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Abstract 

Background: The rapid expansion of smart building technologies demands innovative solutions 

to optimize energy consumption while ensuring occupant comfort. Traditional rule-based and 

supervised learning approaches often lack adaptability to dynamic environmental conditions, 

leading to inefficiencies in HVAC and lighting control. Reinforcement learning (RL) offers a 

promising alternative by enabling autonomous, data-driven decision-making in complex building 

environments. 

Methodology: This study proposes a Deep Q-Network (DQN)-based RL framework for real-time 

energy management in smart buildings. The system integrates real-time sensor data (temperature, 

occupancy, weather) with a virtual building model (EnergyPlus + OpenAI Gym) to train an 

adaptive control agent. A custom reward function balances energy savings and thermal comfort, 

while experience replay stabilizes training. The framework was evaluated against rule-based and 

supervised learning baselines using metrics such as energy consumption (kWh), comfort deviation 

(ASHRAE standards), and control stability. 

Key Findings: The proposed system achieved a 22% reduction in energy consumption compared 

to conventional rule-based systems while maintaining a significantly lower comfort violation rate 

of just 5%, outperforming traditional methods that exhibited a 12% violation rate. The 

reinforcement learning approach demonstrated superior adaptability to dynamic occupancy 

changes and weather fluctuations, though this enhanced performance came with inherent trade-

offs between computational cost and real-time responsiveness that must be carefully considered in 

practical implementations. These results collectively demonstrate the system's ability to 

simultaneously optimize energy efficiency and occupant comfort while adapting to real-world 

building conditions. The results also validate RL as a scalable solution for sustainable building 

operations, bridging the gap between simulation and real-world deployment. 

Keywords: Energy optimization, smart buildings, reinforcement learning, DQN, HVAC control, 

AI in facility management, adaptive control. 

 

 

UNDER PEER REVIEW

mailto:1abass_jo@fedpolyado.edu.ng
mailto:3obaju.biodun@federalpolyede.edu.ng


1. Introduction 

Energy consumption in buildings represents one of the largest contributors to global electricity 

demand, accounting for approximately 40% of total usage. This substantial share underscores the 

critical importance of improving energy efficiency within the built environment, not only to reduce 

operational costs but also to support global sustainability and carbon reduction goals (González-

Torres et al., 2022). As urbanization continues to accelerate, and as more buildings integrate 

advanced technologies, optimizing energy performance has become both a technical imperative 

and a policy priority (Orikpete et al., 2023). Historically, energy management in buildings has been 

governed by traditional Building Management Systems (BMS), which utilize pre-programmed 

schedules, static rules, or time-based control strategies. While these systems have proven effective 

to some degree, they often lack the responsiveness and adaptability needed to accommodate real-

time variations in occupancy patterns, weather conditions, indoor thermal loads, and user behavior 

(Al-Ghaili et al., 2021). As a result, buildings frequently operate inefficiently, either over-

conditioning unoccupied spaces or failing to respond promptly to changing conditions, leading to 

energy waste and occupant discomfort. 

Recent advances in Artificial Intelligence (AI) have paved the way for more intelligent and 

responsive control strategies (Khan et al., 2022). In particular, Reinforcement Learning (RL), a 

branch of machine learning where agents learn optimal actions through interactions with their 

environment, has emerged as a promising tool for energy optimization (Stavrev & Ginchev, 2024). 

Unlike supervised learning, RL does not require labeled datasets, making it especially suitable for 

complex and dynamic environments such as buildings, where explicit ground truth is often 

unavailable (Nweye et al., 2022). This paper introduces a model-free Reinforcement Learning 

framework for adaptive control of HVAC (Heating, Ventilation, and Air Conditioning) and lighting 

systems in commercial and institutional buildings. The proposed framework learns optimal control 

policies by interacting with building simulations or real-time sensor data, aiming to minimize 

energy consumption while maintaining acceptable levels of occupant comfort. By continuously 

adapting to environmental changes and user presence, the system improves over time, making 

intelligent adjustments that outperform traditional rule-based approaches. The research contributes 

to the growing body of work in smart building technologies by presenting a scalable, data-driven 

solution that can be deployed with minimal prior modeling. It also explores the balance between 

energy efficiency and user comfort, an area where many existing solutions fall short. Through the 

integration of AI into core building systems, this work demonstrates the potential of Reinforcement 

Learning to drive the next generation of sustainable and intelligent energy management. 

This study contributes the following: 

1.  A simulation-integrated RL framework coupling EnergyPlus with OpenAI Gym for HVAC and 

lighting control. 

2. A custom DQN reward function balancing energy use and occupant comfort. 

3. Comprehensive benchmarking against rule-based and supervised models. These contributions 
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distinguish this work from prior studies limited to single-objective optimization or offline learning 

without dynamic environmental feedback. 

2. Literature Review 

Energy management in buildings has evolved significantly over the past few decades, driven by 

the growing demand for sustainable practices and operational cost reduction (Li et al., 2025). 

Traditional methods of building energy control have largely been deterministic, relying on static 

schedules or rule-based logic (Zhou et al., 2023). These systems typically operate on predefined 

time-based commands, turning HVAC or lighting systems on and off at set hours, without 

considering real-time occupancy, user preferences, or external weather conditions. While simple 

to implement and maintain, such approaches are inherently limited in their adaptability and often 

result in energy inefficiencies, particularly in dynamic environments such as offices, campuses, or 

public buildings (Alghassab, 2024). In an attempt to overcome the rigidity of static controls, 

researchers and practitioners have introduced supervised learning techniques into building 

management systems. These methods use historical data, such as past energy usage, weather 

records, and occupancy patterns, to develop predictive models capable of estimating future energy 

needs (Mshragi & Petri, 2025). Common techniques include linear regression, decision trees, 

support vector machines, and shallow neural networks (Kurani et al., 2023). While these models 

improve upon rule-based controls by offering data-driven insights, their utility is often constrained 

by their reliance on labeled training data and limited ability to adapt to unseen or novel conditions 

(Shafaghat & Dezvareh, 2021) . 

Moreover, supervised learning models generally assume a stationary environment and struggle to 

generalize when building usage patterns deviate from historical norms. For example, abrupt 

changes in building schedules, due to holidays, remote working policies, or emergency closures, 

can render supervised models inaccurate unless retrained with updated data. This makes them less 

suitable for long-term autonomous operation in real-world, highly variable contexts (Dissem et al., 

2024). To address these shortcomings, unsupervised and semi-supervised learning approaches 

have also been explored, particularly for anomaly detection and energy profiling. These methods 

can identify patterns and deviations in energy consumption without explicit labels, helping facility 

managers detect inefficiencies or potential faults in building systems (Aslam et al., 2024). 

However, while useful for diagnostics, unsupervised learning alone is not typically employed for 

active control and decision-making. The limitations of both rule-based and supervised learning 

approaches have motivated increasing interest in Reinforcement Learning (RL) for energy 

optimization. RL is a feedback-driven paradigm where an agent learns to take optimal actions 

through direct interaction with its environment (Zhang, 2025). This is especially well-suited to 

building control scenarios, where outcomes are cumulative and feedback may be delayed. Unlike 

traditional models, RL can adapt over time, learn from continuous feedback, and operate under 

varying environmental and operational conditions without the need for explicit programming 

(Jesmeen et al., 2021). 
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Various RL algorithms have been explored for energy control, ranging from classical tabular 

methods to modern deep reinforcement learning architectures such as Deep Q-Networks (DQN), 

Advantage Actor-Critic (A2C), and Proximal Policy Optimization (PPO). These techniques allow 

agents to model complex relationships between indoor temperature, occupant presence, external 

climate, and control actions (De La Fuente & Guerra, 2024). They also support continuous action 

spaces, which are essential for systems like HVAC that operate at variable speeds or temperatures. 

Despite their promise, many existing RL-based approaches to building energy optimization still 

face critical limitations (Del Rio et al., 2024). A common issue is that models are trained in 

simplified simulation environments that fail to capture the full complexity of real-world buildings, 

including stochastic occupant behavior, equipment degradation, and inconsistent sensor data. 

Additionally, many implementations focus on single-objective optimization, typically minimizing 

energy consumption, without adequately accounting for occupant comfort, system wear, or 

operational constraints such as maintenance windows or regulatory requirements (Bondre et al., 

2024). 

Furthermore, most RL models are trained offline using synthetic or historical data, and few 

incorporate real-time contextual variables such as live occupancy tracking, building zone usage, 

or minute-by-minute weather fluctuations (Wang et al., 2023). This reduces their responsiveness 

to dynamic changes and limits their effectiveness in fast-changing conditions. The deployment of 

RL in real buildings also raises questions about safety, stability, and the interpretability of learned 

policies, issues that are rarely addressed in simulation-only studies (Gu et al., 2024). Another 

challenge overlooked is the integration of RL frameworks with existing Building Management 

Systems (BMS) and Computerized Maintenance Management Systems (CMMS). Legacy systems 

are often not designed for AI integration and may lack the real-time data interfaces required for 

RL agents to operate effectively (Rodrigues et al., 2023). Bridging this gap requires both technical 

innovation and institutional readiness to adopt AI-driven solutions. While significant progress has 

been made in applying AI to energy optimization, the majority of existing work remains 

constrained by static assumptions, limited adaptability, and lack of integration with real-time data 

sources. Reinforcement Learning offers a promising pathway toward more adaptive, intelligent 

energy control systems, but to fully realize its potential. This study responds directly to these gaps 

by proposing a model-free RL framework that leverages real-time sensor input to achieve efficient 

and context-sensitive energy control in buildings. 

3. Methodology 

This section outlines the approach adopted to develop and evaluate the proposed reinforcement 

learning-based framework for adaptive building energy optimization. The methodology 

encompasses data collection, virtual environment modeling, reinforcement learning agent design, 

and evaluation metrics. 
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3.1 Data collection 

We created a realistic and diverse training environment by utilizing a combination of real-world 

and synthetic datasets. The primary real-world dataset was the ASHRAE Great Energy Predictor 

III dataset, which contains hourly energy consumption data for a range of building types across 

different climate zones. This dataset provided a baseline for expected energy usage patterns and 

informed the design of simulated energy profiles. In addition to real data, synthetic simulations 

were generated using EnergyPlus, a physics-based building energy modeling engine. These 

simulations were used to create dynamic scenarios involving varying indoor climate conditions, 

occupancy profiles, and control responses. Synthetic data allowed for greater flexibility in 

manipulating building configurations, sensor accuracies, and user behavior patterns that may not 

be fully represented in real datasets (Antonucci et al., 2024). External environmental factors were 

modeled using historical climate data, including temperature, humidity, solar irradiance, and wind 

speed, to simulate realistic weather-dependent conditions. This integration of real and synthetic 

data sources ensured that the agent was exposed to a wide range of operational scenarios during 

training and evaluation (Gupta et al., 2022). 

3.2 Environment Modeling 

A virtual simulation environment was constructed by coupling EnergyPlus with OpenAI Gym, 

enabling interaction between the reinforcement learning agent and the building system. This hybrid 

environment served as a sandbox for training and testing the control policy. The state space 

observed by the agent included multiple time-varying and static variables: indoor air temperature, 

relative humidity, occupancy level in each thermal zone, external weather conditions, time of day, 

and real-time energy pricing. These inputs provided a comprehensive representation of both 

internal and external influences on building energy dynamics. The action space comprised 

continuous control decisions related to the HVAC system and lighting infrastructure. Specifically, 

the agent could adjust HVAC setpoints (e.g., supply air temperature and zone temperature 

thresholds) and lighting intensity levels in occupied zones. By navigating this multi-dimensional 

action space, the agent learned to manage energy usage while preserving occupant comfort. The 

simulation environment included built-in constraints to emulate real-world operating limits such 

as temperature deadbands, actuator delays, and equipment capacity limits. These constraints 

ensured that the learned policy was not only optimal in theory but also feasible for deployment in 

actual building systems. 

3.3 Reinforcement Learning Framework  

The reinforcement learning approach adopted in this study is a model-free Deep Q-Network 

(DQN) algorithm, selected for its sample efficiency and suitability for discrete control 

environments. DQN approximates the optimal action-value function using a deep neural network, 

allowing it to learn effective control policies through interaction with the environment, without 

requiring a prior model of building dynamics. The choice of DQN over alternative reinforcement 

learning methods such as Proximal Policy Optimization (PPO), Advantage Actor-Critic (A2C), or 
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Deep Deterministic Policy Gradient (DDPG) was guided by the nature of the control problem. 

HVAC and lighting systems typically operate within discrete action spaces, such as toggling 

predefined temperature setpoints or light intensity levels, making DQN particularly effective and 

computationally tractable. In contrast, continuous-action algorithms like DDPG introduce 

additional complexity and training instability when applied to semi-discretized building control 

environments. Moreover, on-policy methods such as PPO and A2C, while robust in highly 

stochastic environments, generally require more extensive sampling and longer convergence times 

compared to the off-policy learning mechanism of DQN. To facilitate training in a realistic yet 

controlled environment, a custom simulation interface was developed by coupling EnergyPlus 

with OpenAI Gym. EnergyPlus served as a high-fidelity building simulation engine, modeling 

thermodynamic behavior, equipment characteristics, and weather interactions. OpenAI Gym 

provided the reinforcement learning scaffold, enabling standardized agent-environment interaction 

loops. 

This integration was accomplished using the EnergyPlus Gym Wrapper, which exposes 

EnergyPlus states (e.g., zone temperatures, occupancy counts, weather variables) as structured 

observations to the RL agent at each simulation timestep. Actions selected by the DQN agent, such 

as adjusting HVAC temperature setpoints or dimming lighting levels, were translated into control 

inputs for EnergyPlus via Python-based communication channels. The simulation advanced one 

step for each action taken, after which the environment returned a reward signal and updated state. 

This hybrid platform provided a closed feedback loop for episodic training. The agent’s reward 

function was designed to penalize energy consumption and occupant discomfort, encouraging 

policies that balance energy efficiency and user satisfaction. Importantly, the environment also 

modeled actuator delays, comfort deadbands, and equipment constraints to ensure that learned 

policies respected real-world operational limits. This design allowed the DQN agent to learn 

actionable, real-time control strategies that are not only optimal in simulation but also transferable 

to physical building management systems with minimal adaptation. 

3.4 Evaluation Metrics 

To assess the performance of the proposed framework, a set of quantitative evaluation metrics was 

used. These metrics were selected to reflect the dual objectives of energy efficiency and occupant 

comfort: 

• Total Energy Consumption (kWh): Measures the cumulative electrical energy used by 

HVAC and lighting systems over the evaluation period. Lower values indicate greater 

energy efficiency. 

• Thermal Comfort Deviation: Represents the average deviation of zone temperature from 

the target comfort range. This metric captures the system’s ability to maintain a comfortable 

indoor climate. 
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• Control Stability: Evaluated by calculating the variance in HVAC setpoints and lighting 

levels over time. Excessive variability may indicate an unstable or overly reactive control 

policy, which can degrade system lifespan and occupant satisfaction. 

These metrics were monitored during simulation runs and used to compare the RL-based controller 

against baseline strategies such as static scheduling and rule-based control. 

 

Figure 1: The reinforcement learning (RL) framework for optimizing building management 

systems. 

The diagram illustrates a reinforcement learning (RL) framework for optimizing building 

management systems, combining weather data and occupancy profiles with a virtual building 

model (EnergyPlus + OpenAI Gym) to train a DQN-based RL agent. The agent interacts with the 

environment through an action space controlling HVAC and lighting systems, while its 

performance is guided by a reward function balancing energy efficiency and occupant comfort. 

Synthetic data from ASHRAE and EnergyPlus ensures realistic training conditions. The system is 

evaluated using three key metrics: energy consumption, comfort deviation (from ASHRAE 

standards), and control stability, demonstrating a data-driven approach to automate and refine 

building operations for sustainability and user satisfaction in Figure 1. 
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Figure 2: Reinforcement learning framework for smart building energy optimization.  

The diagram presents a closed-loop reinforcement learning (RL) system for intelligent building 

control, where sensors collect real-time data on temperature, occupancy, and weather to define 

the state space. This data feeds into an RL agent powered by a neural network, which processes 

historical experiences through experience replay for improved decision-making. The agent 

generates control signals for HVAC and lighting systems, optimizing actions based on a reward 

function that balances energy efficiency and occupant comfort. The building responds to these 

controls, while sensor feedback continuously updates the system, creating an adaptive loop. 

The simulation environment (Sim Env) allows for safe training and testing, ensuring the RL agent 

learns optimal policies before real-world deployment. This framework highlights how AI can 

dynamically manage building systems by integrating real-time data with predictive learning in 

Figure 2. 

4. Results 

Table 1: Comparison of Energy Optimization Approaches 

Approach Energy 

Savings 

Comfort Violation 

(%) 

Adaptability Computational 

Cost 

Rule-Based 

Control 

Baseline 12% Low Low 

Supervised 

Learning 

10–15% 8% Moderate Moderate 
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RL (Proposed 

DQN) 

22% 5% High High 

 

Table 1 shows performance of the proposed DQN-based reinforcement learning (RL) approach 

was compared against both a traditional rule-based control system and a supervised learning model 

across multiple evaluation criteria. In terms of energy savings, the RL model achieved a 22% 

reduction in consumption, outperforming the supervised learning model, which recorded savings 

in the range of 10–15%, and the rule-based baseline, which offered no adaptive savings. Thermal 

comfort, measured by the percentage of time the indoor environment deviated from the defined 

comfort band, also improved significantly under the RL approach, with only 5% comfort violation, 

compared to 8% for supervised learning and 12% for rule-based control. Regarding adaptability, 

the DQN-based controller exhibited a high degree of responsiveness to changing environmental 

and occupancy conditions, surpassing the moderate adaptability of supervised models and the rigid 

nature of rule-based systems. However, these performance benefits came with an increased 

computational cost. While rule-based systems are lightweight and supervised models offer 

moderate complexity, the RL approach required higher computational resources due to continuous 

interaction, exploration, and policy updates. Despite this trade-off, the substantial gains in energy 

efficiency and occupant comfort position the proposed RL system as a superior solution for 

dynamic and data-driven building energy management. 

Table 2. Comparative Table of RL Methods for Building Energy Control 

RL 

Algorithm 

Action Space 

Support 

Sample 

Efficiency 

Stability Computational 

Cost 

Suitability for 

HVAC/Lighting 

Control 

DQN 

(used) 

Discrete High Moderate Low–Moderate Best for discrete 

HVAC/light control 

PPO Continuous 

& Discrete 

Moderate High High More suited for 

complex, stochastic 

tasks 

A2C Continuous 

& Discrete 

Moderate Moderate High Requires more 

samples for 

convergence 

DDPG Continuous Low Low High  Not ideal for semi-

discrete systems 
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SAC Continuous High High Very High Overkill for 

discretized systems 

 

Table 2 shows a comparative evaluation of various reinforcement learning algorithms that was 

conducted to determine the most suitable approach for HVAC and lighting control in smart 

buildings. The Deep Q-Network (DQN) algorithm, adopted in this study, is specifically optimized 

for discrete action spaces and demonstrates high sample efficiency with relatively low to moderate 

computational cost. Its stability is moderate, but sufficient for structured environments like 

building systems where control actions, such as temperature setpoint adjustments or lighting 

intensity changes, are typically discrete and bounded. In contrast, algorithms like Proximal Policy 

Optimization (PPO) and Advantage Actor-Critic (A2C) support both continuous and discrete 

action spaces and offer greater stability, particularly in complex or highly stochastic environments. 

However, they typically require more extensive computational resources and longer convergence 

times, making them less efficient for the building control problem where real-time adaptation is 

crucial. Deep Deterministic Policy Gradient (DDPG) and Soft Actor-Critic (SAC), both of which 

support continuous control, provide high flexibility and robustness but at the cost of increased 

algorithmic complexity and computational burden. Moreover, these methods are generally not 

ideal for semi-discrete systems like HVAC and lighting, where precision control is important but 

does not necessitate continuous action spaces. Given these considerations, DQN offers an optimal 

balance of performance, simplicity, and computational efficiency for the targeted application in 

this study. 

Table 3: Hyperparameters for DQN Training 

Parameter Value Description 

Discount Factor (γ) 0.95 Balances short- vs. long-term rewards. 

Learning Rate 0.001 Controls neural network weight updates. 

Replay Buffer Size 100,000 Stores experience tuples for stable training. 

Exploration (ε) 0.1–0.3 Decays over time to shift from exploration to exploitation. 

 

Table 3 shows that the reinforcement learning agent was trained using carefully selected 

hyperparameters to ensure a stable and efficient learning policy. A discount factor (γ) of 0.95 was 
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chosen to balance short-term rewards against long-term performance, allowing the agent to 

account for future consequences without overly discounting immediate outcomes. The learning 

rate was set at 0.001, controlling the pace at which the neural network updated its weights based 

on new experiences. This moderate rate facilitated convergence without overshooting optimal 

solutions. To promote training stability, a replay buffer of 100,000 experience tuples was 

maintained, enabling the agent to learn from a broad and randomized sample of past interactions 

rather than from consecutive, potentially correlated data points. The exploration strategy employed 

a greedy approach, with ε values ranging from 0.3 at the beginning of training and decaying toward 

0.1. This allowed the agent to explore a wide range of actions early on while gradually shifting 

toward exploiting learned strategies as performance improved. These hyperparameter 

configurations contributed significantly to the robustness and adaptability of the DQN-based 

controller. 

 

 

Table 4: Comparative analysis between the rule-based system and the DQN-based 

reinforcement learning. 

Metric Rule-Based System RL-Based System 

(DQN) 

Total Energy Consumption (kWh) 100% 78% (-22%) 

Comfort Violation (%) 12% 5% 

HVAC Setpoint Variance High Low 

Response to Occupancy Changes Static Adaptive 

Response to Weather Fluctuations Delayed Responsive 

Table 4 shows that the comparative analysis between the rule-based system and the DQN-based 

reinforcement learning framework reveals significant improvements in operational efficiency and 

responsiveness. In terms of total energy consumption, the RL-based system achieved a 22% 

reduction, lowering energy use to 78% of the baseline established by the rule-based approach. 

Comfort violation, measured as the percentage of time indoor temperatures fell outside the 

acceptable range, was also notably reduced, from 12% in the rule-based system to just 5% under 

the RL framework, highlighting the RL agent’s ability to maintain thermal comfort more 

effectively. Additionally, the DQN controller exhibited lower HVAC setpoint variance, indicating 

smoother and more stable control actions, which is beneficial for system longevity and occupant 
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satisfaction. The rule-based system responded statically to occupancy changes, often conditioning 

unoccupied zones, whereas the RL model demonstrated adaptive behavior by dynamically 

adjusting control strategies based on real-time occupancy patterns. Similarly, the RL system 

responded more promptly to weather fluctuations, adjusting settings responsively, unlike the 

delayed reactions observed in the rule-based approach. The RL-based system outperformed the 

traditional method across all evaluated dimensions, emphasizing its potential for intelligent energy 

management in smart building environments. 

 

 

Figure 2: Comparison of energy and comfort metrics. 

The bar chart compares the performance of Rule-Based and RL-Based (DQN) systems across two 

metrics: Energy Consumption and Comfort Violation. The RL-Based (DQN) system shows 

significantly lower energy consumption compared to the Rule-Based system, with values around 

20 and 80, respectively. However, the RL-Based (DQN) system has a higher comfort violation, 

approximately 60, whereas the Rule-Based system maintains near-zero comfort violation. This 

indicates a trade-off between energy efficiency and comfort, with the RL-Based (DQN) system 

prioritizing energy savings at the expense of comfort, while the Rule-Based system ensures 

comfort but consumes more energy in Figure 2. 
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Figure 3: Thermal Comfort Violation  

The image outlines temperature thresholds for comfort violations as defined by ASHRAE. A mild 

violation occurs when temperatures range between 23°C and 26°C, indicating a slight deviation 

from ideal comfort conditions. A severe violation is recorded when temperatures fall below 22°C 

or exceed 26°C, representing a significant departure from acceptable comfort standards. These 

thresholds help quantify thermal comfort performance in systems, distinguishing between minor 

and major deviations for evaluation purposes in Figure 3. 

 

Figure 4: Energy Consumption Comparison 
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The image compares the performance of a Rule-Based system and an RL (DQN)-Based system 

under heatwave conditions. While specific metrics are not provided, the labeling suggests an 

evaluation of how each system manages energy consumption and comfort violations during 

extreme heat. Typically, Rule-Based systems follow predefined thresholds, potentially leading to 

higher energy use but stricter comfort adherence. In contrast, RL (DQN) systems, which learn and 

adapt dynamically, may optimize energy efficiency but could compromise comfort during 

unpredictable heatwave scenarios. This highlights a key trade-off between stability and 

adaptability in thermal control systems under stress in Figure 4. 

5. Discussion 

The findings of this study provide compelling evidence that reinforcement learning (RL) 

constitutes a robust and adaptive framework for optimizing building energy consumption while 

maintaining occupant comfort. The proposed RL-based controller consistently outperformed 

conventional rule-based systems across multiple performance indicators, including energy 

efficiency, thermal comfort, and responsiveness to dynamic environmental conditions. These 

outcomes underscore RL's transformative potential in the domain of intelligent building 

management. One of the most significant advantages of the RL approach is its ability to adapt 

continuously to varying internal and external conditions. By leveraging multi-source data, 

including occupancy profiles, real-time weather conditions, energy pricing, and indoor climate 

feedback, the system dynamically updated its control policies in response to environmental 

fluctuations. In contrast, traditional rule-based systems remained static and were inherently limited 

in their ability to respond to the stochastic nature of occupancy and climate variability. The 

adoption of a model-free Deep Q-Network (DQN) enabled the agent to learn directly from 

environmental interactions without requiring a predefined model of the building’s thermal 

dynamics. This flexibility is particularly beneficial for large-scale deployments across diverse 

building types, where constructing explicit models for each facility would be prohibitively time-

consuming and resource-intensive. Furthermore, the integration with simulation platforms such as 

EnergyPlus and OpenAI Gym highlights the framework’s practical extensibility and potential for 

real-world application. Despite the promising results, several challenges were observed. The 

training of deep reinforcement learning models remains computationally demanding, often 

necessitating high-performance hardware and extended training cycles, an obstacle for 

organizations with limited computational infrastructure. Additionally, the system’s performance is 

closely tied to the quality and resolution of sensor data. In real-world applications, issues such as 

missing, noisy, or delayed sensor inputs could degrade control accuracy and overall system 

effectiveness. Another important consideration is the interpretability of RL-generated decisions. 

Given the critical nature of building control systems, facility managers may be reluctant to adopt 

black-box models without transparent explanations of system behavior. Developing interpretable 

RL frameworks or incorporating explainability layers could address these concerns and improve 

user trust and system accountability. To mitigate computational burdens and improve 

generalization, future research should explore techniques such as model compression, including 
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pruning and quantization, which can reduce the size and complexity of deep networks without 

significantly compromising performance. Transfer learning also holds promise for accelerating 

deployment by initializing agents with pre-trained models from similar environments. Moreover, 

hybrid architectures that combine supervised learning with RL may allow systems to leverage 

historical data while maintaining real-time adaptability. 

6. Conclusion 

This study presents a novel, data-driven framework for energy optimization in smart buildings 

using reinforcement learning. By leveraging a model-free Deep Q-Network (DQN) approach, the 

proposed system dynamically adjusts HVAC and lighting operations based on real-time 

environmental, occupancy, and weather data. The integration of reinforcement learning into 

building control systems represents a significant departure from traditional rule-based or static 

scheduling approaches, offering a more intelligent and responsive method for managing energy 

consumption. The results from simulated experiments demonstrate that the RL-based controller 

can achieve substantial energy savings, reducing energy consumption by 22% over a one-month 

period, while maintaining indoor comfort within acceptable thresholds. The system’s ability to 

respond adaptively to fluctuations in occupancy and external climate conditions further 

underscores its practical viability. These findings suggest that reinforcement learning can not only 

improve energy efficiency but also enhance operational agility in increasingly dynamic and 

complex building environments. Importantly, this work contributes to the broader vision of 

intelligent, sustainable buildings by laying the groundwork for practical deployment in real-world 

settings. The framework is designed to be scalable and compatible with existing simulation and 

building management tools, making it suitable for implementation in commercial, institutional, 

and campus facilities. By balancing energy efficiency with occupant comfort, it addresses two 

critical objectives in modern facility management: cost reduction and sustainability. While 

challenges such as computational complexity and reliance on high-quality sensor data remain, the 

study identifies several future directions, including model compression, transfer learning, and 

hybrid AI architectures, that could enhance scalability, performance, and trustworthiness. In 

conclusion, this research highlights the transformative potential of reinforcement learning for 

energy management in the built environment. As buildings become more connected and data-rich, 

the integration of intelligent control systems such as the one proposed here will be essential in 

driving the next generation of high-performance, climate-responsive, and user-centric buildings. 
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