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Stability of the Damped Three-Dimensional Incompressible
Boussinesq Equations *

Abstract. In this paper, we investigate the global well-posedness on the three-dimensional (3D)
Boussinesq equation near a equilibrium, where the velocity equation and temperature equation
involve damping terms, respectively. Without temperature, the corresponding velocity equations
is governed by a 3D incompressible anisotropic Navier-Stokes equation, and the stability is
still unknown. However, when the velocity fluid is coupled temperature. Employing time-
global uniform a priori estimates, we first establish the global well-posedness of the Boussinesq
equations in H3(R3). Additionally, we also obtain the explicit decay rates for the system.
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1 Introduction

The three-dimensional (3D) incompressible Euler equations have been thoroughly investigated
and the resolution of the global (in time) existence and uniqueness issue is currently in a satis-
factory status. In contrast, the global regularity problem concerning the 3D inviscid Boussinesq
equations remains widely open. This paper examines the global (in time) existence and unique-
ness problem on the incompressible 3D Boussinesq equations with damping.

O+ u-Vu+ VP + (vup,0)" = fes,
00 +u-VO0+uz+ A0 =0, (1.1)
V-U=0.

where u represents the fluid velocity, p the pressure, e3 the unit vector in the third direction,
the temperature in thermal convectionand v > 0 and A > 0 are real parameters. In this article,
let v = A = 1. If 6 is identically zero, (1.1) degenerates to the 3D incompressible Navier-Stokes
equations.

The Boussinesq equations model many geophysical flows such as atmospheric fronts and
ocean circulations[11, 17, 22, 23]. Mathematically the 2D Boussinesq equations serve as a lower-
dimensional model of the 3D hydrodynamics equations. Abidi and Hmidi [1] studies the global
well-posedness for Boussinesq system. Adhikari-Cao-Wu-Xu [3] obtained small global solutions
to the damped two-dimensional Boussinesq equations. When suitable partial dissipation or
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fractional Laplacian dissipation with sufficiently large index is added, the vortex stretching can
be controlled and the global regularity can be established. Danchin and Paicu [15] obtained
global existence results for the anisotropic Boussinesq system in two dimension. Bian and Pu
[6] established global smooth axisymmetic solutions of the Boussinesq equations for magneto-
hydrodynamic convection. Readers can refer the studies in [2, 4, 5, 8, 9] and the references
therein.

As we know, the issue of global existence and uniqueness relies crucially on whether or not
one can obtain global bounds on the solutions. If the fluid is affected by the temperature, then
the Navier-Stokes equation will become Boussinesq system. Castro-Cordoba-Lear [7] studied
the stbility effect of hydrostatic equilibrium of temperature. Doering-Wu-Zhao-Zheng [13] ob-
tained the long time behavior of the two-dimensional Boussinesq equations without buoyancy
diffusion. Lai-Wu obtained the stability and the optimal decay rates for the system without the
magnetic field in [20] and [21], respectively. Ji-Li-Wu [19] established optimal decay for the 3D
anisotropic Boussinesq equations near the hydrostatic balance. For more results about stability
of Boussinesq equations can refer to [10, 12, 14, 16, 18, 24].

The goal of this paper is to establish the global well-posedness of the Boussinesq equations
in H3(R3) and obtain the explicit decay rates for the system. Our main results can then be
stated as follows.

Theorem 1.1. Consider (1.1) with the initial data (ug,6y) € H?(R3) satisfies V-ug = 0. Then
there exists a positive constant >0, such that if

[(u0,00) [ s < e,

then the system (1.1) has a unique global solution for any t>0, satisfying

t
I, ) (D)% + /0 lunl%o + llusl%s + 16]3adr < C<2, (1.2)

where C>0 is a generic positive constant independent of € and t.

We observe that (1.2) of Theorem 1.1 rigorously assesses any small initial perturbation
leads to a unique global solution of (1.1) and remains consistently small in H?3. Since the local
existence result can be shown via the standard method, we only need to establish a global
prior estimates of the solutions. To use the bootstrapping argument, we introduce an energy
functional specifically to achieve our desired estimates. Let

E(t) = E1(t) + Ex(0),

where

E(t) = sup |(u,0)(7)]7 +2/0 lun(T) s + 10(T) | s,

0<r<t
£at) = [ lus(r) e
The main goal of the proof is to establish the following estimate:
E(t) < CE(0) 4+ CEY2(1). (1.3)

The proof of (1.3) is not obvious and requires significant effort. We need to establish the following
three inequalities respectively, and there exists a generic positive constant C,

E1(t) < CE(0) + CEX* () + CEX* (1), (1.4)
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Ex(t) < CEL(0) + CEL(t) + CEV2 (1) + CEY2 (1) (1.5)

For any ¢>0, adding (1.5) to (1.4) by the appropriate constant, then we can yield the estimate
of (1.3). The bootstrapping argument implies that if

£(0) = ||(uo, bo) || < €
for suitable £>0, then £(¢) remains uniformly bounded for 0<t<oo,
E(t) < Ce?,
for some pure constant C'>0. The more details are provided in Section 3.

Theorem 1.2. Suppose that (ug,0p) € H> with V - u = 0, where (u, 0) is the solution of (1.1).
For (u,0) satisfies
1
1(Vu, VO) ()l L2 < C(1+1)"2, (1.6)
The rest of this paper is divided into three sections. Section 2 presents several tool lemmas

to be used in the proof of Theorem 1.1. The inequalities of (1.4), (1.5) and are established, and
the proof of Theorem 1.1 is completed in Section 3. The last section proves Theorem 1.2.

2 Preliminaries

In this section, we provide several lemmas that will be very important in subsequent proofs.
Lemma 2.1 can be obtained from the book on partial differential equations. Lemma 2.2 (see
[20]) are helpful in obtaining some relevant results for large time behavior.

Lemma 2.1. Assume f and Vf all in L*(R3). it holds that

£l < ClFLE IV FITE,
I flle < CIIV Sl L2

Lemma 2.2. For given positive constants Cy > 0 and Cy > 0, assume that f = f(t) is a
nonnegative function defined on [0,00) and satisfies

(2.1)

/ f)dt < Co<oo, and f(t)<Cif(s), VO<s<t.
0
Then there exists a positive constant Cy := max{2C1 f(0),4CoC1} such that

ft) < Co(14+1)71, vt >o.

3 The global well-posedness

The main purpose of this section is to prove Theorem 1.1. In the following, we establish the
validity of (1.4) and (1.5) respectively.
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3.1 Proof of (1.4)
Proof. First, we take the L?-inner product of (1.1) with (u, ) to obtain

1d
5 Sl O)2: + lun 3 + 6132 = 0. (3.1)

Next, to estimate the H'-norm, applying V to (1.1) and dotting them with (Vu, V) in L?, we

find
1d
2dt

3
= Z/@i(u-VO)-aide
=1

:/VU'VQ-VQd:z

1(Vu, VO[22 + | Vup| 22 + | V]2

(3.2)

< Cllul| || VO3

where we used the significant fact that

3
Z/&(u -Vu) - Ojudz = 0.
i=1

To bound the H?norm of (u,f), applying 8?(i = 1,2,3) to (1.1) and dotting them with
(02u,820) in L?, one can obtain

DN | =
&‘Q‘

3 3 3
L 207w, OF0) 172 + > 107 unllza + D 1970172
i=1 1=1 i=1

3 3
_ _Z/af(u V) - 82udz — Z/af(u V) - 920d
i=1 i=1
= Ay + As.

Due to Newton-Leibniz formula and the fact of V - u = 0, it follows

3 3
A== [ Fuevu- s —2Y" [ o 050 Puds
i=1 =1

< ||Vl | V2ul 3 o
< Cllullgs [ V?ul 72
By Holder’s inequality and Lemma 2.1, we have
3 3
Ay = —Z/agu-VH-82-29da:—22/8iu-8ive'8129dx
i=1 i=1
(3.4)

3
<O (IVOl ool ull 2 + |Vl oo | V06 £2) [V 06 | .2
=1

< Cllullgs + 101l as) (IV2ullF2 + [V20]172).-
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Applying 92(i = 1,2,3) to the equations (1.1) and taking the L% inner product of the resulting
equations with (93u, 93b)

3 3 3
1d
> 5@ w0 + 3 _l10%unlfz + 319761172
=1 =1 =1
3 3
_ Z/af(u V) - Pux — Z/@f’(u .V0) - 930%
i=1 =1
= B + Bs.

Due to Newton-Leibniz formula and the fact of V - u = 0, it follows

3
By = —Z/@f’(u-Vu) - OPux
i=1

3
=— Z /(E)f’u - Vu + 302u - VOju + 30;u - Voiu) - Ofux
i=1

3
< O (IVullz= 0}l L2 + 107l £al| 05V o) 107wl 2
=1

< Cllullys.

By Holder’s inequality, we can get
3
By = —Z/af(u - V0) - 930x
i=1

3
==Y /(Gf’u VO + 307u - V0,0 + 30;u - VO20) - 070x 36
i=1 .

3
< O (VO 10Full 2 + 107l 14 8: V61 11 + 195l 1= |07V O £2) 1576 2
i=1

< Cllulls + 100 s) (lullFrs + 1011 72).-

Combining (3.1)-(3.4), (3.5), with (3.6) and integrating it over [0, ¢] yields
t
1w 0)ONs +2 | (unlls + 101 ar

t
< C||(uo, 00)l[3s + C sup ||(U79)”H3/ (lullZs + 110172)dr
0<7<t 0
< C&(0)+ CE (1) + CEY* ().
The proof of (1.4) is therefore complete. O

3.2 Proof of (1.5)

In order to establish the bound of &»(t), we need the following special structure of equation

(1.1)2:
ug = —0 —u- Ve — 6.
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Proof. First, multiplying (1.1)2 by us and integrate over R3, it follows
Juslfze = = [ 010 uade — [ustu- V0)ds— [ us- o
= My + My + Ms.

By integration by parts and applying the momentum equation in (1.1);,

M = ;lt/ﬁu?,dx + /9(9 — 03P —u-Vug)dr

(3.7)
= M1 + Mo + My3 + M.
It is easily conclude that
M12 + M14 = /9(9 —Uu- VUg)dl’
3.8
< 0113 + 18] ol 2| Vs | .2 (3.8)
< 101172 + 101l 2 (lull 72 + [ Vus][72)
Now, we need to estimate M3, applying V- to (1.1);, one can obtain
p=(—A)"'V . (u-Vu) — (=A) " d3uz — (—A) "1 5s6. (3.9)
Due to Holder’s inequality,
M = /Hagpdw < O1101] 12105l 2, (3.10)

where

103pllr2 < [I(=A) "'V - Os(u- Vu)|| 2 + [[(=A) " OFusl| 2 + |(—A) 7650 2
= Mi31 + M3z + Miss.

Using the fact of Riesz operator 81-(—A)_1/2 with ¢ = 1,2, 3 is bounded in L",0<r<oo, one find

Miz; = [|[(—A) 'V - 93(u101u + ugdou) || 2
< Cllullze= [Vl 2
< Cllull%.

Similarly,
Mg 4+ Misg = [|(—A) ' 03usl| 2 + [|[(=A) ' 950]| 2

< C(101 L2 + llusllz2)-

Combining the estimates for M3y, Mi32 and Mig3, we have
185pll 2 < C(UIO]l > + [lusllze + [lulFe)- (3.11)

Putting (3.11) into (3.10), one can get

1
My < CIOI: + lluslZ + 10112 e (3.12)
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Therefore, it follows from (3.7),(3.8) and (3.12),
d 1
My < 5 [ busdo+ CloIE + JlluslBs + 100l (313)
By Holder’s inequality and Young’s inequality, one has

MQZ/’U,‘VQ'Ung‘

< Cllull= 16 c2llusll (3.14)
< Ollull g2(|[VOI72 + [lus][72),
To bound M3, by Young’s inequality, we get
1
My = —/Hugdac < 1 lusli3 + Clol. (3.15)
Combining the estimates (3.13)-(3.15) respectively, it follows
d
lusllz> < 2- /91036196 + 0172 + (10112 + llull 2 ) (lull7 + [VO]I72) (3.16)

Next, applying 0;(i = 1,2,3) to (1.1); and dotting it with d;u3 in L?, we can deduce that

3 3 3 3
=1 =1 =1 =1
:= N1 + N2 + N3.

Applying the struture of equation (1.1)2 and integration by parts,

3 3
d
i=1 i=1

(3.17)
:= N11 + Nig2 + Ni3 + Nyg.
Using Holder’s inequality and Young’s inequality to get
3
N12 + N14 = 2/61962(9 —Uu- VU3)dx
i=1
3 , 3 (3.18)
<D 100172 + > 1100 o= ([l 221105 Vsl 2 + [0l 2] Vus| 2)
i=1 i=1
< IVO)1Z2 + ClON s llull 7y
Due to Holder’s inequality,
3 3
Nig=3 / 0:00:03pdz < C' 31100121007 12+ (3.19)
i=1 i=1

where
10:03pl| 2 < [(=A) 'V - 9:03(u - Vu)| g2 + [|(—A) ' 9;03us| 12 + ||(—A) 9,050 12
= Ni31 + Ni32 + Ni33.
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Using the fact of Riesz operator 6,~(—A)_1/2 with ¢ = 1,2, 3 is bounded in L", 0<r<oo, one find

Nigp = [[(—A)~" - 9;050; (urOruy) | 2
< OVl z ||Vl 2
< Cllull3s.

Similarly,
Nis2 + Nisz = [|(—=A) 7' 050us| 2 + || (—2) 71950, .2

< O(IVO| 2 + [[Vus]|2).

Combining the estimates for Ni31, N132 and Nys3, we have
10:0pl 12 < C(IVOl| 12 + [ Vusll 2 + [|lullFs)- (3.20)

Putting (3.20) into (3.19), one can get
1
Nis < CIIVOIa + 31 uslFa + 98] 22l (3.21)

Therefore, it follows from (3.21) and (3.18),
°Ld 1
<> 5 [ 000uds + CIVOIZ: + 11V usla + 61l (3.22)
o
By Holder’s inequality and Young’s inequality, one has

3
=1

, (3.23)
< O Vus|l Lo (VO] 2| Vus|| 2 + V0] 2[ull L2)
< Cllullgs (IVOl 7 + llulln),
To bound N3, by Young’s inequality, we get
: 1
Ny = Z/@iﬁaiu;gdaz < {IVus]3 + V8|3, (3.24)
i=1
Combining the estimates (3.22)-(3.24) respectively, it follows
d
IVus|7. < 2dt/V9VU3d$ + V072 + (101 s + lull ) (el Fs + 1911772) (3.25)

Similarly,
d
IV2us|7. < th/VQ@VQU?)dl’ + V20172 + (1011 + Nl s) (Nlullzrs + 1017)  (3.26)
Finally, applying 93(i = 1,2,3) to (1.1); and dotting it with d3ug in L?, we can deduce that

3 3 3 3
Z |03 us||2, = — 2/&585’9 - DPuzdr — Z/@?ugﬁf’(u -VO)dx — Z/@f’u;), - 030dx
i=1 i=1 =1 =1

= Q1+ Q2+ Q3.
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Applying the structure of equation (1.1) and integration by parts,

3 3
d
:g — 836’33uda¢+§ /836830—8P—u-Vu dx
Ql ra dt/ i VU W3 g (3 1( 3 3) (327)
= Q11+ Q12 + Qi3 + Q4.

Using Holder’s inequality and Young’s inequality to get
3
Q12 + Q14 = 2/35’985’(9 —u - Vug)dz
i=1
3 3
=> / GHEEDY / D20(u - Vuz + 302u - Vojus + 30;u - VOPus + u - VoPus)dx
i=1 i=1

3 3
< D026 + D 110761 2 (Vs 12107 ull 12 + 107u] 4] Vrus]| 1)
i=1 =1

3
— Z/@?Gu - V3 usdr
i=1

3
< CIIV30)2% + 116 s 1l %s — Z/a?eu VOPusds
=1

(3.28)
Due to Holder’s inequality,

3 3
Q=Y [ oatopte < 3 102012100l (.29
=1

i=1
where
10703pl| 2 < [|(—A)'V - 0703(u - Vu)| 2 + [(=A) 97 05us| 12 + (—A) 0 050]| 2
= Q131 + Q132 + Q133.

Using the fact of Riesz operator 9;(—A)~Y/2 with i = 1,2 is bounded in L",0<r<oo, one find

Q31 = [|[(=A) ' 970105 (urOruy)|| 12
= (167 (9 urBruy) || 2
= 070 urOku; L2 + [10:0;urOhdiu; | L2 + |105urO07us| 2
< O(IVullze | Vull g2 + 1Vl 74)
< Clluls.
Similarly,
Quz2 + Quzz = [|(=A) 10307 ug|| 2 + [|(—A) 103870 >
< C(IV30l| 2 + I VPus]| £2).-

Combining the estimates for (X131, Q132 and Q133, we have

1070spll 2 < CUIV?0l| 2 + [ VPus] 2 + [[ull3)- (3.30)
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Putting (3.30) into (3.29), one can get

1
Qus < CIV*0I3 + 71V%usl2a + [ 9°0) 2 ullfs (3.31)

Therefore, it follows from (3.27), (3.28) and (3.31),
34 1 3
Q1<) dt/@?@ﬁ?u;z,dx + O V3|2, + Z||v3u?,||§2 - Z/ageu - Vd3usdz.
i=1 i=1
By Holder’s inequality and Young’s inequality, one has

3
Q2 = — Z/@f’(u - V003 usdx
i=1
3 3
= Z / O - VO uzdr — Z / O - V0,003 uzdx
i=1 i=1

3 3
- Z / O - 02V 03 usdr — Z/u - Vo200 usdx
i=1 =1

< C(IVOllL=IVPullZe + V20 pall Vull oV ull 22 + [ Vull oo [[V20] 2 VPl 2)
3
— Z/u -VO2003usdx
i=1

3
< Cllulls + 100 as) 10117 + NullFp) — Z/u - V008 ude,
i=1

where

3 3
- Z/u - VOPuzdi0dx — Z/u V2003 uzdr = 0
i=1 i=1

Therefore

3
d 1
Qi+Q2<) dt/3593§U3dx+0\lv3’9||%2+4||V3U3||%2+C(IIUI|H3+||9||H3)(||9H§{s+|IUH§13)-
i=1

(3.32)
To bound ()3, by Young’s inequality, we get
- 3093 L3, 2 3012
Qs =—Y_ [ 9200}usda < 11VPusliz + CIVP0lE. (3.33)
i=1

Combining the estimates (3.32)and(3.33) respectively, it follows
3
d
IV3us)f2 <) T /35’93?“30@ +ClIV20II72 + Cllull s + 100 s) (101772 + [l ). (3.34)
i=1
Combining (3.16),(3.25), (3.26), with (3.34) and integrating it over [0, ¢] yields
t t
/0 lusl3s < Cll(uo. 00) I Frs + Cll(w, 0)(t) |75 +/O 161175 dr

t
+C sup [[(u,0)]| /0 (ullZs + 116120 dr

0<r<t

< C&(0) + CE(t) + CEN2 () + CE2 ().

10
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which implies (1.5). ]

3.3 Proof of Theorem 1.1

Now, we use bootstrapping argument to prove Theorem 1.1. From above subsection, we have
deduced that

E1(t) < CE(0) + CEY (1) + CE2 (1), (3.35)
E(t) < CE(0) + CEL(t) + CEX (1) + CEY2 (1) (3.36)
For any ¢>0, adding (3.36) to (3.35) by the appropriate constant obtains,
E(t) < CE(0) + CE32 (1), (3.37)
where E(t) = £1(t) + &2(t), and C'>0 is a pure constant. Let
1
|| (UO, bo) HH3 — 1603
The bootstrapping argument starts with the ansatz that
1
< —.
€0 = i

It follows from (3.37) that

E(t) < CE(0) + CEV2()E() < CE(0) + 0%5( ) = C£(0) + Z£(1),

then,
E(t) <2C&(0).

The bootstrapping argument then implies that, for any ¢ > 0,

< —.
€@ < 8C?

Therefore, we finish the proof of Theorem 1.1.

4 The proof of Theorem 1.2

The purpose of this section is to prove Theorem 1.2. First of all, we establish the decay results
n (1.6). Dueto V-u =0,

S SV, VO + IVunliZa + 19013

:/VG‘VH-Vudx—/Vu-VQ-VHda:

(4.1)
+/V0-Vu-V0dx
< C|[Vull=| VO] 72
< Cul s V01 2.
For any 0 < s < t<oo, integrating (4.1) in time, by the upper bound in (1.2), that is
|(Ve, VO) (1) 22 < CI[(Vu, V6)(5)]22. (4.2

The two conditions provided by (4.2) and (1.2), we can get (1.6) according to Lemma 2.2.

11



UNDER PEER REVI EW

References

[1]

H. Abidi and T. Hmidi, On the global well-posedness for Boussinesq system, J. Diff. Equ., 2007,
233: 199-220.

D. Adhikari, C. Cao, H. Shang, J. Wu, X. Xu and Z. Ye, Global regularity results for the 2D
Boussinesq equations with partial dissipation, J. Diff. Equ., 2016, 260: 1893-1917.

D. Adhikari, C. Cao, J. Wu and X. Xu, Small global solutions to the damped two-dimensional
Boussinesq equations, J. Diff. Equ., 2014, 256: 3594-3613.

H. Bahouri, J.-Y. Chemin, R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equa-
tions, Springer, 2011.

L. Brandolese, M. Schonbek, Large time decay and growth for solutions of a viscous Boussinesq
system, Trans. Amer. Math.Soc., 2012, 364: 5057-5090.

D. Bian, X. Pu, Global smooth axisymmetic solutions of the Boussinesq equations for magnetohy-
drodynamic convection. J. Math. Fluid. Mech., 2020, 22(1): 12.

A. Castro, D. Cérdoba, D. Lear, On the asymptotic stability of stratified solutions for the 2D
Boussinesq equations with a velocity damping term. Math. Mod. Meth. Appl. S., 2019, 29(07):
1227-1277.

C. Cao, J. Wu, Global regularity for the 2D MHD equations with mixed partial dissipation and
magnetic diffusion. Adv. Math., 2011, 226(2): 1803-1822.

D. Chae, Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv. Math.,
2006, 203: 497-513.

D. Chae, J. Wu, The 2D Boussinesq equations with logarithmically supercritical velocities, Adv.
Math., 2012, 230: 1618-1645.

P. Constantin, C.R. Doering, Infinite Prandtl number convection, J. Stat. Phys., 1999, 94: 159-172.

X. Cui, C. Dou, Q. Jiu, Local well-posedness and blow up criterion for the inviscid Boussinesq system
in Hlder spaces, J. Partial Differ. Equ., 2012, 25: 220-238.

C. Doering, J. Wu, K. Zhao and X. Zheng, Long time behavior of the two-dimensional Boussinesq
equations without buoyancy diffusion. Phys. D, 2018, 376: 144-159.

R. Danchin, Remarks on the lifespan of the solutions to some models of incompressible fluid me-
chanics, Proc. Amer. Math. Soc., 2013, 141: 19791993.

R. Danchin, M. Paicu, Global existence results for the anisotropic Boussinesq system in two dimen-
sion, Math. Models Methods Appl. Sci., 2011, 21: 421-457.

W. E, C. Shu, Small-scale structures in Boussinesq convection, Phys. Fluids, 1994, 6: 49-58.
A E. Gill, AtmosphereOcean Dynamics, Academic Press, London, 1982.

T. Hmidi, On a maximum principle and its application to the logarithmically critical Boussinesq
system, Anal. PDE, 2011, 4:247284 .

R. Ji, Y. Li, J. Wu, Optimal decay for the 3D anisotropic Boussinesq equations near the hydrostatic
balance, Calc. Var., 2022, 61-136.

S. Lai, J. Wu, Y. Zhong, Stability and large-time behavior of the 2D Boussinesq equations with
partial dissipation. J. Differ. Equ., 2021, 271: 764-796.

S. Lai, J. Wu, X. Xu, J. Zhang, Y. Zhong, OPtimal decay estimates for the 2D Boussinesq equations
with partial dissipation. J. Nonlinear Sci., 2021, 31: 16.

A.J. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean, Courant Lect. Notes
Math., 2003, vol. 9, AMS/CIMS,.

12



UNDER PEER REVI EW

[23] J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987.

[24] Y. Yu, M. Fei, Global well-posedness for the 2D MHD-Boussinesq system with temperature-
dependent diffusion. Appl. Math. Lett., 2020, 106: 106399.

13



