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Edge Induced V4−Magic Labeling of Subdivision Graphs

Abstract

Let V4 = {0, a, b, c} be the Klein-4-group with identity element 0 and G = (V (G), E(G)) be a

graph. Let f : E(G) → V4 ∖ {0} be an edge labeling and f+ : V (G) → V4 denote the induced

vertex labeling of f defined by f+(u) =
∑

uv∈E(G)

f(uv) for all v ∈ V (G). Then f+ again induces

an edge labeling f++ : E(G) → V4 defined by f++(uv) = f+(u)+f+(v), for all uv ∈ E(G). Then

a graph G = (V (G), E(G)) is said to be an edge induced V4-magic graph if f++ is a constant

function. The function f, so obtained is called an Edge Induced V4-Magic Labeling (EIML) of G.

This Paper deals with Edge Induced V4-Magic Labeling of subdivision graphs.
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1 Introduction

The present paper intends to deal exclusively with simple, connected, finite and undirected graphs.
Also note that, the Klein 4-group is denoted by V4 = {0, a, b, c} which is a non cyclic abelian group
of order 4 with every non identity element has order 2. Let G = (V (G), E(G)) be the graph with
vertex set V (G) and edge set E(G). The reader may check [7] for the standard terminology and
notations related to Graph theory. Let f : E(G) → V4∖{0} be an edge labeling and f+ : V (G) → V4

denote the induced vertex labeling of f defined by f+(u) =
∑

uv∈E(G)

f(uv) for all v ∈ V (G). Then

f+ again induces an edge labeling, say, f++ : E(G) → V4 defined by f++(uv) = f+(u) + f+(v),
for all uv ∈ E(G). Then a graph G = (V (G), E(G)) is said to be an edge induced V4-magic graph
if f++(e) is a constant for all e ∈ E(G). If this constant is x, then x is said to be the induced edge
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sum of the graph G and the function f, so obtained is called an edge induced V4-magic labeling
of G. This paper aims to discuss edge induced V4-magic labeling of some subdivision graphs which
belongs to the following categories:

(i) σa(V4) := Set of all edge induced V4-magic graphs with edge induced magic labeling f
satisfying f++(u) = a for all u ∈ V.

(ii) σ0(V4) := Set of all edge induced V4-magic graphs with edge induced magic labeling f
satisfying f++(u) = 0 for all u ∈ V.

(iii) σ(V4) := σa(V4)
⋂

σ0(V4).

1.1 PRELIMINARIES

The bistar Bm,n [4] is the graph obtained by joining the central or apex vertex of K1,m and K1,n

by an edge. A flag graph is denoted by Fln [3] and it is obtained by joining one vertex of Cn to
an extra vertex called the root. The sun graph [3] on m = 2n vertices, denoted by Sunn, is the
graph obtained by attaching a pendant vertex to each vertex of a n−cycle. Jelly fish graph J(m,n)
[3] is obtained from a 4−cycle v1v2v3v4v1 by joining v1 and v3 with an edge and appending the
central vertex of K1,m to v2 and appending the central vertex of K1,n to v4. A triangular snake
graph TSn [3] is obtained from a path v1, v2, v3, · · · , vn by joining vi and vi+1 to a new vertex wi

for i = 1, 2, 3, · · · , n− 1. The join [7] of the graphs Cn and K1 is called a wheel graph [7] and it is
denoted by Wn, that is Wn = Cn ∨K1. The corona [1] of Pn and K1 is called the comb graph CBn

[1], that is CBn = Pn ◦K1

Theorem 1.1. [5]. Let G = (V,E) be a graph with either each vertex is of odd degree or even
degree then G ∈ σ0(V4).

Theorem 1.2. [5] (Induced edge sum theorem)
For any graph G, f is an edge induced V4-Magic labeling of G if and only if the induced edge sum

x = f++(uv) =
∑

uα∈E, α ̸=v

f(uα) +
∑

βv∈E, β ̸=u

f(βv), for all (u, v) ∈ E (1.1)

The Equation (1.1) corresponding to an edge uv in G, is called induced edge sum equation of
the edge uv.

Theorem 1.3. [5] For the path graph Pn, we have the following:

(i) P2 ∈ σ0(V4) and P2 /∈ σa(V4).

(ii) P3 ∈ σa(V4) and P3 /∈ σ0(V4).

(iii) P4 ∈ σa(V4) and P4 /∈ σ0(V4).

(iv) Pn is not an edge induced magic graph for any n ≥ 5.

Theorem 1.4. [5] For the cycle graph Cn, we have the following:

(i) Cn ∈ σ0(V4) for all n.

(ii) Cn ∈ σa(V4) if and only if n is a multiple of 4.

Definition 1.1. The subdivision of an edge e = uv in the graph G gives a new graph obtained by
replacing the edge e = uv by two edges e1 = uw and e2 = wv. A subdivision of a graph G or simply
a subdivision graph is a graph which is denoted by S(G) and is obtained from the subdivision of
all edges in G.
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Figure 1: A Graph and its subdivision graph

2 Main Resuts

Theorem 2.1. Let G be graph with every vertex is of odd degree, then S(G) ∈ σa(V4).

Proof. SupposeG is a graph with every vertex is of odd degree. Then define f : E(S(G)) → V4 ∖ {0}
by f(e) = a for all e ∈ E(S(G)).
Let uv ∈ E(G) and α be the inserted vertex on the edge uv in S(G). Then f(uα) = f(vα) = a.
Therefore, f+(u) = f+(v) = deg (u)a = a, since deg (u) is odd and f+(α) = deg (α)a = 0, since
deg (α) = 2. Thus f++(uα) = a and f++(vα) = a. Since uv is an arbitrary edge in S(G), we can
conclude that f++(e) = a for all e ∈ S(G). Thus S(G) ∈ σa(V4).
Hence the proof.

Theorem 2.2. Let G be graph with every vertex is of even degree, then S(G) ∈ σ0(V4).

Proof. SupposeG is a graph with every vertex is of even degree. Then define f : E(S(G)) → V4 ∖ {0}
by f(e) = a for all e ∈ E(S(G)).

Let uv ∈ E(G) and α be the inserted vertex on the edge uv in S(G). Then f(uα) = f(vα) = a.
Therefore, f+(u) = f+(v) = deg (u)a = 0, since deg (u) is even and f+(α) = deg (α)a = 0, since
deg (α) = 2. Thus f++(uα) = 0 and f++(vα) = 0. Since uv is an arbitrary edge in S(G), we can
conclude that f++(e) = 0 for all e ∈ S(G). Thus S(G) ∈ σ0(V4).
Hence the proof.

Theorem 2.3. For the path graph Pn, n ≥ 2 we have the following:

(i) S(P2) ∈ σa(V4) and S(P2) /∈ σ0(V4).

(ii) S(Pn) /∈ σa(V4) and S(Pn) /∈ σ0(V4) for any n ≥ 3.

Proof. Since S(P2) = P3 proof of (i) follows directly from Theorem 1.3 (ii).
Also we have, S(Pn) = P2n−1 and if n ≥ 3 then 2n − 1 ≥ 5, therefore, the proof of (ii) follows
directly from Theorem 1.3 (iv).

Theorem 2.4. For the cycle graph Cn, we have the following:

(a) S(Cn) ∈ σ0(V4) for all n.

(b) S(Cn) ∈ σa(V4) if and only if n is even.

(c) S(Cn) ∈ σ(V4) if and only if n is even.
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Proof. Since S(Cn) = C2n, proof of (a) follows from Theorem 1.4 (i). Similarly, we have, S(Cn) =
C2n, therefore, proof of (b) follows directly from Theorem 1.4 (ii). Note that, the proof of (c) follows
from (a) and (b) .

Theorem 2.5. For the the complete graph Kn with n vertices, we have the following:

(i) S(Kn) ∈ σ0(V4) for n odd.

(ii) S(Kn) ∈ σa(V4) for n even.

Proof. Consider the subdivision graph of the complete graph S(Kn). Let vu be an edge in S(Kn),
where v ∈ V (Kn) and u be an inserted vertex in S(Kn). Define f : E(S(Kn)) → V4∖{0} by f(e) = a
for all e ∈ E(S(Kn)). Then f+(v) = (n−1)a and f+(u) = a+a = 0. Therefore, f++(vu) = (n−1)a.
Since the vertices u and v are arbitrary, we have f++(vu) is a constant.

Case (i) n is an odd integer.
In this case, f++(vu) = (n− 1)a = 0. Therefore, S(Kn) ∈ σ0(V4).

Case (ii) n is an even integer.
In this case, f++(vu) = (n− 1)a = a. Therefore, S(Kn) ∈ σa(V4).

Hence the proof.

Theorem 2.6. For the star graph K1,n, we have the following:

(i) S(K1,n) ∈ σa(V4) if and only if n is odd.

(ii) S(K1,n) /∈ σ0(V4) for any n.

Proof. ConsiderK1,n with vertex set {v, v1, v2, v3, . . . , vn}, where vvi ∈ E(K1,n) for i = 1, 2, 3, . . . , n.
Let ui be the inserted vertices on the edge vvi for i = 1, 2, 3, . . . , n in S(K1,n).

Let f : E(S(K1,n)) → V4 ∖ {0} with f(vui) = xi1, and f(uivi) = xi2 for i = 1, 2, 3, . . . , n. Then
from the induced edge sum equation of each edge we have the following equation.

x11 = x21 = x31 = · · · = xn1 = x21 + x31 + x41 + · · ·+ xn1 + x12

= x11 + x31 + x41 + · · ·+ xn1 + x22

= x11 + x21 + x31 + · · ·+ xn1 + x32

...

= x11 + x31 + x41 + · · ·+ x(n−1)1 + xn2.

Let x = x11 = x21 = x31 = · · · = xn1 then above equations become

x = (n− 1)x+ x12

= (n− 1)x+ x22

= (n− 1)x+ x32

...

= (n− 1)x+ xn2.

Note that the above system implies that x12 = x22 = x32 = · · · = xn2 = y(say).
Then the above system of equations reduces to x = (n− 1)x+ y.

That is (n− 2)x+ y = 0.

Case (i) n is an odd integer.
In this case, the equation (n − 2)x + y = 0 reduces to x + y = 0, that is x = y. Thus by
taking x = y = a that is, by defining f : E(S(K1,n)) → V4 ∖ {0} as f(ei) = a, for all
ei ∈ E(S(K1,n)) we can prove that S(K1,n) ∈ σa(V4).
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Case (ii) n is an even integer.
In this case, the equation (n−2)x+y = 0 reduces to y = 0. That is f(uivi) = xi2 = 0, which
is a contradiction to the choice for f. Therefore, in this case, S(K1,n) is not an edge induced
magic graph.

Note that S(K1,n) ∈ σ0(V4) only when x = 0. But x = 0 is not possible. Therefore, S(K1,n) /∈ σ0(V4)
for any n.
Hence the proof.

Theorem 2.7. For the bistar graph Bm,n, S(Bm,n) is not an edge induced magic graph for any m
and n.

Proof. Let V (Bm,n) = {u, v, v1, v2, v3, . . . , vm, u1, u2, u3, . . . , un}, where uv, vvi, uuj ∈ E(Bm,n)
for i = 1, 2, 3, . . . ,m and j = 1, 2, 3, . . . , n. Also let wi, tj and w be the inserted vertices on the edge
vvi, uuj and uv respectively for i = 1, 2, 3, . . . ,m and j = 1, 2, 3, . . . , n in the graph S(Bm,n).
Let f : E(S(Bm,n)) → V4∖{0} with f(vw) = γ, f(wu) = δ, f(vwi) = xi, f(wivi) = αi, f(utj) = yj
and f(tjuj) = βj , then by considering the induced edge sum equation of each edge we have the
following equations.
The induced edge sum equation of the edges wivi gives: x1 = x2 = x3 = · · · = xm = x (say).
Similarly the induced edge sum equation of the edges tjuj gives: y1 = y2 = y3 = · · · = yn = y (say).
The induced edge sum equation of the edges vwi gives:

α1 + γ + (m− 1)x = α2 + γ + (m− 1)x

= α3 + γ + (m− 1)x

...

= αm + γ + (m− 1)x.

It should be noted that the above system of equations imply that α1 = α2 = α3 = · · · = αm = α
(say). Thus, each induced edge sum in above system reduces to α+ γ + (m− 1)x.
Similarly by considering the induced edge sum equation of the edges utj , we get the induced induced
edge sum is β + δ + (n− 1)y, where β = β1 = β2 = β3 = · · · = βn.
Also we get, the induced edge sum of the edges vw is mx + δ and the edge sum of the edge wu is
ny + γ.
Thus the edge sum equation of the graph S(Bm,n) is given by:

x = y = α+ γ + (m− 1)x = β + δ + (n− 1)y = mx+ δ = ny + γ. (2.1)

Case 1: m and n are even integers.
In this case, Equation (2.1) becomes

x = y = α+ γ + x = β + δ + y = δ = γ.

Therefore, x = γ, which implies that α = 0, which is not possible. Hence in this case, Bm,n

is not an edge induced magic graph.

Case 2: m and n are odd integers.
In this case, Equation (2.1) becomes

x = y = α+ γ = β + δ = x+ δ = y + γ.

Therefore, x = x + δ which implies that δ = 0, which is not possible. Hence in this case,
Bm,n is not an edge induced magic graph.
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Case 3: m is even and n is odd.
In this case, Equation (2.1) becomes

x = y = α+ γ + x = β + δ = δ = y + γ.

Therefore, β + δ = δ which implies that β = 0, which is not possible. Hence in this case,
Bm,n is not an edge induced magic graph.

Case 4: m is odd and n is even.
In this case, Equation (2.1) becomes

x = y = α+ γ = β + δ + y = x+ δ = γ.

Therefore, α + γ = γ which implies that α = 0, which is not possible. Hence in this case,
Bm,n is not an edge induced magic graph.

Thus in all cases, we get S(Bm,n) is not an edge induced magic graph.
Hence the proof.

Theorem 2.8. For the flag graph Fln, we have the following.

Case (i) S(Fln) /∈ σ0(V4) for any n.

Case (ii) S(Fln) ∈ σa(V4) if and only if n is odd.

Proof. Let V (Fln) = {v, v1, v2, v3, . . . , vn}, where v1, v2, v3, . . . , vn are the vertices of corresponding
cycle graph Cn and v is the root vertex adjacent to the vertex v1. Also let u be the inserted vertex
on the edge v1v and u1, u2, u3, . . . , un be the inserted vertices on the edges v1v2, v2v3, v3v4, . . . , vnv1
respectively in the graph S(Fln).

If possible, let g : E(S(Fln)) → V4 ∖ {0} be an edge label with g++(e) = 0 for all edge
in S(Fln). Then consider the induced edge sum of the edge uv. Note that g++(uv) = g(uv1).
Therefore, g(uv1) = 0, which is a contradiction and it proves (i).

Suppose n is an odd integer. In this case, define f : E(S(Fln)) → V4 ∖ {0} as follows.

f(e) =


a if e = uv, uv1
b if e = u1v1, u3v3, u5v5, . . . , un−2vn−2, unvn
c if e = u2v2, u4v4, u6v6, . . . , un−3vn−3, un−1vn−1

b if e = u1v2, u3v4, u5v6, . . . , un−2vn−1, unv1
c if e = u2v3, u4v5, u6v7, . . . , un−3vn−2, un−1vn.

Then f++(e) = a for all e ∈ E(S(Fln)). Thus S(Fln) ∈ σa(V4).
To prove the converse part, suppose n is an even integer. If possible, let h : E(S(Fln)) →

V4 ∖ {0} be an edge label with h++(e) = a for all edge in S(Fln). Consider the induced edge sum
of the edge uv. We have h++(uv) = h(uv1). Similarly if we let h(uivi+1) = yi, for i = 1, 2, 3, . . . , n
with i + 1 is taken modulo n. Then the induced edge sum of the edges viui for i = 1, 2, 3, . . . , n
gives

yn + y1 + h(uv1) = y1 + y2 = y2 + y3 = · · · = yn−1 + yn. (2.2)

Since n is an even integer the above equation implies that y1 = y3 = y5 = · · · = yn−1 = x (say) and
y2 = y4 = y6 = · · · = yn = y (say). Thus the Equation (2.2) reduces to x + y + h(uv1) = x + y,
which implies that h(uv1) = 0, which is not admissible. Hence there exists no such edge label h.
Hence if n is an even integer, then S(Fln) /∈ σa(V4).
Hence the proof.

Corollary 2.9. S(Fln) ∈ σ(V4) if and only if n is odd.

Proof. Proof follows from the above Theorem 2.8.
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Figure 2: EIML of S(Fl5)

Theorem 2.10. For the sun graph Sunn, we have S(Sunn) ∈ σa(V4) for all n.

Proof. Let {ui, vi : i = 1, 2, 3, . . . , n} be the vertex set of CBn, where vi are the pendant vertex
adjacent to ui. Also let ti and wi, be the inserted vertices on the edge uiui+1, uivi, for i =
1, 2, 3, . . . , n and i+ 1 is taken modulo n.
Suppose f : E(S(Sunn)) → V4 ∖ {0} is an edge induced magic label of Sunn with f(uiti) = ei,
f(tiui+1) = αi, f(uiwi) = βi and f(wivi) = γi.
Then using the induced edge sum equation of the edges wivi, we get

β1 = β2 = β3 = · · · = βn = β (say). (2.3)

By the induced edge sum equation of the edges uiti, we get

αn + α1 + β = α1 + α2 + β = α2 + α3 + β = · · · = αn−1 + αn + β. (2.4)

By the induced edge sum equation of the edges tiui+1, we get

e1 + e2 + β = e2 + e3 + β = e3 + e4 + β = · · · = en + e1 + β. (2.5)

By the induced edge sum equation of the edges uiwi, we get

αn + e1 + γ1 = α1 + e2 + γ2 = α2 + e3 + γ3 = · · · = αn−1 + en + γn. (2.6)

Case (i) n is an odd integer.

In this case, Equation (2.4) and Equation(2.5) implies that

α1 = α2 = α3 = · · · = αn = α (say).

e1 = e2 = e3 = · · · = en = e (say).

Therefore, equation (2.6) implies that

γ1 = γ2 = γ3 = · · · = γn = γ (say).
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Therefore, in this case, the induced edge sum equation of the graph S(Sunn) is given by:

β = 2α+ β = 2e+ β = α+ e+ γ.

Since α ∈ V4, the above equation reduces to β = α+ e+ γ.

Therefore, in this case, if we choose α = e = b and β = γ = a, then we can easily prove that
S(Sunn) ∈ σa(V4).

Case (ii) n is an even integer.

In this case, Equation (2.4) implies

α1 = α3 = α5 = · · · = αn−1 = x1 (say).

α2 = α4 = α6 = · · · = αn = x2 (say).

Also in this case Equation (2.5) implies

e1 = e3 = e5 = · · · = en−1 = y1 (say).

e2 = e4 = e6 = · · · = en = y2 (say).

Therefore, Equation (2.6) reduces to

x2 + y1 + γ1 = x1 + y2 + γ2 = x2 + y1 + γ3 = x1 + y2 + γ4 = · · · = x1 + y2 + γn. (2.7)

Note that Equation (2.7) implies that

γ1 = γ3 = γ5 = · · · = γn−1 = z1 (say).

γ2 = γ4 = γ6 = · · · = γn = z2 (say).

Therefore, in this case, the induced edge sum equation of the graph S(Sunn) is given by:

β = x1 + x2 + β = y1 + y2 + β = x2 + y1 + z1 = x1 + y2 + z2.

Therefore, in this case, if we choose x1 = x2 = y1 = y2 = b and β = z1 = z2 = a then we can
easily prove that f++(e) = a for all e ∈ E(S(Sunn)). Thus S(Sunn) ∈ σa(V4).

Hence the proof.

Theorem 2.11. Let J(m,n) be the jelly fish graph. Then S(J(m,n)) ∈ σa(V4) for m and n are of
same parity.

Proof. Consider the jelly fish graph with V (J(m,n)) = {vk : k = 1, 2, 3, 4}∪{ui : i = 1, 2, 3, . . . ,m}∪
{wj : j = 1, 2, 3, . . . , n}, where v′ks are the vertices of the corresponding C4, ui, wj are the vertices of
the corresponding K1,m and K1,n respectively and αi (1 ≤ i ≤ m), βj (1 ≤ j ≤ n) are the inserted
vertices at the edges v2ui, v4wj respectively and α, β, γ, δ, µ are the vertices inserted on the edges
v1v2, v2v3, v3v4, v4v1, v1v3 respectively.

Case (i) m and n are even integers.
In this case, define f : E(S(J(m,n))) → V4 ∖ {0} by

f(e) =


a if e = αiui, v2αi, v4βj , βjwj , v1µ, v3µ
b if e = v2α, αv1, v1δ, δv4
c if e = v4γ, γv3, v3β, βv2.

Case (ii) m and n are n odd integers.
In this case, define f : E(S(J(m,n))) → V4 ∖ {0} by

f(e) =

{
a if e = v2α, αv1, v3β, βv2, v2αi, v4βj , αiui, βjwj

b if e = v1δ, δv4, v4γ, γv3, , v1µ, v3µ.
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Then in both cases we can verify that f++(e) = a for all e ∈ E(S(J(m,n))). That is f is an EIML
of S(J(m,n)). Thus in both cases S(J(m,n)) ∈ σa(V4).
Hence the proof.

Theorem 2.12. For the the triangular snake graph TSn, we have S(TSn) ∈ σ0(V4) for all n.

Proof. Since every vertex is of even degree, the proof follows from Theorem 2.2.

Theorem 2.13. For the wheel graph Wn, we have S(Wn) ∈ σa(V4) for n is odd.

Proof. Suppose n is odd. Since every vertex is of odd degree, the proof follows from Theorem
2.1.

Theorem 2.14. For the comb graph CBn, we have S(CBn) is not an edge induced magic graph,
for any n.

Proof. Let {ui, vi : 1, 2, 3, . . . , n} be the vertex set of CBn, where vi is the pendant vertex adjacent
to ui. Let wi and tj be the inserted vertices in the edges uivi and ujuj+1 for i = 1, 2, 3, . . . , n and
j = 1, 2, 3, . . . , n−1 respectively . If possible, suppose f : E(S(CBn)) → V4∖{0} is an edge induced
magic label of S(CBn). Then using the induced edge sum equation of the edges v1w1 and u1t1, we
get f(u1w1) = f(t1u2) + f(u1w1). That is f(t1u2) = 0, which is a contradiction. Hence S(CBn) is
not an edge induced magic graph, for any n.
Hence the proof.

3 CONCLUSIONS

This paper has attempted to investigate the key results pertaining to edge-induced V4- magic
labeling of graphs with same parity. Subsequently it establishes edge-induced V4-magic labeling
characteristics for a selection of graphs, such as Pn, Cn,Kn,K1,n as well as the Bi-star graph, Flag
graph, Sun graph, Jelly graph, Triangular Snake graph, Wheel graph and Comb graph.
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