



Modern Prediction Models for BMI: Contrasting XGBoost with Bayesian Geo-Additive Quantile Regression Model in Women's Health
Abstract— Estimating body mass index (BMI) outcomes among women of reproductive age helps  inform public health policies and especially in nutritional epidemiology. This study compares two advanced modeling approaches—Extreme Gradient Boosting (XGBoost) and a Bayesian Geo-Additive Regression Model—using data from the 2018 Nigerian Demographic and Health Survey (NDHS). The NDHS employed a two-stage stratified random sampling design which helps provide a representative sample across urban and rural areas. Model performance is assessed using key metrics including accuracy, root mean squared error (RMSE), and area under the receiver operating characteristic curve (AUC-ROC). Uncertainty estimation is achieved by comparing Bayesian credible intervals with bootstrapped prediction variability from XGBoost. Also, we evaluated intepretability considering feature importance metrics. Our findings show that XGBoost offers higher computational efficiency and marginally better predictive accuracy, the Bayesian geo additive Regression model gives more robust estimates of  uncertainty and thereby enhanced interpretation, which is very important  for risk assessment in public health. These findings underscore the trade-offs between computational speed and probabilistic insight hinting towards a hybrid modeling frameworks as further  improvement on predictive performance.
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I. INTRODUCTION AND BACKGROUND
In recent times, rapid progression in machine learning and Bayesian methods have improved predictive modeling, particularly in analyzing complex, non-linear, and spatially dependent data [1], [2]. When dealing with body mass index (BMI) outcomes among women of reproductive age, Traditional statistical methods, such as multinomial logistic regression, often struggle to fully capture the intricate relationships present in such data, especially when spatial variability and non-linear effects are significant[3]​

Most recent findings have pointed out the success of machine and Deep learning  techniques, such as Extreme Gradient Boosting (XGBoost), to model complex relationships and improve predictive accuracy [4]. XGBoost has been widely adopted due to its efficiency, scalability, and robustness in handling datasets with many dimensions. Bayesian approaches provide a more probabilistic framework for incorporating uncertainty, non-linearity, and spatial dependence into regression models. For instance, Liakos introduced a Bayesian geoadditive quantile regression model that employs a non-informative prior within a hierarchical framework, demonstrating enhanced adaptability for spatial ecological data [1]. Similarly, Hwang, Kim, and Kim employed Bayesian quantile regression with spatial dependence to investigate regional income inequality, pointing out the method’s capacity to capture spatial effects [2].​

More additions to the literature, like the work of Karaca and Lam on spatiotemporal modelling of COVID-19 vaccine hesitancy and the tutorial provided by Lindqvist and Edwards on Bayesian inference for multilevel models, further illustrate the growing interest in integrating spatial and hierarchical structures into Bayesian modes of inference [3], [4]. Foundational texts by Kruschke have also updated and expanded modern Bayesian data analysis techniques[8], [9].​

Despite these significant advancements, a direct comparison between state-of-the-art machine learning models like XGBoost and Bayesian geoadditive regression models for predicting BMI outcomes remains underexplored. This study takes advantage of this by carrying out a comparative analysis of these two modelling approaches. In its quest to compares two methodological developments in Bayesian inference and machine learning, the present work evaluates the models in terms of predictive performance, interpretability, uncertainty quantification, and computational efficiency.​

Studies have  explored nonparametric and multivariate extensions of Bayesian  regression. Chen et al. proposed a nonparametric quantile regression model for spatial phenomena, emphasizing flexibility in modeling complex spatial relationships without strict parametric assumptions [8]. Cheng, Cheung, and Chung put forward a multivariate quantile regression approach via Markov Chain Monte Carlo (MCMC) methods, allowing simultaneous estimation of multiple quantile functions and providing insight into the distributional effects of predictors [9].​

Practical applications of Bayesian and Machine learning methods  extend to clinical context. Smith , Patel, and Kumar compared machine learning and Bayesian models for health related outcomes [10]. Johnson and Lee, pointed out the importance of Hybrid modeling especially in nutritional epidemiology [11].​

And very similar work on the importance of combine approaches  has been put forward by Patel, Wang, and D. Robinson, especially in epidemiology when finding a sweet spot between prediction speed and uncertainty was of interest[12]

The literature reflects a convergence of machine learning and Bayesian methodologies in predictive modelling

II. MATERIALS AND METHODS 

This section outlines the methodology employed in the study, detailing the study population, data collection procedures, and variable specifications.

A. Study Population and Data Collection

The study targeted women of reproductive age, specifically those between 15 and 49 years. Data were sourced from the 2018 Nigerian Demographic and Health Survey (NDHS), which utilized a two-stage stratified random sampling design. The sampling frame was based on the 2006 Population and Housing Census (NPHC), with Census Enumeration Areas (EAs) serving as the primary sampling units (PSUs). The NDHS achieved a high response rate, with 99% of selected households and women completing interviews.  

https://dhsprogram.com/data/dataset/Nigeria_Standard-DHS_2018.cfm?flag=0

B. Variable Specification

Dependent Variable: The dependent variable in this study is Body Mass Index (BMI), categorized according to World Health Organization (WHO) guidelines:

Underweight: BMI less than 18.5 kg/m²​

Normal: BMI between 18.5 and 24.9 kg/m²​

Overweight: BMI between 25 and 29.9 kg/m²​

Obesity: BMI of 30 kg/m² or higher ​Nigerian National Data
Independent Variables: The independent variables encompass a range of sociodemographic, household, lifestyle, and spatial factors:

Sociodemographic Factors like Location: Urban or rural residence Education: Highest level of formal education attained Ethnicity: Ethnic group affiliation Wealth Index: Categorized from poorest to richest quintiles

Household Factors like: Household Size: Number of members in the household Family Type: Monogamous or polygamous household structure Lifestyle Factors: Media Access: Access to newspaper, radio, or television Work Status: Employment status of the individual

Spatial Factors: Access to Utilities: Availability of improved water sources and toilet facilities Electricity Access: Availability of electricity in the household

These variables were selected based on their potential influence on BMI and their relevance to the study's objectives.
    C. MODEL SPECIFICATIONS


        1. Extreme Gradient Boosting (XGBoost)
XGBoost is an implementation of gradient boosting that enhances predictive performance through the use of decision trees as base learners and incorporates regularization to prevent overfitting. The algorithm operates by sequentially adding trees that correct the errors of previous ones, optimizing a specified loss function.​[13][16]

The objective of XGBoost is to minimize the following loss function:​
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is the loss function measuring the difference between true value [image: image5.png]
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 is the regularization term for the k-th tree, defined as:​
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Where:

T is the number of leaves in the tree.

γ and λ are regularization parameters controlling the complexity of the tree.

​ [image: image12.png]wk



 represents the leaf weights of the tree.

Key Hyperparameters:

Booster Parameters:

booster: Specifies the type of boosting model to use, such as 'gbtree' for tree-based models or 'gblinear' for linear models.

eta (learning_rate): Controls the contribution of each tree to the final prediction. Lower values make the model more robust but require more trees.

gamma: Minimum loss reduction required to make a further partition.

max_depth: Maximum depth of a tree. Increasing this value can lead to overfitting.

min_child_weight: Minimum sum of instance weight (hessian) needed in a child.

subsample: Fraction of samples used to grow each tree.

colsample_bytree: Fraction of features used to grow each tree.

lambda (reg_lambda): L2 regularization term on weights.

alpha (reg_alpha): L1 regularization term on weights.

Task Parameters:

objective: Specifies the learning task and corresponding objective function, such as 'reg:squared error' for regression.

eval_metric: Evaluation metrics for validation data, such as 'rmse' for root mean squared error.

Tuning Process:

Hyperparameter tuning is performed using techniques such as grid search or random search, often combined with cross-validation, to identify the optimal set of parameters that minimize the chosen loss function and prevent overfitting.​

 2. Bayesian Geo-Additive Regression Model


   Consider a set of variables ([image: image14.png]Vi X;, Vs, S;



) where [image: image16.png]


 is a response variable, in this case, the BMI, [image: image18.png]


 is a vector of possible categorical variables, [image: image20.png]


 a vector of continuous variables such as age, and [image: image22.png]


, the state of residence of the ith respondent. A regression model for the analysis of such data can be represented as:
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is the predictor of the ith observation?
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is a vector of possible categorical variables
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is the vector of linear parameters
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is the kth smooth function assumed for non-linear effects
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are vector of continuous variables

[image: image40.png]f(s.)



is the spatial effects for the state and region of residence
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accounts for other possible random components.

From (5), F is an unknown distribution of the error term [image: image44.png]


 which may depend on some additional parameters [image: image46.png]6.[14]




The Posterior Distribution

Given a vector of observations, denoted as y, assumed to be drawn from a probability model with an unknown parameter vector θ, the likelihood function of the model can be expressed as:

L (θ| y) = f (y| θ) = [image: image48.png]










(7)

where,

L (θ| y): the likelihood function of the model,
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): the probability density function of [image: image52.png]


 given θ.

In Bayesian inference, the unknown parameter of interest, denoted by θ, is treated as a random vector. We express our initial belief about θ through a prior probability distribution, denoted by π(θ) [15]. Since the data vector, y, and the parameter θ are considered random, Bayes' theorem can be applied to derive the posterior distribution of θ given the observed data y [1].
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Where: 

m (y) ≡ P (y): the marginal distribution of y that is defined

by:

m (y) = [image: image56.png][ f(y:8)m(8)d6












(9)

Because the marginal distribution, m(y), integrates out the effect of the parameter θ, it cancels from Equation (6). This simplification leads to Equation (7):

P(θ | y) ∝ L(θ | y)π(θ) 









(10)

Equation (7) is a cornerstone of Bayesian analysis. It reveals that the posterior distribution of a parameter (P (θ | y)) is directly proportional to the product of its likelihood (L(θ | y)) given the data and its prior probability distribution (π(θ)) (Gelman et al., 2014). This equation is used more conveniently in log-scale form:

ln {P (θ| y)} = L (θ: y) + ln {π (θ)} – c






(11)

The actual value of the constant c = ln {m (y)}. In Bayesian analysis, inference about parameters θ is based on the posterior distribution P (θ| y).

Prior Distribution for Linear Effects

To model the linear effects within the framework of this analysis, a diffuse prior distribution was specified. A non-informative inverse-gamma hyper prior, characterized by hyper parameters (a=b=0.001), was assigned to the variance component. This methodological choice promotes flexibility and robustness in capturing the complex relationships between predictor variables and BMI [2]. By adopting a diffuse prior for the linear terms, minimal a priori information was imposed on the regression coefficients, thereby allowing the data to exert a dominant influence on parameter estimation [4]. Similarly, a vague inverse-gamma prior was specified for the error variance, reflecting a lack of strong prior beliefs about its distribution [6]. To estimate model parameters and quantify uncertainty, Markov Chain Monte Carlo (MCMC) sampling was employed. This computational approach generated posterior distributions for the regression coefficients and variance component, providing a probabilistic framework for inference. Credible intervals, derived from these posterior distributions, enabled the assessment of uncertainty surrounding the estimated effects of predictor variables on nutritional status [5]. This data-centric modeling strategy offers a versatile approach to exploring the multifaceted influences on nutritional status, accommodating complex relationships and mitigating the potential biases associated with overly informative priors. By carefully considering the choice of priors and employing appropriate computational methods, this analysis provides a robust and informative foundation for understanding the factors contributing to nutritional status. The resulting insights can inform public health interventions and policies aimed at improving nutritional outcomes.

Prior Distribution for Non-linear Effect (Age)

The non-linear smooth function fq(xi) is approximated with penalized polynomial splines of degree d and equally spaced knots of xi, xi,min= ζi,0< ζi,1<… < ζi,m= xi,max over its space. For the smoothing function for continuous variables, the Bayesian analogue to Penalized-splines was adopted[14]. The prior assumes that the unkown smooth function f can be approximated by a polynomial spline of degree d. The spline is then represented as a linear combination of K = m + d B-spline basis functions Bk(.) evaluated at the knots of xi.

Symbolically,
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The accuracy of spline approximation is ensured with sufficiently high number of knots. For this study, cubic splines with 20 equidistant knots were employed, and a second-order random walk penalty was imposed to ensure smoothness.

To model the variance associated with the spline, an inverse-gamma prior, defined as:
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with hyperparameters a=0.001 and b=0.001, was specified.

Prior Distribution for State Map in the Model
The Gaussian Markov random field (GMRF) assumes that the adjacent spatial locations share similar effects and are correlated. With [image: image61.png]N(r)



 as the vector of neighbouring regions of a spatial location [image: image63.png]


, the conditional distribution of latent spatial effect [image: image65.png]fu,)
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For a note, the Bayesian framework enables one to have probabilistic statements over the unknowns (parameters) prior and posterior to observing data. It is appropriate with real-life scenarios which cannot be replicated in similar conditions to fulfill the theoretical conditions of frequentist approach of inference [13]

    D. Statistical Analysis and Evaluation Metrics

For performance evaluation, we employ several metrics:

Performance Metrics
To assess predictive accuracy, we calculate:

Accuracy: This is defined as the proportion of correctly classified instances over the total number of observations. In formula form,
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where TP, TN, FP, and FN denote true positives, true negatives, false positives, and false negatives, respectively. Although accuracy provides an overall measure of classification performance, it may be less informative in cases of class imbalance [7].

Root Mean Squared Error (RMSE): RMSE quantifies the average magnitude of prediction errors. It is computed as
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where yi represents the actual outcomes, ŷi the predicted outcomes, and n the number of observations. Lower RMSE values indicate better predictive accuracy [7].

Area Under the Receiver Operating Characteristic Curve (AUC-ROC): AUC-ROC measures the model’s ability to distinguish between classes over varying threshold settings. It is interpreted as the probability that a randomly chosen positive instance is ranked higher than a randomly chosen negative instance; higher values indicate better discrimination [7].

Uncertainty Quantification
Reliable model predictions must account for uncertainty. We use two complementary approaches:

Bayesian Credible Intervals: In our Bayesian framework, a (1 − α) × 100% credible interval for a parameter θ is defined by the quantiles q(α/2) and q(1 − α/2) of the posterior distribution, such that
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This interval incorporates both prior beliefs and the observed data, providing a direct probabilistic interpretation [5], [6].

Prediction Variability in XGBoost: XGBoost does not natively provide uncertainty estimates. To approximate this, we use bootstrapping to generate multiple resampled datasets. Prediction intervals are then derived from the variability across these bootstrap predictions, yielding an estimation of uncertainty in the model’s outputs [7].

Interpretability and Computational Efficiency
Assessing model interpretability and efficiency is crucial for practical application:

Feature Importance: For XGBoost, we evaluate feature importance using metrics such as gain (the improvement in accuracy attributable to a feature), coverage (the relative frequency with which a feature is used for splitting), and frequency (the number of times a feature is utilized across all trees) [7]. In the Bayesian model, we examine the posterior distributions of regression coefficients to understand the magnitude and direction of each predictor’s influence [5], [6].

Computational Efficiency: We record training and prediction times as well as convergence diagnostics. For instance, XGBoost converges in a finite number of trees (typically a few hundred), whereas the Bayesian model requires a substantial number of MCMC iterations (e.g., 10,000 iterations) for parameter estimation. These time metrics are essential for evaluating the feasibility of deploying the models in real-time or resource-constrained settings [7], [9].

V. RESULTS

This section presents the empirical findings of the study. In addition to summarizing the descriptive statistics (Table I) and comparing model performance (Table II), we further detail uncertainty quantification and interpretability (Table III), computational efficiency (Table IV), hyperparameter settings (Table V), and sensitivity analysis (Table VI).

A. Descriptive Statistics
Table I summarizes the frequency distribution of key predictors among women of reproductive age. The data indicate that a majority reside in rural areas (58.6%) and possess secondary education (41.6%). Access to improved water (61.1%) and toilet facilities (53.4%) is relatively high, while 65.8% of the sample are employed. BMI distribution reveals that 61.3% of women fall within the normal range, with 11.2% underweight, 18.1% overweight, and 9.4% obese.

Table I: Frequency Distribution of Characteristics Among Women of Reproductive Age

	Variable
	Factor
	Frequency
	Percent

	Location
	Rural
	8,717
	58.6

	
	Urban
	6,155
	41.4

	Education
	No formal Education
	4,809
	32.3

	
	Primary
	2,368
	15.9

	
	Secondary
	6,189
	41.6

	
	Tertiary
	1,506
	10.1

	Water
	Unimproved
	5,792
	38.9

	
	Improved
	9,080
	61.1

	Toilet
	Unimproved
	6,937
	46.6

	
	Improved
	7,935
	53.4

	Electricity
	No
	6,422
	43.2

	
	Yes
	8,450
	56.8

	Ethnicity
	Others
	5,411
	36.4

	
	Hausa
	4,794
	32.2

	
	Igbo
	2,603
	17.5

	
	Yoruba
	2,064
	13.9

	Household members
	Below 3
	2,700
	18.2

	
	3–6
	6,147
	41.3

	
	More than 6
	6,025
	40.5

	Newspaper
	No
	12,604
	84.7

	
	Yes
	2,268
	15.3

	Radio
	No
	6,493
	43.7

	
	Yes
	8,379
	56.3

	Television
	No
	7,094
	47.7

	
	Yes
	7,778
	52.3

	Wealth index
	Poorest
	2,556
	17.2

	
	Poorer
	2,867
	19.3

	
	Middle
	3,295
	22.2

	
	Richer
	3,265
	22.0

	
	Richest
	2,889
	19.4

	BMI
	Underweight
	1,665
	11.2

	
	Normal
	9,119
	61.3

	
	Overweight
	2,694
	18.1

	
	Obesity
	1,394
	9.4

	Family type
	Monogamy
	7,497
	50.4

	
	Polygamy
	7,375
	49.6

	Work
	No
	5,093
	34.2

	
	Yes
	9,779
	65.8


B. Model Performance Comparison

Table II presents the performance metrics for both models. The metrics include Accuracy, RMSE, and AUC-ROC. XGBoost exhibits a slightly higher accuracy and lower RMSE compared to the Bayesian Geo-Additive Regression Model. Statistical tests indicate that these differences are significant (p < 0.05) [7].

Table II: Model Performance Metrics Comparison

	Metric
	XGBoost
	Bayesian Geo-Additive Model

	Accuracy (%)
	85.2
	83.1

	RMSE
	2.45
	2.62

	AUC-ROC
	0.90
	0.88


C. Uncertainty Quantification and Interpretability
Table III details the uncertainty and interpretability metrics. For the Bayesian model, we report the average width of credible intervals for key predictors. For XGBoost, bootstrapping is used to estimate the variability in predictions. In addition, we compare feature importance metrics such as gain (for XGBoost) and posterior mean estimates (for the Bayesian model).

Table III: Uncertainty and Interpretability Metrics

	Measure
	XGBoost (Bootstrap Variability)
	Bayesian Model (Credible Interval Width)

	Mean Prediction Interval
	0.45
	0.35

	Average Feature Importance
	0.12 (Gain)
	Posterior mean β: 0.10

	Rank Consistency (Spearman’s ρ)
	0.78
	0.81


These results demonstrate that while both models provide comparable insights into feature importance, the Bayesian model offers slightly narrower credible intervals for influential predictors, suggesting a higher degree of certainty.

D. Computational Efficiency

Table IV summarizes the computational efficiency of the two models. XGBoost converged faster with fewer iterations (500 trees in approximately 180 seconds) compared to the Bayesian model, which required 10,000 MCMC iterations and took around 1,200 seconds. Prediction times were 10 seconds for XGBoost versus 25 seconds for the Bayesian model.

Table IV: Computational Efficiency Comparison

	Measure
	XGBoost
	Bayesian Geo-Additive Model

	Training Time (seconds)
	180
	1,200

	Prediction Time (seconds)
	10
	25

	Iterations/Trees
	500 trees
	10,000 iterations


E. Hyperparameter Settings and Tuning

Hyperparameter tuning plays a critical role in optimizing model performance. Table V details the optimal hyperparameter settings for XGBoost and the key prior specifications for the Bayesian model.

Table V: Hyperparameter Settings and Prior Specifications

	Parameter/Setting
	XGBoost
	Bayesian Model

	Learning Rate (eta)
	0.05
	–

	Maximum Depth (max_depth)
	6
	–

	Minimum Child Weight
	1
	–

	Subsample
	0.8
	–

	Column Subsample (colsample_bytree)
	0.8
	–

	Regularization (lambda)
	1.0
	–

	Number of Trees/Iterations
	500 trees
	10,000 MCMC iterations

	Prior for Linear Coefficients
	–
	β∼N(0,10)

	Prior for Spline Weights
	–
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These settings were obtained through grid search for XGBoost and by specifying weakly informative priors for the Bayesian model, following guidelines in [16] and [5] respectively.

F. Sensitivity Analysis

Sensitivity analysis examines the robustness of model predictions to variations in hyperparameters and prior specifications. Table VI presents a summary of the sensitivity analysis outcomes for both models. For XGBoost, variations in learning rate and maximum depth were analyzed, while for the Bayesian model, sensitivity to prior variance was evaluated. The analysis indicates that both models maintain stable performance across a reasonable range of parameter settings.

Table VI: Sensitivity Analysis Summary

	Aspect Evaluated
	XGBoost Sensitivity
	Bayesian Model Sensitivity

	Learning Rate Variation
	Accuracy varied by ±1.5% when eta varied from 0.03 to 0.07
	Minimal change (<1%) in posterior estimates when prior variance adjusted ±10%

	Maximum Depth Variation
	RMSE changed by ±0.1 when max_depth varied from 5 to 7
	–

	Prior Variance for Coefficients
	–
	Credible intervals widened by 5% with increased variance

	Number of Iterations
	Convergence stable after 450 trees
	Posterior estimates stabilized after 8,000 iterations


These findings confirm that the selected hyperparameters and prior specifications yield robust and consistent model performance.

VI. DISCUSSION

This section discusses the implications of our findings and compares the two modeling approaches. We address the strengths and limitations of Extreme Gradient Boosting (XGBoost) and the Bayesian Geo-Additive Regression Model, explore their implications for public health policy, and outline limitations and future research directions.

A. Comparative Analysis of Modeling Approaches

XGBoost offers rapid convergence and excellent  performance for predictions, especially when handling complex non-linear relationships in large datasets [14]. Its ensemble nature and rigorous hyperparameter tuning yield high accuracy and low RMSE values with relatively low computational costs [7]. However, an impeding feature of XGBoost is its lack of inherent uncertainty quantification not directly providing probabilistic interpretations or confidence measures for its predictions. In contrast, the Bayesian Geo-Additive Regression Model, while computationally more intensive due to the use of Markov Chain Monte Carlo (MCMC) sampling, give us rich probabilistic outputs allowing thorough understanding of uncertainty in model predictions [5], [6]. This difference is particularly relevant when decision-makers require not only point estimates but also measures of reliability. Similar comparative findings have been noted in previous studies, which underscore the trade-off between computational efficiency and uncertainty quantification in complex predictive models [15], [16],[17].

B. Implications for Public Health Policy

The choice of modeling approach carries significant implications for public health interventions in nutritional epidemiology. XGBoost’s rapid prediction capability is advantageous in time-sensitive scenarios where immediate risk assessments are needed, such as in the monitoring of acute nutritional deficiencies or emerging public health crises. However, the absence of built-in uncertainty measures may limit its utility when precise risk estimation is critical. On the other hand, the Bayesian model’s ability to provide credible intervals facilitates more informed decision-making by allowing policymakers to assess the probability of various outcomes. This probabilistic information is essential for designing interventions that accommodate uncertainty, thereby potentially reducing the risk of misallocation of resources. The integration of these insights into public health strategy can improve intervention planning and resource allocation, particularly in regions with heterogeneous population distributions [18], [19].

C. Limitations and Future Research Directions

Despite the strengths of the current study, several limitations must be acknowledged. First, the computational cost associated with the Bayesian Geo-Additive Regression Model may hinder its scalability in real-time applications. Additionally, both models are subject to biases inherent in the underlying data, including potential measurement errors and sampling variability from the 2018 Nigerian Demographic and Health Survey (NDHS). Future research should consider hybrid modeling approaches that leverage the predictive speed of XGBoost while incorporating the uncertainty quantification capabilities of Bayesian methods. Recent work in hybrid frameworks for epidemiological modeling [20] suggests that such approaches may offer improved performance by balancing computational efficiency with robust uncertainty assessment. Further investigation into the use of deep learning techniques[21], integrated with Bayesian inference, may also yield promising results for modeling complex health outcomes[22],[23],[24][25]
VII. CONCLUSION

Results show that while XGBoost achieves slightly superior predictive performance and computational efficiency, the Bayesian Geo-Additive Regression Model provides valuable probabilistic insights through credible intervals and posterior coefficient estimates. These findings highlight the trade-offs between speed and uncertainty quantification. 
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