
A Hybrid GPR-GAM Model for Enhanced Spatio-Temporal
Climate Prediction in Kenya

Abstract
Climate change presents growing challenges in regions like Kenya, where diverse terrain and
climatic variability complicate accurate environmental forecasting. Traditional climate models often
fall short in capturing both the non-linear relationships among climatic variables and the spatial
dependencies inherent in such data. To address these limitations, this study introduces a novel
hybrid model that integrates Gaussian Process Regression (GPR) and Generalized Additive Models
(GAM) to enhance spatio-temporal climate prediction. The model was developed by combining the
structured, interpretable components of GAM with the spatially aware, probabilistic strengths of
GPR, using climate data collected from the Google Earth Engine covering the period 2015–2024.
Model parameters were estimated through generalized cross-validation and optimized using the L-
BFGS algorithm. Results indicate that the hybrid model significantly improves predictive accuracy
compared to standalone GPR or GAM approaches, achieving an RMSE of 1.27°C and an R²
of 0.91. These findings demonstrate the model’s effectiveness in capturing Kenya’s spatial and
climatic heterogeneity. The study recommends the hybrid model’s application in climate-sensitive
sectors such as agriculture, infrastructure development, and early warning systems, with future
work focusing on scalability and real-time deployment.
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1 Introduction

Climate variability and climate change present some of the most pressing challenges facing
developing countries in the 21st century (Thornton et al. (2014)). Nowhere is this more apparent
than in Kenya, a country marked by pronounced climatic heterogeneity and ecological diversity.
From the arid and semi-arid regions of the north to the humid coastal lowlands and the temperate
central highlands, Kenya’s landscape presents complex environmental gradients that give rise to
spatially and temporally dynamic weather patterns. These climatic variations have far-reaching
implications for livelihoods, agriculture, public health, and national development goals. Agriculture,
which accounts for a significant portion of Kenya’s GDP and employs a majority of the population, is
particularly vulnerable to temperature shifts and rainfall variability (Herrero et al. (2010)). Additionally,
climate-sensitive sectors such as water resources, food security, infrastructure, and disaster risk
management require precise and location-specific climate predictions to make informed decisions
(Lawrence et al. (2023)). In this context, climate modeling emerges not merely as an academic
exercise but as a crucial tool for resilience planning and adaptive policy design.

Conventional modeling approaches—such as General Circulation Models (GCMs) and Regional
Climate Models (RCMs)—have proven valuable in assessing long-term climate trends and in
providing boundary conditions for understanding global climate dynamics (Chokkavarapu and
Mandla (2019)). However, these models typically operate at spatial resolutions too coarse to capture
local-scale phenomena relevant to community-level planning in Kenya. Their reliance on rigid
parametric assumptions and their limited ability to reflect microclimatic influences such as orographic
effects, land-use change, and spatial heterogeneity further limit their applicability (Pathirana et al.
(2014)). Downscaled versions of these models improve spatial resolution but still often fail to
account adequately for the nonlinear, spatially structured relationships that define climate behavior in
topographically diverse settings like Kenya.

Emerging statistical and machine learning models have been adopted to overcome some of
these shortcomings, offering greater flexibility and adaptability to regional contexts (Wilson and
Anwar (2024)). Among the most notable approaches are Generalized Additive Models (GAMs)
and Gaussian Process Regression (GPR). GAMs are an extension of traditional linear models that
allow for smooth, non-linear relationships between covariates and responses (Wiley et al. (2019)).
They are especially useful for modeling variables like temperature that respond non-linearly to
environmental gradients such as elevation and precipitation. GAMs also offer the advantage of
interpretability: each term in the model can be examined independently to understand how specific
factors contribute to the outcome (Zschech et al. (2022)). However, despite their transparency and
computational efficiency, GAMs do not inherently account for spatial dependencies in the data, nor
do they quantify the uncertainty associated with predictions—two critical features in the context of
climate modeling and risk assessment.

In contrast, Gaussian Process Regression (GPR) is a non-parametric, Bayesian approach that
excels in modeling spatial and spatio-temporal data (Pipia et al. (2021)). GPR offers probabilistic
predictions, meaning it not only provides point estimates but also quantifies the uncertainty
associated with those estimates. This is particularly important in regions like northern Kenya, where
data sparsity can undermine confidence in deterministic models. GPR models incorporate spatial
structure directly through kernel functions—such as the Matérn kernel—which can flexibly adapt to
varying spatial scales and smoothness levels (Tuia et al. (2018)). However, GPR comes with its own
set of challenges. It is computationally expensive, particularly for large datasets, and the influence of
individual covariates is embedded within the kernel function, making the model less transparent and
interpretable.
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The limitations of using GAM or GPR in isolation highlight the need for a hybrid modeling
framework that capitalizes on the strengths of both. GAM can capture structured, non-linear
relationships between climatic variables and temperature, while GPR can model the residual
spatial autocorrelation not explained by those variables. Together, these models can form a more
comprehensive system capable of handling the structural and stochastic complexity inherent in
climate data. Such an integrated approach is especially well-suited for countries like Kenya, where
diverse terrain and climate interactions demand both interpretability and precision in predictive
models.

This study introduces and evaluates a hybrid modeling framework that integrates GAM and GPR
for spatio-temporal temperature prediction across Kenya. The hybrid model leverages the ability of
GAM to model structured nonlinear effects such as elevation, precipitation, and temporal trends,
and combines it with the strength of GPR to capture spatial dependencies and provide predictive
uncertainty. The hybrid framework first uses GAM to estimate the systematic effects of covariates
and then applies GPR to model the residuals, thereby incorporating spatial structure into the final
prediction.

2 Materials and Methods
This study proposes a hybrid climate modeling framework that integrates Generalized Additive Models
(GAM) and Gaussian Process Regression (GPR) to predict average daily temperature across Kenya
using spatio-temporal climate data. The methodological workflow comprises four key components:
data acquisition and preprocessing, model specification, parameter estimation and optimization, and
performance evaluation.

2.1 Data Sources and Preprocessing
Daily climate and topographic data from 2015 to 2024 were obtained from Google Earth Engine
(GEE). Temperature and precipitation variables were extracted from the ERA5-Land dataset, while
elevation data were obtained from the Shuttle Radar Topography Mission (SRTM). A set of 500
spatial locations was randomly sampled across Kenya, ensuring representative coverage across
diverse ecological zones such as highlands, coastal areas, and arid regions.

The dataset included the following variables: average daily temperature (T ), precipitation (P ),
elevation (E), latitude (x1), longitude (x2), and time (t). Preprocessing steps involved outlier removal
based on interquartile range thresholds, normalization of continuous covariates, and conversion of
dates into numeric time indices. The data were split into training (80%) and test (20%) sets, ensuring
spatial balance in the split.

2.2 Generalized Additive Model (GAM)
The first component of the hybrid model is a GAM that captures smooth, nonlinear relationships
between temperature and selected covariates (elevation, precipitation, and time). The GAM is
expressed as:

η(y) = β0 + f1(t) + f2(E) + f3(P ) (2.1)

where:

• β0 is the intercept,

• f1(t) is a smooth function of time,
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• f2(E) is a smooth function of elevation,

• f3(P ) is a smooth function of precipitation.

The functions fi are estimated using penalized thin plate regression splines. The residuals from
the GAM model, r(x), are computed as:

r(x) = T (x)− η(y) (2.2)

These residuals are then modeled using GPR to account for spatial autocorrelation not captured
by the GAM.

2.3 Gaussian Process Regression (GPR)

The GPR component models the residual spatial structure of temperature data. Let r(x) denote the
residual at location x = (x1, x2) in spatial coordinates. GPR assumes that:

r(x) ∼ GP(0,K(x, x′)) (2.3)

where K(x, x′) is the covariance function (kernel) between locations x and x′. The Matérn kernel
was selected for its flexibility and is defined as:

Kν(d) = σ2 · 2
1−ν
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where:

• d = ∥x− x′∥ is the Euclidean distance between spatial points,

• ν is the smoothness parameter (set to 1.5),

• ℓ is the length scale,

• σ2 is the signal variance,

• Kν is the modified Bessel function of the second kind.

The GPR predictions are derived by maximizing the log-marginal likelihood:
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where σ2
n is the noise variance and K is the covariance matrix over all spatial locations.

2.4 Hybrid GPR-GAM Framework

The final model is a summation of the structured GAM component and the spatial GPR component,
along with an i.i.d. noise term:

T (x) = η(y) + fGPR(x) + ϵ, ϵ ∼ N (0, σ2) (2.6)

Parameter estimation was performed in two stages: (1) fitting the GAM component using
penalized least squares and selecting the smoothing parameter λ via generalized cross-validation
(GCV), and (2) training the GPR component on the residuals using the L-BFGS optimization algorithm
for hyperparameter tuning.
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2.5 Model Evaluation
The performance of the hybrid model was evaluated against standalone GAM and GPR models using
a held-out test set. Evaluation metrics included root mean square error (RMSE), mean absolute
error (MAE), coefficient of determination (R2), and coverage probability of 95% prediction intervals.
Spatial diagnostics such as Moran’s I and semivariograms were used to assess residual spatial
dependence.

All computations were implemented in Python using packages such as pyGAM, GPy,
scikit-learn, and geopandas. Visualization was conducted using matplotlib and seaborn.

3 Results and Discussion
The temperature data was collected from GEE for a period of 10 years (2015-2024). In order to
achieve parsimonious results, summary tables were created, graphs were drawn, and the results were
extensively discussed. The analysis was performed using R and Python software. The hybrid GAM-
GPR model was designed to leverage the deterministic interpretability of GAM with the probabilistic
spatial adaptability of GPR, in order to model the average temperature in Kenya with both structural
precision and spatial stochastic flexibility.

3.1 Model’s Predictive Performance
The implementation of the hybrid Generalized Additive Model–Gaussian Process Regression
(GAM–GPR) framework produced significant improvements in both predictive performance and the
modeling of residual spatial structure compared to its standalone components. This enhancement
stems from the complementary strengths of the two methods: while the GAM component
effectively captured the structured, non-linear effects of key covariates such as time, elevation, and
precipitation, the GPR component successfully modeled the remaining spatial dependencies that the
GAM could not account for. By combining these two approaches, the hybrid model provided a more
comprehensive representation of the underlying data-generating process.

Quantitatively, the hybrid model outperformed both the standalone GAM and GPR models
across all standard evaluation metrics, including Root Mean Squared Error (RMSE), Mean Absolute
Error (MAE), and the coefficient of determination (R2). These improvements indicate that the
hybrid approach not only yielded more accurate predictions but also reduced unexplained variability,
particularly in regions with complex spatial structure. The reduction in residual spatial autocorrelation
further confirms that the GPR component effectively captured latent spatial patterns that the GAM
alone was unable to address. The results are summarized in the table below:
The hybrid model achieved a pseudo-R² score of 0.9121, which indicates that it was able to explain
over 91.2% of the variance in average temperature across the study area. This represents a
significant improvement over the GAM (89.4%) and GPR (87.4%) models individually. The reduction
in prediction error is similarly notable, with an RMSE of 1.28°C and an MAE of 1.08°C, both of which
were the lowest among the three approaches. These results confirm that the hybrid model effectively
combines the strengths of its components: the structured predictability of GAM and the residual
smoothing power of GPR.

A critical insight gained from the hybrid model is how effectively it addresses spatially structured
residuals that persist after fitting the deterministic GAM component. While the GAM captured major
nonlinear effects of elevation, precipitation, and location, residual analysis revealed lingering spatial
autocorrelation – a common limitation in additive models that do not explicitly model correlation
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Model R2 Score RMSE MAE Mean Predictive Uncertainty

GAM 0.8939 1.47 1.23 —

GPR 0.8742 1.61 1.30 0.3475

Hybrid GAM–GPR 0.9121 1.28 1.08 0.3261

Table 1: Model’s Predictive Performance

between neighboring spatial observations.

By training the GPR model on these residuals, the hybrid approach reconstructed the
unexplained spatial structure using a Matérn covariance kernel. The Matérn kernel, with a
smoothness parameter ν = 1.5, offered a balance between model flexibility and spatial realism.
Its learned length scales suggested that temperature observations remained correlated across
distances of approximately 1.4◦ to 1.8◦, corresponding to 150–200 kilometers — a typical spatial
influence range for climatological processes.

This residual modeling allowed the hybrid model to adjust local temperature estimates based
on surrounding residual patterns, improving prediction at both highly observed and under-sampled
locations. The residual maps produced by GPR showed coherent, spatially smooth patterns that
aligned with known microclimates and orographic zones. These improvements are particularly
evident in topographically diverse areas such as the Rift Valley and Mount Kenya region, where
traditional models often struggle to capture fine-scale variations.

Another important aspect of the hybrid model’s performance lies in its probabilistic calibration.
Unlike deterministic models, the GPR component provides posterior predictive variances at each
location, offering spatially explicit uncertainty estimates. This capability is vital in decision-making
processes related to agriculture, infrastructure, and disaster preparedness, where understanding
prediction confidence is as important as the prediction itself.

In the hybrid model, the mean predictive standard deviation decreased to 0.3261°C, compared to
0.3475°C in the standalone GPR model. This reduction reflects an increased certainty in predictions
due to the GAM component capturing much of the explainable variance, thus leaving less uncertainty
to be modeled by GPR. Moreover, uncertainty was spatially adaptive, – lowest in regions with dense
observational coverage and consistent covariate behavior (e.g., central highlands) and higher in
data-sparse or environmentally complex areas (e.g., northern arid zones and coastal regions).

This spatial distribution of uncertainty highlights the hybrid model’s risk-aware predictive
capability, allowing end-users to interpret not just what the model predicts but also how much trust
can be placed in those predictions. For climate applications, this is particularly valuable in guiding the
placement of weather stations, prioritizing regions for data acquisition, and designing robust policies
that account for varying levels of climatic predictability.
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3.2 Hybrid Model Validation
The hybrid GAM–GPR model produced highly accurate and reliable estimates of average temperature
across the study area. Based on predictions generated on an independent test set, the model
achieved a coefficient of determination (R²) of 0.9121, indicating that it successfully explained
91.2% of the total variance in observed temperature values. This high level of explanatory power
demonstrates the model’s strong ability to generalize to unseen spatial locations.

In addition to its high R², the model yielded a Root Mean Squared Error (RMSE) of 1.28°C and a
Mean Absolute Error (MAE) of 1.08°C. These metrics confirm that the model consistently produced
low prediction errors across the test set. The small difference between RMSE and MAE further
suggests that the distribution of errors was fairly uniform, with no significant presence of large outliers.

The hybrid model also exhibited strong probabilistic calibration. The mean predictive standard
deviation was 0.3261°C, indicating moderate and spatially adaptive confidence in the predictions.
The lowest uncertainty values were observed in regions with dense data coverage, while areas
with sparse observations, such as the northern arid zones, displayed predictably higher uncertainty.
The magnitude and spatial structure of uncertainty were consistent with climatic intuition and
observational density.

Visually, the predicted temperature surface from the hybrid model was smooth, continuous, and
geographically coherent. High-temperature zones were clearly distinguished in the low-lying eastern
and coastal regions, while cooler temperatures were consistently predicted in the elevated central
and western highlands. Localized variations were effectively captured, particularly in regions with
complex topography, such as the Rift Valley and around Lake Victoria. In these areas, the hybrid
model generated fine-grained patterns that aligned with known microclimatic behavior.

Residual analysis confirmed the model’s effectiveness in reducing unexplained spatial variability.
The residuals were small and exhibited no strong spatial autocorrelation, indicating that the hybrid
model captured both large-scale trends and local anomalies. Compared to the standalone GAM
and GPR models, the hybrid approach yielded significantly reduced residual variance and tighter
prediction intervals.

Overall, the results obtained demonstrate that the hybrid GAM–GPR model offers a robust and
interpretable framework for temperature modeling. It balances accuracy with spatial adaptability
and provides uncertainty-aware estimates that can support climate-sensitive decision-making and
resource planning.

The results of the residual analysis and the Durbin-Watson test (2.03) strongly support the validity
of the hybrid model. The residuals showed no evidence of autocorrelation or systematic error, and
their distribution was consistent with the assumptions of regression and Gaussian process modeling.
These diagnostics reinforce the robustness and reliability of the hybrid GAM–GPR framework, further
justifying its use for climate modeling applications across heterogeneous spatial landscapes.

3.3 Hybrid Model Diagnostic Plots
Two diagnostic plots were generated to provide visual insight into the model’s behavior: Residuals vs
Actual Temperature and predicted vs. actual temperature, as shown in the figure below.
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Figure 1: Hybrid Model Diagnostic Plots

Residuals vs Actual Temperature (Left Panel): This plot displays the residuals (i.e., actual
minus predicted values) against the actual temperature observations. The red dashed line at zero
serves as a reference line, where perfect predictions would lie. The residuals are fairly symmetrically
distributed around the zero line, which suggests that the model does not exhibit systematic over- or
underestimation across most of the temperature range.

While some minor dispersion is observed at higher temperatures (above 28◦C), the residual
spread remains within acceptable bounds, indicating that model error does not dramatically increase
with temperature extremes. The residual pattern exhibits no distinct trends or curvature, supporting
the assumption of residual randomness, a key requirement in validating the assumptions of hybrid
modeling frameworks.

Predicted vs Actual Temperature (Right Panel): This plot compares the predicted temperature
values against the actual observed temperatures. The ideal model would yield points lying exactly
on the 45-degree reference line (red dashed line), indicating perfect agreement between predictions
and observations. Most of the data points are tightly clustered around the line, indicating a strong
linear relationship and high prediction fidelity.

The diagonal trend is preserved across the entire temperature spectrum (from ∼10◦C to ∼35◦C),
suggesting that the model performs well across both low and high temperature regions. The tight
clustering of points and absence of systematic deviation imply that the hybrid model provides stable,
unbiased predictions across the range of observed values.

4 Conclusions
This study introduced and evaluated a hybrid modeling framework that integrates Generalized
Additive Models (GAM) and Gaussian Process Regression (GPR) to predict average daily
temperature across Kenya. The hybrid GAM–GPR model was designed to address key limitations
observed in standalone statistical and machine learning models—namely, the lack of spatial
correlation handling in GAMs and the limited interpretability of GPRs. By combining the structured,
interpretable modeling capabilities of GAM with the spatially adaptive, uncertainty-aware predictions
of GPR, the hybrid model provided a robust and flexible tool for spatio-temporal climate modeling.

Results demonstrated that the hybrid model outperformed its component models across all
evaluated metrics, achieving higher accuracy (R2 = 0.9121), lower prediction errors (RMSE =
1.28◦C, MAE = 1.08◦C), and better residual behavior. Moreover, the model offered spatially
explicit uncertainty estimates, a critical feature for decision-making in climate-sensitive sectors. The
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diagnostic plots and residual analyses confirmed the hybrid model’s ability to capture both global
trends and localized spatial patterns, especially in climatically and topographically complex areas
such as the Rift Valley and central highlands. Overall, the hybrid GPR–GAM framework provides a
scientifically grounded and operationally practical solution for localized climate prediction, with strong
potential for integration into climate resilience planning, agricultural advisories, infrastructure design,
and environmental risk assessment in Kenya and similar geographies.

While the hybrid GAM–GPR model has demonstrated strong predictive capabilities, several
directions remain for extending and refining this work. First, future research could explore multi-
output modeling to jointly predict multiple climate variables—such as temperature, precipitation, and
humidity—within a unified framework. This would provide a more holistic understanding of climate
dynamics and improve integrated risk modeling. Second, the scalability of GPR remains a challenge
for very large datasets; thus, incorporating sparse Gaussian processes or variational inference
techniques could significantly reduce computational overhead while maintaining predictive accuracy.

Third, the model could be extended to include additional covariates such as Normalized
Difference Vegetation Index (NDVI), land use, or soil moisture data, which may enhance the model’s
capacity to represent land-atmosphere interactions. Another promising direction involves real-time
forecasting, where the model is adapted for streaming data and integrated into early warning systems
for drought or heatwaves. Finally, the applicability of the hybrid framework should be tested in other
geographical regions with diverse climatic and topographic conditions, to evaluate its generalizability
and to inform broader climate adaptation strategies across the Global South. These enhancements
would not only increase the model’s practical utility but also contribute significantly to the growing field
of interpretable and uncertainty-aware climate modeling.
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