	
	
	

	RKG
	Rapakivi granites
	 It is characterized by large, rounded crystals of orthoclase each with a rim of oligoclase (Wikipédia, 2025)
	NPro

	GMB
	Brazilian milonitic granites (Fragoso-Cesar et al., 1987)
	Syntectonic and tardi and post-tectonic granites
	NPro

	LAG
	Brazilian Granites
	Post-late-tectonic bodies
	NPro

	MOG
	No specific name
	Migmatite, orthogneiss and undifferentiated granites
	NPro

	NIC
	Nico Perez granites (Bettucci et al., 2021)
	Mosaic of tectonic different blocks
	NPro

	SYG
	No specific name
	Calc-alcaline granites and granodiorites
	NPro

	COL
	Cerro Olivo Complex (Masquelin et al., 2012)
	Migmatitic paragneiss and orthogneiss hosting granites of ca. 600–540 Ma.
	NPro

	MAL
	Maldonado Group (Pecoits et al., 2011)
	Mafic and acidic volcanic rocks, pyroclastic rocks, diamictite, sandstone, conglomerate and pelites
	NPro

	RCH
	Rocha Group (Abre et al., 2020).
	Siliciclastic turbidite sequence with a regional NNE trend.
	NPro

	BRZ
	Brazilian Shear Zone
	Cataclasites and milonites
	NPro

	LAV
	Lavalleja Group
	Volcano-sedimentary rocks
	NPro

	YIZ
	Sarandi Del Yi formation
	Shear zone, milonites and granites.
	NPro

	ZTI
	Zanja Del Tigre Complex
	Metavolcano – sedimentary, amphibolite facies
	NPro

	CCA
	Cerro Catedral Unit
	Volcanic eruptive rocks
	NPro

	CAM
	Campanero Unit
	Deformed and heterogeneous pre-tectonic granites
	PPro

	PAV
	Pavas Block
	Amphibolite-facies metamorphic rocks
	PPro

	VAL
	Valentines-Rivera Complex
	Granulitic complex
	PPro

	RPC
	Rio de la Plata Craton
	Acid and basic orthogneiss and granitoids (Tierra Alta Terrain)
	A-P



Ce=Cenozoic; CIN= Cretáceo inferior; Ple=Pleistocene; Pli=Pliocene; Jur=Jurassic; P-C= Permiano-Carbonífeor; CO?= Cambro-Ordoviciano?; Pam = Paleozoico médio; C-N=Cambriam-Neoproterozoic; NPro=NeoProterozoic; PPro=Paleoproterozoic; A-P=Archean–Paleoproterozoic. 


2. DATA SOURCES AND RESEARCH METHODS.	
Data sources
This study considered 26786 samples collected in the period 1979-1984 by “Inventario Minero”, in a total area of 17500 km2, with sampling density of 1 or 2 samples/km2, involving 3181 soft depression soils, 619 residual soils, 20982 bed and flat sediments, and 2004 samples of unknown material. Geochemical sampling considered the 1:50,000 scale cartographic sheets of the National Cartographic Program of Uruguay (about 17,500 km2 each). The set of 38 cartographic sheets formed an irregular polygon delimited by Piriapolis city to the south; Treinta y Tres city to east; Fraile Muerto town to North and, Sarandí del Yi town to west.

Analytical procedures
Chemical analyses on 80 mesh fractions of samples considered addition of HClO4 at 140°C and a mixture of HCl and HF at 80°C. So, Ag, As, B, Ba, Be, Cd, Co, Cr, Cu, Fe, Mn, Mo, Nb, Ni, P, Pb, Sb, Sn, V, W, Y and Zn, 22 elements, were analized by DCP emission atomic spectrometry (Valente & Schrenk, 1970) in the Laboratory of BRGM (France) at first, and at Laboratory of DINAMIGE (Uruguay) in the final phase. Filippini-Alba (1998) classified the analytical precision of Uruguayan data according to two groups: (1) Large number of samples below the detection limit and analytical error greater than 15% (Ag, As, B, Be, Cd, Mo, Nb, Sb, Sn and W); (2) Samples with analytical error lesser than 10%, few affected by detection limits (Ba, Co, Cr, Cu, Fe, Mn, Ni, Pb, V, Y and Zn). 
Data processing
The means of each geological domain and related statistical procedures were determined using the Statistical Package for Social Sciences (SPSS), IBM (2017). Samples related to each geological domain were designed by the Geographic Information System (GIS) ARCGIS (ESRI, 2011).

3. RESULTS & DISCUSSION
3.1. Pre-treatment of Data
The following triplets represents minimum, median and maximum for each variable, considering 26786 samples: Fe2O3: 1 %, 4.2, 22; Mn: 44 ppm, 787, 20000; Ag: 0.2 ppm, 0.2, 1.4; As: 20 ppm, 20, 453; B: 10 ppm, 10, 58; Ba: 53 ppm, 514, 6300; Be: 1 ppm, 2, 22; Cd: 1 ppm, 1, 3; Co: 10 ppm, 12, 953; Cr: 10 ppm, 30, 1980; Cu: 10 ppm, 19, 532; Mo: 2 ppm, 2, 10;  Nb: 10 ppm, 10, 335; Ni: 10 ppm, 14, 1033; P: 28 ppm, 308, 3614; Pb: 10 ppm, 16, 406; Sb: 20 ppm, 20, 24; Sn: 20 ppm, 20, 77; V: 10 ppm, 61, 430; W: 10 ppm, 10, 26; Y: 5 ppm, 21, 802; Zn:10 ppm, 60, 359. Variance was low for Ag, As, B, Cd, Mo, Sb, Sn and W oscillating between 0.01 ppm (Ag) and 7.6 ppm (As). Remaining elements have significant standard deviation with the mean overcoming the median due to the influence of anomalies, except Fe2O3. 
Two indicators help us to evaluate the quality of data:  I1, the standard deviation expressed as percentage of the median and I2, the minimum expressed as percentage of the median. Ag, Cd, Mo, Sb, Sn and W showed values lesser than 6 of I1 and I2 equal to 100. Then, this elements presented a lot of data affected by the detection limits and they were discarded from the posterior process. By other side, Fe2O3, Mn, As, B, Ba, Be, Co, Cr, Cu, Nb, Ni, P, Pb, V, Y and Zn showed good I1 values, varying between 38 % (As) and 171 % (Ni). However, As, B, Co and Nb presented I2 values greater or equal than 83 %, due to the influence of detection limits on several samples. As, B, Be, Co, Cr, Cu, Nb, Ni and Pb presented deformed distributions laws, with 8% to 82% of samples in the first class of the histogram. Ba, Fe2O3, Mn, P, V, Y and Zn showed near-log-normal behavior. 

3.2. Reply of sampling materials
Bed and flat sediments were the richest sampling materials for Fe2O3, Mn, Ba, Co, Cr, Cu Ni, Pb, V, Y and Zn, with the soft depression soils similar in occasions. The residual (in situ) soils were the poorest, so, these samples were discarded. Some characteristic quartets of means in the sequence “soft depression soil” (3181 samples), “bed sediments” (546 samples), “flat sediments” (20436 samples) and “residual soils” (619 samples) were: Fe2O3: 3.9 %, 4.6, 4.6 and 3.5; Mn: 740 ppm, 1074, 964, 643; Ba: 519 ppm, 597, 581, 473; Co: 13 ppm, 116, 15, 12; Cr: 37 ppm, 42, 42, 31; Pb: 17 ppm, 20, 18, 16; V: 60 ppm, 65, 66, 57; Y: 22 ppm, 22, 27, 18; Zn: 58 ppm, 64, 65, 51.

3.3. Dependence Analysis
Significant Pearson correlation occurred mainly to the elements of Fe-group: V, Cr, Mn, Fe, Co, Ni, Cu and Zn, reaching values of 0.36 (Cu-Cr), 0.43 (Cu-Zn), 0.57, (Fe2O3-Zn), 0.64 (Cu-V), 0.71 (Fe2O3-V) and 0.91 (Cr-Ni). Correlation between other elements, by instance, Ba-Pb, As-Nb, Nb-Pb, P-Zn and Zn-Y varying between 0.3 and 0.4. Thus, the scatter-grams showed the involvement of two or more sub-populations (Fig. 1). 
[image: ]
Fig. 1. Scatter-grams for Fe2O3, Cu and Ni showing the occurrence of two or more subpopulations. Conventional scale. 


3.4. Geological Influence On Geochemical Signature
A file without anomalies, that is, values greater than three times the mean, overlaid to the digital geologic map (DINAMIGE, 1985) and the attribute tables of each layer joined by ArcGIS®. Geological units with less than 30 samples and undefined cases discarded. Number of samples of each geological group varied between 48 and 4430 samples with mean of 677 samples. The mean of the geochemical data corresponding to each geological group was expressed as a percentage of the total mean (Fig. 2, Table 2). Chuy Formation (CHU) was the poorest domain, with low values for all the elements, especially Be, Cr, Fe2O3 and Y. Maldonado Formation (MAL) represented a moderately geochemical signature, with similar behavior for PUE, DOL, F3I, LIB, HOS, RKG, RAI, CCA, MOG, SBZ, PGF, GMB, MIG, RCH, COL, BRZ, ARE, CRP, GTP, BNG, NIC, GPS, YIZ, GLA, VAL and ZTI what can be interpreted as the geochemical background. Fe2O3 and Mn contents are high for some geological domains (CSAB, CSAG, PAV and VCH), but, As and Cu stand out for CAM; As, Ba, Co and P for CSAB; As, Nb and Pb for CSAG; Cr, Ni and V for PAV and, Be, Y and Zn in the case of VCH. This suggests specific signatures for each geological domain, fact confirmed by the difference between the extreme terms of the “Sierra de las Animas” Complex (CSAB and CSAG), that is, mafic rocks and felsic rocks respectively. 


[image: ]
Fig. 2. Line graphic with the means of the main each geological domain expressed as percentage of the total mean (TM), 19959 samples. MAL represent several groups (see text).

3.5. Anomalous Signatures
Thresholds of Ag, As, Cd, Cu, Mo, Pb, Sn, W and Zn were 0.4 ppm, 67, 3, 63, 5, 54, 27, 15 and  191 respectively, deriving on one anomaly of four elements (Ag, Cu, Pb and Zn), six anomalies with three of the same elements and 35 anomalies with two of them and As, Mo, Sn and/or W occasionally. In summary, 42 multi-element anomalies and 409 univariate anomalies defined from the same nine elements, that is, 0.2% and 2% of total samples respectively. Cr-Ni anomalies occurred in approximately 850 cases, with V occurring frequently and Co occasionally. The respective thresholds were Co = 43 ppm, Cr = 123 ppm, Ni = 62 ppm and V = 195 ppm. These anomalies are probably from lithological origin and spatially associated with mafic rocks. Anomalies of B, Ba, Be, Nb, P and Y, with potential for phosphates and rare earth deposits, were not specifically considered in the present study.

	Variable
	Unit
	CHU
	MAL
	CAM
	CSAB
	CSAG
	PAV
	VCH
	TM*

	As 
	ppm
	20
	24
	27
	29
	29
	20
	20
	22

	B
	ppm
	10
	12
	12
	10
	10
	12
	11
	12

	Ba
	ppm
	348
	600
	651
	902
	537
	645
	668
	571

	Be
	ppm
	1,0
	1,3
	2,1
	1,5
	3,1
	1,6
	3,9
	2

	Co
	ppm
	11
	15
	17
	24
	15
	17
	12
	14

	Cr
	ppm
	21
	40
	62
	28
	32
	123
	24
	41

	Cu
	ppm
	16
	25
	38
	18
	21
	28
	17
	21

	Fe2O3 
	%
	2,1
	3,8
	5,6
	6,1
	5,3
	4,8
	6,0
	4

	Mn
	ppm
	682
	857
	829
	1510
	1032
	1234
	1225
	921

	Nb
	ppm
	11
	25
	31
	27
	40
	14
	35
	19

	Ni
	ppm
	13
	20
	29
	16
	18
	60
	15
	21

	P
	ppm
	269
	321
	377
	813
	527
	335
	499
	349

	Pb
	ppm
	13
	22
	20
	17
	22
	15
	16
	18

	V
	ppm
	49
	71
	80
	80
	61
	84
	62
	65

	Y
	ppm
	11
	20
	30
	20
	41
	31
	56
	26

	Zn
	ppm
	38
	61
	74
	67
	87
	77
	97
	64


 Table 2. Characteristic geochemical mean signatures of Geological Formations from crystalline terrains of Uruguay. Extreme values ​​highlighted in gray.

















*TM = Total Mean (20786 samples).


4. CONCLUSION
The influence of geology on geochemical signature was discussed, including 75% of the total regional geochemical samples from Uruguay. Discard of samples was due to poor geochemical reply as with soil samples or scarce number of samples for a specific geological domain (lesser than 30).
A previous geochemical study showed similarities with the current study, however only 17 geological domains were included (Filippini-Alba, 2022), exactly half of domains than this article. The units DOL, HOS, LIB and PUE showed low geochemical contrast in both studies. Five units detached (CAM, CSAB, CSAG, PAV and VCH);  PAV presented enrichment in Cr, Ni and V in both studies, however, the units CAM, CSAB, CSAG and VCH did not occur in the previous study area. These five geological domains presented characteristic geochemical signatures (Table 2). 
CHU was the poorest geological group since a geochemical point of view. MAL joined to PUE, DOL, F3I, LIB, HOS, RKG, RAI, CCA, MOG, SBZ, PGF, GMB, MIG, RCH, COL, BRZ, ARE, CRP, GTP, BNG, NIC, GPS, YIZ, GLA, VAL and ZTI deriving on a moderately geochemical reply (Geochemical background?). Future detailed studies will be necessary for better discrimination.
The geochemical amplitude of the geological groups (Table 3) converted as percentage of the standard deviation  (SD, Table 2) was greater than 180%  for Ba, Be, Cr, Cu, Fe2O3, Nb, Ni, P, Y and Zn; greater or equal than 100% for As, Co, Mn, Pb and V and, finally, equal to 51% for B.  It was not possible calculate it for Ag, Cd, Mo, Sb, Sn and W by absence of geochemical variation for the geological groups, but too, due to the strong effect of detection limits for these elements. Therefore, the environmental dispersion of each element would depend on methodological aspects, geological and geochemical factors. Main anomalies were 1.7% of total with Ag, As, Cd, Cu, Mo, Sn, Pb, W and Zn as significant elements. 3.1% of anomalies related to Cr and Ni with Co and V occasionally, associated to mafic rocks. 
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