
Abstract

A hypergraph generalizes the classical notion of a graph by allowing edges—called hyperedges—to connect
more than two vertices simultaneously. A superhypergraph further extends this idea by introducing recursively
nested powerset layers, thus enabling hierarchical and self-referential relationships among hyperedges. Graphs
are widely used to represent networks. In this context, hypernetworks and superhypernetworks serve as the
network analogues of hypergraphs and superhypergraphs, respectively. A Molecular Interaction Network mod-
els biochemical interactions among molecules, where nodes represent molecular entities and edges represent
pairwise interactions or reactions.

In this paper, we extend the concept of Molecular Interaction Networks by introducing two new frameworks:
the Molecular Interaction HyperNetwork and the Molecular Interaction SuperHyperNetwork, based on the
structures of hypernetworks and superhypernetworks.

Keywords: Superhypergraph, Hypergraph, Molecular Interaction Networks, HyperNetworks, SuperHyperNet-
works

1 Introduction

1.1 Graph, HyperGraph, and SuperHyperGraph

Graph theory is a branch of mathematics focused on the study of networks, where nodes (called vertices) are
connected by links (called edges) [23, 24]. Graphs have been extensively studied and applied in a wide range
of disciplines, including social science, artificial intelligence, graph neural networks (GNNs), and general
network analysis (cf. [26, 27, 45, 55]).

Mathematical structures can often be extended into hyperstructures and superhyperstructures by utilizing
the power set and 𝑛-th iterated powerset constructions [36, 103, 104, 106]. These generalized frameworks
are particularly useful for modeling hierarchical and multi-layered systems in both theoretical and practical
contexts.

When applied to graph theory, these extensions give rise to two important generalizations: the hypergraph
[15,18] and the superhypergraph [33,41,102]. A hypergraph allows each edge—called a hyperedge—to connect
more than two vertices simultaneously, capturing complex many-to-many relationships. A superhypergraph
goes further by incorporating recursively nested powerset structures, enabling hierarchical and self-referential
relationships among collections of hyperedges. These models can also be extended into various directions,
such as directed graphs [49, 65], bidirected graphs [52, 69, 125], and multidirected graphs [82, 83].

1.2 Graph and Networks

Network theory investigates the structure and behavior of systems composed of interconnected nodes and edges,
with emphasis on the analysis of relationships, flows, and dynamic interactions in complex environments.
Examples of networks include biological networks [50, 75], ecological networks [22, 73], electrical networks
[13, 16], social network [78, 91, 94], telecommunications networks [31, 96], business networks [6, 56, 57], and
supply networks [8, 116].

Graphs are commonly employed as foundational tools for representing such networks. In this context, hyper-
networks and superhypernetworks emerge as network-based analogues of hypergraphs and superhypergraphs,
respectively, allowing for the modeling of higher-order and hierarchical relationships in networked systems [38].

Graph-based and network-based approaches have also played a central role in many studies in biology [9,25,77],
chemistry [46, 114, 120], and biochemistry [110]. In this paper, we focus on a class of graph-based models
known as Molecular Interaction Networks, which describe biochemical interactions among molecules. In such
models, nodes represent molecular entities (e.g., proteins, genes, or metabolites), and edges represent pairwise
interactions or chemical reactions [7, 48, 62, 74].
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1.3 Our Contributions

This paper introduces two novel generalizations: the Molecular Interaction HyperNetwork and the Molecular
Interaction SuperHyperNetwork, which extend the structure of Molecular Interaction Networks using the
frameworks of hypernetworks and superhypernetworks, respectively. We present their formal definitions,
investigate their mathematical properties, and provide concrete real-world examples. These newly proposed
models are intended to support future research on hierarchical and multi-scale representations of molecular
interaction networks.

2 Preliminaries and Definitions

This section provides an overview of the fundamental concepts and definitions essential for the discussions
presented in this paper. For the sake of simplicity, all graphs considered herein are assumed to be simple,
undirected, and finite, unless stated otherwise.

2.1 Classical Structure, Hyperstructure, and 𝑛-Superhyperstructure

A Classical Structure represents a general mathematical concept, while a Hyperstructure can be defined using
the power set, and an 𝑛-Superhyperstructure can be defined using the 𝑛-th powerset [37, 39, 105]. Intuitively,
the 𝑛-th powerset is a repeated application of the powerset operation. Relevant definitions and simple examples
are provided below.

Definition 2.1 (Base Set). A base set 𝑆 is the foundational set from which complex structures such as powersets
and hyperstructures are derived. It is formally defined as:

𝑆 = {𝑥 | 𝑥 is an element within a specified domain}.

All elements in constructs like P(𝑆) or P𝑛 (𝑆) originate from the elements of 𝑆.

Definition 2.2 (Powerset). [34, 93] The powerset of a set 𝑆, denoted P(𝑆), is the collection of all possible
subsets of 𝑆, including both the empty set and 𝑆 itself. Formally, it is expressed as:

P(𝑆) = {𝐴 | 𝐴 ⊆ 𝑆}.

Definition 2.3 (𝑛-th Powerset). (cf. [34, 38, 105])

The 𝑛-th powerset of a set 𝐻, denoted 𝑃𝑛 (𝐻), is defined iteratively, starting with the standard powerset. The
recursive construction is given by:

𝑃1 (𝐻) = 𝑃(𝐻), 𝑃𝑛+1 (𝐻) = 𝑃(𝑃𝑛 (𝐻)), for 𝑛 ≥ 1.

Similarly, the 𝑛-th non-empty powerset, denoted 𝑃∗
𝑛 (𝐻), is defined recursively as:

𝑃∗
1 (𝐻) = 𝑃∗ (𝐻), 𝑃∗

𝑛+1 (𝐻) = 𝑃∗ (𝑃∗
𝑛 (𝐻)).

Here, 𝑃∗ (𝐻) represents the powerset of 𝐻 with the empty set removed.

Definition 2.4 (Classical Structure). (cf. [99,105]) A Classical Structure is a mathematical framework defined
on a non-empty set 𝐻, equipped with one or more Classical Operations that satisfy specified Classical Axioms.
Specifically:

A Classical Operation is a function of the form:

#0 : 𝐻𝑚 → 𝐻,

where 𝑚 ≥ 1 is a positive integer, and 𝐻𝑚 denotes the 𝑚-fold Cartesian product of 𝐻. Common examples
include addition and multiplication in algebraic structures such as groups, rings, and fields.

Definition 2.5 (Hyperoperation). (cf. [92,117–119]) A hyperoperation is a generalization of a binary operation
where the result of combining two elements is a set, not a single element. Formally, for a set 𝑆, a hyperoperation
◦ is defined as:

◦ : 𝑆 × 𝑆 → P(𝑆),
where P(𝑆) is the powerset of 𝑆.
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Definition 2.6 (Hyperstructure). (cf. [34,99,105]) A Hyperstructure extends the notion of a Classical Structure
by operating on the powerset of a base set. Formally, it is defined as:

H = (P(𝑆), ◦),

where 𝑆 is the base set, P(𝑆) is the powerset of 𝑆, and ◦ is an operation defined on subsets of P(𝑆).
Hyperstructures allow for generalized operations that can apply to collections of elements rather than single
elements.

Definition 2.7 (SuperHyperOperations). (cf. [105]) Let 𝐻 be a non-empty set, and let P(𝐻) denote the
powerset of 𝐻. The 𝑛-th powerset P𝑛 (𝐻) is defined recursively as follows:

P0 (𝐻) = 𝐻, P𝑘+1 (𝐻) = P(P𝑘 (𝐻)), for 𝑘 ≥ 0.

A SuperHyperOperation of order (𝑚, 𝑛) is an 𝑚-ary operation:

◦(𝑚,𝑛) : 𝐻𝑚 → P𝑛∗ (𝐻),

where P𝑛∗ (𝐻) represents the 𝑛-th powerset of 𝐻, either excluding or including the empty set, depending on the
type of operation:

• If the codomain isP𝑛∗ (𝐻) excluding the empty set, it is called a classical-type (𝑚, 𝑛)-SuperHyperOperation.

• If the codomain isP𝑛 (𝐻) including the empty set, it is called a Neutrosophic (𝑚, 𝑛)-SuperHyperOperation.

These SuperHyperOperations are higher-order generalizations of hyperoperations, capturing multi-level com-
plexity through the construction of 𝑛-th powersets.

Definition 2.8 (𝑛-Superhyperstructure). (cf. [35,105]) An 𝑛-Superhyperstructure further generalizes a Hyper-
structure by incorporating the 𝑛-th powerset of a base set. It is formally described as:

SH𝑛 = (P𝑛 (𝑆), ◦),

where 𝑆 is the base set, P𝑛 (𝑆) is the 𝑛-th powerset of 𝑆, and ◦ represents an operation defined on elements
of P𝑛 (𝑆). This iterative framework allows for increasingly hierarchical and complex representations of
relationships within the base set.

2.2 SuperHyperGraph

In classical graph theory, a hypergraph extends the idea of a conventional graph by permitting edges—called
hyperedges—to join more than two vertices. This broader framework enables the modeling of more intricate
relationships between elements, thereby enhancing its utility in various fields [15, 53, 54].

A SuperHyperGraph is an advanced extension of the hypergraph concept, integrating recursive powerset
structures into the classical model. This concept has been recently introduced and extensively studied in the
literature [3, 38, 76, 84].

Definition 2.9 (Hypergraph). [15, 18] A hypergraph 𝐻 = (𝑉 (𝐻), 𝐸 (𝐻)) consists of:

• A nonempty set 𝑉 (𝐻) of vertices.

• A set 𝐸 (𝐻) of hyperedges, where each hyperedge is a nonempty subset of 𝑉 (𝐻), thereby allowing
connections among multiple vertices.

Unlike standard graphs, hypergraphs are well-suited to represent higher-order relationships. In this paper, we
restrict ourselves to the case where both 𝑉 (𝐻) and 𝐸 (𝐻) are finite.
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Example 2.10 (Academic Co-authorship as a Hypergraph). Consider a set of researchers

𝑉 (𝐻) = {Alice, Bob, Carol, Dave, Eve}.

They have collaborated on several papers:

𝐸 (𝐻) =
{
{Alice,Bob,Carol}, {Alice,Dave}, {Bob,Dave,Eve}, {Carol,Eve}

}
.

Here each hyperedge corresponds to the set of authors on a single paper:

• {Alice,Bob,Carol} represents a three-author collaboration,

• {Alice,Dave} represents a two-author paper,

• {Bob,Dave,Eve} and {Carol,Eve} likewise capture their multi-author works.

This hypergraph 𝐻 = (𝑉 (𝐻), 𝐸 (𝐻)) encodes higher-order relationships: it shows which groups of researchers
have worked together, information that would be lost if we only recorded pairwise collaborations.

Definition 2.11 (n-SuperHyperGraph). [101, 102]
Let 𝑉0 be a finite base set of vertices. For each integer 𝑘 ≥ 0, define the iterative powerset by

P0 (𝑉0) = 𝑉0, P𝑘+1 (𝑉0) = P(P𝑘 (𝑉0)),

where P(·) denotes the usual powerset operation. An n-SuperHyperGraph is then a pair

SHT(𝑛) = (𝑉, 𝐸),

with
𝑉 ⊆ P𝑛 (𝑉0) and 𝐸 ⊆ P𝑛 (𝑉0).

Each element of 𝑉 is called an n-supervertex and each element of 𝐸 an n-superedge.

Example 2.12 (Global Climate Research Consortia as a 2-SuperHyperGraph). Global climate refers to the
long-term patterns and averages of temperature, humidity, wind, and precipitation across the entire Earth(cf.
[20, 67, 124]). Let the base set of researchers be

𝑉0 = {Alice, Bob, Carol, Dave}.

First-level research groups (1-supervertices in P1 (𝑉0)) are:

𝑅1 = {Alice, Bob}, 𝑅2 = {Bob, Carol}, 𝑅3 = {Carol, Dave}.

Second-level consortia (2-supervertices in P2 (𝑉0)) are:

𝐶𝛼 = {𝑅1, 𝑅2}, 𝐶𝛽 = {𝑅2, 𝑅3}.

We then form the 2-SuperHyperGraph
SHT(2) = (𝑉, 𝐸)

by
𝑉 = {𝐶𝛼, 𝐶𝛽}, 𝐸 =

{
{𝐶𝛼, 𝐶𝛽}

}
.

Here:

• Each 2-supervertex 𝐶𝛼 and 𝐶𝛽 represents a research consortium composed of overlapping labs.

• The single 2-superedge {𝐶𝛼, 𝐶𝛽} models a joint international summit bringing together both consortia.

• This structure captures three hierarchical levels: individual researchers → lab groups → consortia →
inter-consortium collaboration.
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Example 2.13 (Corporate Hierarchy as a 3-SuperHyperGraph). Let the base set of employees be

𝑉0 = {Alice, Bob, Carol, Dave, Eve, Frank}.

First-level committees (1-supervertices in P1 (𝑉0)) might be:

𝐶1 = {Alice, Bob}, 𝐶2 = {Carol, Dave}, 𝐶3 = {Eve, Frank}, 𝐶4 = {Bob, Carol}.

Second-level departments (2-supervertices in P2 (𝑉0)) could group these committees into:

𝐷Sales = {𝐶1, 𝐶4}, 𝐷Engineering = {𝐶2, 𝐶3}.

Third-level divisions (3-supervertices in P3 (𝑉0)) then organize departments into:

𝑈Commercial = {𝐷Sales}, 𝑈Technical = {𝐷Engineering}.

We form the 3-SuperHyperGraph
SHT(3) = (𝑉, 𝐸)

by setting
𝑉 = {𝑈Commercial, 𝑈Technical }, 𝐸 =

{
{𝑈Commercial, 𝑈Technical }

}
.

Interpretation:

• P0 (𝑉0): individual employees.

• P1 (𝑉0): cross-functional committees 𝐶𝑖 .

• P2 (𝑉0): departments 𝐷Sales and 𝐷Engineering.

• P3 (𝑉0): top-level divisions 𝑈Commercial and 𝑈Technical.

• The single 3-superedge {𝑈Commercial,𝑈Technical} models a company-wide strategic initiative linking both
divisions.

This example illustrates how a 3-SuperHyperGraph captures four hierarchical layers—employees, committees,
departments, divisions—and their inter-division collaboration in one unified structure.

2.3 Molecular Interaction Networks

Molecular interaction networks represent biochemical relationships, where nodes correspond to molecules
(such as proteins, genes, or metabolites), and edges denote physical or functional interactions among them.
The formal definition of molecular interaction networks is given below.

Definition 2.14 (Network). A network (or graph) is an ordered triple

𝑁 =
(
𝑉, 𝐸, 𝑤

)
where

• 𝑉 is a nonempty finite set of vertices (or nodes);

• 𝐸 ⊆
{
{𝑢, 𝑣} | 𝑢, 𝑣 ∈ 𝑉, 𝑢 ≠ 𝑣

}
is the set of undirected edges, each joining two distinct vertices;

• 𝑤 : 𝐸 → R≥0 is a weight function assigning a nonnegative real weight to each edge (omitted if un-
weighted).
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If edges are directed, one instead writes

𝑁 =
(
𝑉, 𝐴, 𝑤

)
, 𝐴 ⊆ 𝑉 ×𝑉,

and each (𝑢, 𝑣) ∈ 𝐴 is an arc from 𝑢 to 𝑣. In either case, one may also include an optional vertex-labeling
ℓ𝑉 : 𝑉 → 𝐿𝑉 to record vertex types.

Definition 2.15 (Molecular Interaction Network). A molecular interaction network is a labeled hypergraph

N =
(
𝑉, I, ℓ𝑉 , ℓI

)
where

• 𝑉 is a finite set of molecular entities (e.g. proteins, metabolites, genes);

• I ⊆ P(𝑉) \ {∅} is a set of interactions, each interaction 𝐼 ∈ I being the subset of entities participating
simultaneously in a biochemical event (e.g. complex formation [98], enzymatic reaction [30], regulatory
effect);

• ℓ𝑉 : 𝑉 → 𝐿𝑉 is a vertex-labeling function assigning to each entity its type or identifier (e.g. “kinase”,
“ligand”, “metabolite”);

• ℓI : I → 𝐿I is an interaction-labeling function assigning to each interaction its category or attributes
(e.g. “binding”, “phosphorylation”, confidence score).

Optionally, one may equip N with a weight function 𝑤 : I → R≥0 to record interaction strengths or probabili-
ties.

Example 2.16 (Yeast Protein–Protein Interaction Network). Yeast protein–protein interaction refers to physical
or functional associations between yeast proteins, essential for cellular processes and regulatory networks
(cf. [12, 19, 58]). Let

𝑉 = {P53,MDM2,ATM,CHK2},

I =
{
{P53,MDM2}, {ATM, P53}, {ATM,CHK2}, {CHK2, P53}

}
.

Define
ℓ𝑉 (𝑥) = “protein” (∀𝑥 ∈ 𝑉),

ℓI ({P53,MDM2}) = “ubiquitination”, ℓI ({ATM, P53}) = “phosphorylation”,

ℓI ({ATM,CHK2}) = “activation”, ℓI ({CHK2, P53}) = “phosphorylation”.

If we include confidence scores:

𝑤({P53,MDM2}) = 0.95, 𝑤({ATM, P53}) = 0.80, 𝑤({ATM,CHK2}) = 0.85, 𝑤({CHK2, P53}) = 0.90.

Then N = (𝑉,I, ℓ𝑉 , ℓI , 𝑤) models a small yeast protein–protein interaction network, capturing both the
participants and the types and strengths of their interactions.

3 Molecular Interaction HyperNetwork

A Molecular Interaction HyperNetwork is a mathematical framework developed to represent complex bio-
chemical systems, where interactions may involve multiple molecular entities simultaneously. We now present
the formal definition of a Molecular Interaction HyperNetwork.

Definition 3.1 (Hypernetwork). A hypernetwork is an ordered triple

𝐻 =
(
𝑉, E, 𝑤

)
where

• 𝑉 is a nonempty finite set of nodes;
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• E ⊆ P(𝑉) \ {∅} is the set of hyperedges, each hyperedge 𝑒 ∈ E being a nonempty subset of nodes
(allowing multi-node interactions);

• 𝑤 : E → R≥0 is a weight or attribute function on hyperedges (omitted if unweighted).

A directed hypernetwork may be defined by replacing E ⊆ P(𝑉) with a set of ordered tuples of nodes or by
equipping each 𝑒 ∈ E with a head-tail partition. One can further add a node-labeling ℓ𝑉 : 𝑉 → 𝐿𝑉 and a
hyperedge-labeling ℓE : E → 𝐿E to record types or properties.

Definition 3.2 (Molecular Interaction HyperNetwork). A molecular interaction hypernetwork is a tuple

H =
(
𝑉, I, ℓ𝑉 , ℓI , 𝑤

)
where

• 𝑉 is a finite set of molecular entities (e.g. proteins, metabolites, genes);

• I ⊆ P(𝑉) \ {∅} is a set of interaction hyperedges, each 𝐼 ∈ I being a nonempty subset of entities
participating in a single biochemical event (e.g. complex formation or multi-enzyme reaction);

• ℓ𝑉 : 𝑉 → 𝐿𝑉 labels each node by its type or identifier (e.g. “kinase”, “ligand”);

• ℓI : I → 𝐿I labels each hyperedge by its interaction category (e.g. “binding”, “phosphorylation
cascade”);

• 𝑤 : I → R≥0 assigns a nonnegative weight or confidence score to each interaction.

Example 3.3 (Eukaryotic DNA Replication Pre-Initiation as a Molecular Interaction HyperNetwork). DNA
replication is the biological process of copying a cell’s DNA, producing two identical DNA molecules before
cell division (cf. [14, 71, 72]). Consider the assembly and activation of the eukaryotic DNA replication
pre-initiation complex. Let

𝑉 = { ORC, Cdc6, Cdt1, MCM2–7, CDK2, DDK}

be the set of molecular entities: the origin recognition complex (ORC), loading factors Cdc6 and Cdt1, the
MCM2–7 helicase, and the two kinases CDK2 and DDK. Define two interaction hyperedges:

I = { 𝐼loading, 𝐼activation },

where
𝐼loading = {ORC,Cdc6,Cdt1,MCM2–7}, 𝐼activation = {MCM2–7,CDK2,DDK}.

Label each node by its functional class:

ℓ𝑉 (𝑥) =


“origin-binding factor”, 𝑥 = ORC,
“helicase loader”, 𝑥 = Cdc6,Cdt1,
“replicative helicase”, 𝑥 = MCM2–7,
“kinase”, 𝑥 = CDK2,DDK.

Label each hyperedge by its biological process:

ℓI (𝐼loading) = “MCM2–7 helicase loading”, ℓI (𝐼activation) = “helicase activation by phosphorylation”.

Optionally, assign confidence scores based on experimental evidence:

𝑤(𝐼loading) = 0.92, 𝑤(𝐼activation) = 0.88.

• 𝐼loading models the coordinated loading of the MCM2–7 helicase onto origin DNA by ORC, Cdc6, and
Cdt1.

• 𝐼activation captures the subsequent activation of the loaded helicase by CDK2 and DDK phosphorylation.
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This hypernetwork illustrates a multi-step, multi-protein process in which hyperedges represent higher-order
interactions essential for DNA replication initiation.

Example 3.4 (Human Hemoglobin Interaction HyperNetwork). Human hemoglobin is a protein in red blood
cells that transports oxygen from the lungs to body tissues and organs(cf. [61, 64]). Let

𝑉 = {𝛼1, 𝛼2, 𝛽1, 𝛽2, O2}

be the set of molecular entities (four globin subunits and oxygen). Define the set of interaction hyperedges

I = { 𝐸tetramer, 𝐸O2 },

where
𝐸tetramer = {𝛼1, 𝛼2, 𝛽1, 𝛽2}, 𝐸O2 = {𝛼1, 𝛼2, 𝛽1, 𝛽2,O2}.

The labeling functions are

ℓ𝑉 (𝛼𝑖) = “globin subunit”, ℓ𝑉 (𝛽𝑖) = “globin subunit”, ℓ𝑉 (O2) = “oxygen molecule”,

ℓI (𝐸tetramer) = “hemoglobin tetramer assembly”, ℓI (𝐸O2 ) = “oxygen binding”.

Optionally, assign confidence scores:

𝑤(𝐸tetramer) = 1.00, 𝑤(𝐸O2 ) = 0.98.

Here:

• 𝐸tetramer captures the multi-protein assembly of two 𝛼 and two 𝛽 chains into the functional hemoglobin
tetramer.

• 𝐸O2 captures the cooperative binding of molecular oxygen to the assembled tetramer.

This example illustrates a molecular interaction hypernetwork where hyperedges represent complex biochemical
events involving more than two entities.

Example 3.5 (Pyruvate Dehydrogenase Complex as a Molecular Interaction HyperNetwork). Pyruvate Dehy-
drogenase Complex is a multi-enzyme system that converts pyruvate into acetyl-CoA, linking glycolysis to the
Krebs cycle [59, 85, 86, 113]. Let

𝑉 = { E1, E2, E3, Pyruvate, CoA, NAD+}

be the set of molecular entities: the three enzyme subunits of the pyruvate dehydrogenase complex (E1, E2,
E3) and its substrates/cofactors (pyruvate, coenzyme A, NAD+). Define the interaction hyperedges

I = { 𝐼assembly, 𝐼catalysis },

where
𝐼assembly = {E1,E2,E3}, 𝐼catalysis = {E1,E2,E3, Pyruvate,CoA,NAD+}.

Label each node by its type:

ℓ𝑉 (E1) = ℓ𝑉 (E2) = ℓ𝑉 (E3) = “enzyme subunit”, ℓ𝑉 (Pyruvate) = ℓ𝑉 (CoA) = ℓ𝑉 (NAD+) = “substrate/cofactor”.

Label each hyperedge by its biological process:

ℓI (𝐼assembly) = “complex assembly”, ℓI (𝐼catalysis) = “oxidative decarboxylation reaction”.

Optionally, assign confidence scores:

𝑤(𝐼assembly) = 0.𝑛𝑖𝑛𝑒𝑡𝑦, 𝑤(𝐼catalysis) = 0.𝑒𝑖𝑔ℎ𝑡𝑦 − 𝑓 𝑖𝑣𝑒.

Here:
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• 𝐼assembly models the multi-enzyme assembly of E1, E2, and E3 into the functional pyruvate dehydrogenase
complex.

• 𝐼catalysis captures the coordinated catalytic event converting pyruvate plus CoA and NAD+ into acetyl-CoA
and NADH.

This example demonstrates a molecular interaction hypernetwork in which hyperedges represent both the
assembly of a multi-protein complex and its multi-participant enzymatic reaction.

Theorem 3.6 (Hypernetwork Property). Every molecular interaction hypernetwork H = (𝑉,I, ℓ𝑉 , ℓI , 𝑤) is
a hypernetwork in the sense of Definition [Hypernetwork].

Proof. Let H = (𝑉,I, ℓ𝑉 , ℓI , 𝑤) be a molecular interaction hypernetwork. We verify each condition of
Definition [Hypernetwork]:

1. Node set: By hypothesis, 𝑉 is a nonempty finite set of molecular entities.

2. Hyperedge set: By construction,
I ⊆ P(𝑉) \ {∅},

and each 𝐼 ∈ I is a nonempty subset of 𝑉 .

3. Weight function: The map 𝑤 : I → R≥0 assigns a nonnegative real weight or confidence score to each
hyperedge, as required.

4. Optional labels: The node-labeling ℓ𝑉 : 𝑉 → 𝐿𝑉 and hyperedge-labeling ℓI : I → 𝐿I are admissible
extensions under the general hypernetwork definition and do not violate any axioms.

Since all structural requirements of a hypernetwork are satisfied, H is indeed a hypernetwork in the sense of
Definition [Hypernetwork]. □

Theorem 3.7 (Generalization of Molecular Interaction Networks). Let N = (𝑉,I2, ℓ𝑉 , ℓI , 𝑤) be a molecular
interaction network in which every interaction involves at most two entities, i.e.I2 ⊆

{
{𝑢, 𝑣} | 𝑢, 𝑣 ∈ 𝑉

}
∪{{𝑣} |

𝑣 ∈ 𝑉}. Then N is a special case of the molecular interaction hypernetwork H obtained by setting I = I2.

Proof. Let H = (𝑉,I, ℓ𝑉 , ℓI , 𝑤) be the candidate hypernetwork obtained by taking I = I2. We check that H
satisfies the definition of a molecular interaction hypernetwork:

1. Node set: By hypothesis, 𝑉 is a finite set of molecular entities.

2. Hyperedges: Since I2 ⊆
{
{𝑢, 𝑣} | 𝑢, 𝑣 ∈ 𝑉

}
∪ {{𝑣} | 𝑣 ∈ 𝑉}, we have

I ⊆ P(𝑉) \ {∅},

and each element of I is a nonempty subset of 𝑉 of cardinality one or two.

3. Node-labeling: The map ℓ𝑉 : 𝑉 → 𝐿𝑉 is unchanged and labels each entity by its type or identifier.

4. Hyperedge-labeling: The map ℓI : I → 𝐿I likewise remains valid, assigning each interaction its
category.

5. Weight function: The function 𝑤 : I → R≥0 assigns a nonnegative score to each interaction.

All conditions of Definition [Molecular Interaction HyperNetwork] are thus met. Moreover, because every
interaction in I involves at most two entities, H is precisely the original molecular interaction network N ,
viewed as a special case of a hypernetwork where hyperedges have size ≤ 2. Therefore, N embeds directly
into the hypernetwork framework without alteration. □
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Theorem 3.8 (Induced Subhypernetwork). Let H = (𝑉,I, ℓ𝑉 , ℓI , 𝑤) be a molecular interaction hypernetwork
and let 𝑈 ⊆ 𝑉 be any nonempty subset of molecular entities. Define

I𝑈 = { 𝐼 ∈ I : 𝐼 ⊆ 𝑈},

and restrict labels and weights accordingly. Then

H[𝑈] = (𝑈, I𝑈 , ℓ𝑉 |𝑈 , ℓI |I𝑈 , 𝑤 |I𝑈 )

is itself a molecular interaction hypernetwork.

Proof. 1. 𝑈 is nonempty and finite since 𝑈 ⊆ 𝑉 .

2. I𝑈 ⊆ P(𝑈) \ {∅} by construction, and each 𝐼 ∈ I𝑈 remains a nonempty interaction hyperedge.

3. The restricted maps ℓ𝑉 |𝑈 and ℓI |I𝑈 still assign valid labels to nodes and hyperedges.

4. The restricted weight 𝑤 |I𝑈 remains a nonnegative function on I𝑈 .

Thus H[𝑈] satisfies all axioms of Definition [Molecular Interaction HyperNetwork]. □

Theorem 3.9 (Primal Graph Theorem). Let H = (𝑉,I, ℓ𝑉 , ℓI , 𝑤) be a molecular interaction hypernetwork.
Its primal graph 𝐺 (H) is the labeled simple graph

𝐺 (H) =
(
𝑉, 𝐸, ℓ𝑉 , 𝜓

)
where

𝐸 =
{
{𝑢, 𝑣} ⊆ 𝑉 : ∃ 𝐼 ∈ I, {𝑢, 𝑣} ⊆ 𝐼

}
, 𝜓({𝑢, 𝑣}) = max

𝐼∋𝑢,𝑣
𝑤(𝐼).

Then 𝐺 (H) is a molecular interaction network.

Proof. • 𝑉 is finite and nonempty.

• Each {𝑢, 𝑣} ∈ 𝐸 arises from some hyperedge 𝐼 ⊆ 𝑉 , so 𝐸 ⊆ {{𝑢, 𝑣} | 𝑢, 𝑣 ∈ 𝑉}.

• The node-labeling ℓ𝑉 is unchanged.

• The bond-order labeling 𝜓 assigns a nonnegative weight to each edge, taking the maximum confidence
among all hyperedges that contain both 𝑢 and 𝑣.

Hence 𝐺 (H) meets the definition of a molecular interaction network (a special case of Definition [Hypernet-
work] with hyperedges of size at most two). □

Theorem 3.10 (Coverage of Entities). In any molecular interaction hypernetworkH = (𝑉,I, ℓ𝑉 , ℓI , 𝑤), every
entity participates in at least one interaction: ⋃

𝐼∈I
𝐼 = 𝑉.

Proof. By the biochemical semantics of molecular interaction hypernetworks, each entity 𝑣 ∈ 𝑉 must appear
in at least one biochemical event 𝐼 ∈ I. Formally, if some 𝑣 did not appear in any 𝐼, then 𝑣 would be isolated
and never part of an interaction—contradicting the intended modeling. Therefore the union of all hyperedges
equals 𝑉 . □
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4 Molecular Interaction n-SuperHyperNetwork

A Molecular Interaction 𝑛-SuperHyperNetwork is a mathematical framework designed to model hierarchi-
cal biochemical systems. It captures multi-scale molecular interactions using 𝑛-level nested groupings of
molecular entities and their associated interaction events. We formally define a Molecular Interaction 𝑛-
SuperHyperNetwork as follows.

Definition 4.1 (𝑛-SuperHypernetwork). [38] Let 𝑉0 be a finite base set of nodes. Define the 𝑛-th iterated
powerset recursively by

P0 (𝑉0) = 𝑉0, P𝑘+1 (𝑉0) = P
(
P𝑘 (𝑉0)

)
(𝑘 ≥ 0).

An 𝑛-superhypernetwork is a tuple
N (𝑛) =

(
𝑉, E, 𝑤

)
where

• 𝑉 ⊆ P𝑛 (𝑉0) is a finite set of 𝑛-supernodes;

• E ⊆ P𝑛 (𝑉0) is a finite set of 𝑛-superedges, each superedge 𝑒 ∈ E being a nonempty subset of 𝑉 ;

• 𝑤 : E → R≥0 is an optional weight function assigning a nonnegative real weight (or confidence) to each
superedge.

In other words, both vertices and hyperedges of the network are drawn from the 𝑛-th powerset of the base node
set, capturing up to 𝑛 levels of hierarchical grouping.

Example 4.2 (Disaster Response as a 2-SuperHypernetwork). Disaster response involves coordinated actions
by emergency services, governments, and communities to manage and mitigate the impact of disasters (cf.
[17, 63, 81]). Let the base set of individual responders be

𝑉0 = {Alice, Bob, Carol, Dave}.

First-level collections (teams, in P1 (𝑉0)) are

𝑇1 = {Alice,Bob}, 𝑇2 = {Bob,Carol}, 𝑇3 = {Carol,Dave}.

Second-level collections (task forces, in P2 (𝑉0)) are

𝐹𝐴 = {𝑇1, 𝑇2}, 𝐹𝐵 = {𝑇2, 𝑇3}.

Define the 2-superhypernetwork
N (2) = (𝑉, E, 𝑤)

by
𝑉 = { 𝐹𝐴, 𝐹𝐵}, E =

{
{𝐹𝐴, 𝐹𝐵}

}
,

with weights
𝑤({𝐹𝐴, 𝐹𝐵}) = 0.85.

Here:

• Each supernode 𝐹𝐴, 𝐹𝐵 ∈ 𝑉 is a 2-supernode, representing a pair of overlapping teams working together.

• The single superedge {𝐹𝐴, 𝐹𝐵} connects these two task forces, modeling a joint multi-team operation.

• The weight 0.85 might represent the confidence or coordination efficiency of that joint operation.

This construction captures individual responders → teams → task forces and the cooperative relations among
those forces, all within a single unified 2-superhypernetwork framework.
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Definition 4.3 (Molecular Interaction 𝑛-SuperHyperNetwork). Let 𝑉0 be a finite set of molecular entities (e.g.
proteins, metabolites, genes). For each integer 𝑛 ≥ 1, define the iterated powerset

P0 (𝑉0) = 𝑉0, P𝑘+1 (𝑉0) = P
(
P𝑘 (𝑉0)

)
(𝑘 ≥ 0).

A molecular interaction 𝑛-superHyperNetwork is a quintuple

H (𝑛) =
(
𝑉 (𝑛) , I (𝑛) , ℓ (𝑛)

𝑉
, ℓ

(𝑛)
I , 𝑤 (𝑛) )

where

• 𝑉 (𝑛) ⊆ P𝑛 (𝑉0) is a finite set of 𝑛-supernodes;

• I (𝑛) ⊆ P𝑛 (𝑉0) \ {∅} is a finite set of 𝑛-superedges, each 𝐼 ∈ I (𝑛) being a nonempty subset of 𝑉 (𝑛) ;

• ℓ
(𝑛)
𝑉

: 𝑉 (𝑛) → 𝐿𝑉 labels each 𝑛-supernode by its biological or chemical role (e.g. “multi-protein com-
plex”);

• ℓ
(𝑛)
I : I (𝑛) → 𝐿I labels each 𝑛-superedge by its interaction type (e.g. “cascade”, “assembly”);

• 𝑤 (𝑛) : I (𝑛) → R≥0 assigns a nonnegative confidence score to each 𝑛-superinteraction.

Example 4.4 (EGF Receptor Signaling Pathway as a Molecular Interaction 2-SuperHyperNetwork). The EGF
receptor signaling pathway is a molecular cascade activated by epidermal growth factor, regulating cell growth,
differentiation, survival, and proliferation through kinase-mediated interactions (cf. [79,80,97,122,123]). Let
the base set of molecular entities be

𝑉0 = { EGF, EGFR, GRB2, SOS, RAS, RAF, MEK, ERK}.

First-level interaction hyperedges (in P1 (𝑉0)) are the elementary binding or activation events:

𝐸1 = {EGF, EGFR}, 𝐸2 = {EGFR, GRB2, SOS},
𝐸3 = {SOS, RAS}, 𝐸4 = {RAS, RAF},
𝐸5 = {RAF, MEK}, 𝐸6 = {MEK, ERK}.

These form the set of 1-supernodes:

𝑉 (1) = {𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5, 𝐸6} ⊆ P1 (𝑉0).

Next, group related events into functional modules (2-supernodes in P2 (𝑉0)):

𝐹𝑅 = {𝐸1, 𝐸2}, 𝐹𝑆 = {𝐸3, 𝐸4}, 𝐹𝑀 = {𝐸5, 𝐸6}.

Thus
𝑉 (2) = { 𝐹𝑅, 𝐹𝑆 , 𝐹𝑀 } ⊆ P2 (𝑉0).

Finally, define the 2-superinteraction hyperedges (in P2 (𝑉0)) linking these modules:

I (2) =
{
{𝐹𝑅, 𝐹𝑆}, {𝐹𝑆 , 𝐹𝑀 }

}
.

Labeling functions assign biological roles and interaction types:

ℓ
(2)
𝑉

(𝐹𝑅) = “Receptor complex assembly”,

ℓ
(2)
𝑉

(𝐹𝑆) = “RAS activation module”,

ℓ
(2)
𝑉

(𝐹𝑀 ) = “MAPK phosphorylation cascade”,

ℓ
(2)
I ({𝐹𝑅, 𝐹𝑆}) = “Signal propagation (receptor → RAS)”,

ℓ
(2)
I ({𝐹𝑆 , 𝐹𝑀 }) = “Signal propagation (RAS → MAPK)”.

Weights (confidence scores) might be

𝑤 (2) ({𝐹𝑅, 𝐹𝑆}) = 0.95, 𝑤 (2) ({𝐹𝑆 , 𝐹𝑀 }) = 0.𝑛𝑖𝑛𝑒𝑡𝑦,

reflecting high-confidence pathway activation.

In this 2-superHyperNetwork:
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• Level 0 (𝑉0) are individual proteins.

• Level 1 (𝑉 (1) ) are elementary interactions.

• Level 2 (𝑉 (2) ) are functional modules grouping those interactions.

• Hyperedges I (2) connect modules to model the hierarchical signal-transduction cascade.

Example 4.5 (Glycolytic Pathway as a Molecular Interaction 2-SuperHyperNetwork). The glycolytic pathway
is a series of enzymatic reactions that convert glucose into pyruvate, generating ATP and NADH in cells
(cf. [28, 115]). Let the base set of molecular entities be

𝑉0 = { Glucose, ATP, HK, G6P, PGI, F6P, PFK, FBP, ALD, GAP, TPI}.

Define the first-level interaction hyperedges (1-supernodes in P1 (𝑉0)) corresponding to the elementary enzy-
matic steps:

𝐸1 = {Glucose, HK, ATP},
𝐸2 = {G6P, PGI},
𝐸3 = {F6P, PFK, ATP},
𝐸4 = {FBP, ALD},
𝐸5 = {GAP, TPI}.

Thus
𝑉 (1) = { 𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5} ⊆ P1 (𝑉0).

Next, group these into two functional modules (2-supernodes in P2 (𝑉0)):

𝐹prep = { 𝐸1, 𝐸2, 𝐸3}, 𝐹payoff = { 𝐸4, 𝐸5}.

Hence
𝑉 (2) = { 𝐹prep, 𝐹payoff} ⊆ P2 (𝑉0).

Finally, define the second-level interaction hyperedges (2-superedges):

I (2) =
{
{𝐹prep, 𝐹payoff}

}
.

Label each 2-supernode and the 2-superedge:

ℓ
(2)
𝑉

(𝐹prep) = “Preparatory phase of glycolysis”,

ℓ
(2)
𝑉

(𝐹payoff) = “Payoff phase of glycolysis”,
ℓ
(2)
I

(
{𝐹prep, 𝐹payoff}

)
= “Phase transition in glycolysis”.

Optionally, assign a confidence score:

𝑤 (2) ({𝐹prep, 𝐹payoff}
)
= 0.𝑛𝑖𝑛𝑒𝑡𝑦.

In this 2-superHyperNetwork:

• Level 0 (𝑉0): individual metabolites and enzymes.

• Level 1 (𝑉 (1) ): elementary enzymatic interactions.

• Level 2 (𝑉 (2) ): functional modules (preparatory vs. payoff phase).

• 2-superedge {𝐹prep, 𝐹payoff} models the hierarchical linkage between the two phases of glycolysis.
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Example 4.6 (EGFR Signaling as a Molecular Interaction 3-SuperHyperNetwork). Let the base set of entities
be

𝑉0 = { EGF, EGFR, GRB2, SOS, RAS, RAF, MEK, ERK, PI3K, AKT, mTOR}.

First-level interaction hyperedges (1-supernodes in P1 (𝑉0)) correspond to elementary binding or activation
events:

𝐸1 = {EGF,EGFR}, 𝐸2 = {EGFR,GRB2, SOS},
𝐸3 = {SOS,RAS}, 𝐸4 = {RAS,RAF},
𝐸5 = {RAF,MEK}, 𝐸6 = {MEK,ERK},
𝐸7 = {EGFR, PI3K}, 𝐸8 = {PI3K,AKT},
𝐸9 = {AKT,mTOR}.

Thus
𝑉 (1) = {𝐸1, 𝐸2, . . . , 𝐸9} ⊆ P1 (𝑉0).

Second-level modules (2-supernodes in P2 (𝑉0)) group these into functional units:

𝐹𝑅 = {𝐸1, 𝐸2}, 𝐹𝑀 = {𝐸3, 𝐸4, 𝐸5, 𝐸6}, 𝐹𝑃 = {𝐸7, 𝐸8, 𝐸9}.

Hence
𝑉 (2) = {𝐹𝑅, 𝐹𝑀 , 𝐹𝑃} ⊆ P2 (𝑉0).

Third-level supermodules (3-supernodes in P3 (𝑉0)) capture overarching signaling branches:

𝑈1 = {𝐹𝑅, 𝐹𝑀 }, 𝑈2 = {𝐹𝑅, 𝐹𝑃}.

Thus
𝑉 (3) = {𝑈1,𝑈2} ⊆ P3 (𝑉0).

Define the single 3-superinteraction hyperedge

I (3) = {{𝑈1,𝑈2}}.

Labeling functions record functional roles:

ℓ
(3)
𝑉

(𝑈1) = “EGFR→MAPK signaling supermodule”,

ℓ
(3)
𝑉

(𝑈2) = “EGFR→PI3K–AKT–mTOR supermodule”,

ℓ
(3)
I

(
{𝑈1,𝑈2}

)
= “Integrated proliferative and survival signaling”.

Optionally, assign a confidence weight:

𝑤 (3) ({𝑈1,𝑈2}) = 0.𝑛𝑖𝑛𝑒𝑡𝑦 𝑓 𝑖𝑣𝑒.

• Level 0 (𝑉0): individual molecular entities.

• Level 1 (𝑉 (1) ): elementary interactions (ligand–receptor, adapter binding, kinase activation).

• Level 2 (𝑉 (2) ): functional modules (receptor complex, MAPK cascade, PI3K–AKT–mTOR branch).

• Level 3 (𝑉 (3) ): supermodules integrating MAPK-driven proliferation and PI3K-AKT–mTOR-driven
survival pathways.

• I (3) captures the coordination between these two critical signaling branches.

Example 4.7 (Insulin Signaling Pathway as a Molecular Interaction 3-SuperHyperNetwork). The insulin
signaling pathway regulates glucose uptake and metabolism by transmitting signals from insulin receptors to
intracellular effectors like AKT and GLUT4 (cf. [89, 95, 109]). Let the base set of molecular entities be

𝑉0 = { Insulin, IR, IRS, PI3K, PDK1, AKT, AS160, GLUT4}.
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First-level interaction hyperedges (1-supernodes in P1 (𝑉0)) correspond to elementary signaling steps:

𝐸1 = {Insulin, IR}, 𝐸2 = {IR, IRS},
𝐸3 = {IRS, PI3K}, 𝐸4 = {PI3K, PDK1},
𝐸5 = {PDK1, AKT}, 𝐸6 = {AKT, AS160},
𝐸7 = {AS160, GLUT4}.

Thus
𝑉 (1) = {𝐸1, 𝐸2, . . . , 𝐸7} ⊆ P1 (𝑉0).

Second-level modules (2-supernodes in P2 (𝑉0)) group these steps into functional blocks:

𝐹𝑅 = {𝐸1, 𝐸2}, 𝐹𝐾 = {𝐸3, 𝐸4, 𝐸5}, 𝐹𝑇 = {𝐸6, 𝐸7}.

Hence
𝑉 (2) = {𝐹𝑅, 𝐹𝐾 , 𝐹𝑇 } ⊆ P2 (𝑉0).

Third-level supermodules (3-supernodes in P3 (𝑉0)) capture the two main signaling arms:

𝑈1 = {𝐹𝑅, 𝐹𝐾 }, 𝑈2 = {𝐹𝐾 , 𝐹𝑇 }.

Thus
𝑉 (3) = {𝑈1,𝑈2} ⊆ P3 (𝑉0).

Define the 3-superinteraction hyperedge

I (3) =
{
{𝑈1, 𝑈2}

}
.

Labeling functions record biological roles:

ℓ
(3)
𝑉

(𝑈1) = “Receptor-proximal and PI3K activation module”,

ℓ
(3)
𝑉

(𝑈2) = “PI3K-AKT-mediated glucose uptake module”,
ℓ
(3)
I

(
{𝑈1,𝑈2}

)
= “Integrated insulin signaling cascade”.

Optionally, assign a confidence weight:

𝑤 (3) ({𝑈1,𝑈2}) = 0.𝑛𝑖𝑛𝑒𝑡𝑦𝑡𝑤𝑜.

• Level 0 (𝑉0): individual molecules.

• Level 1 (𝑉 (1) ): elementary binding and phosphorylation events.

• Level 2 (𝑉 (2) ): functional blocks—receptor activation (𝐹𝑅), kinase cascade (𝐹𝐾 ), and transporter regu-
lation (𝐹𝑇 ).

• Level 3 (𝑉 (3) ): supermodules integrating early PI3K activation (𝑈1) and downstream GLUT4 transloca-
tion (𝑈2).

• I (3) models the coordination between these two critical modules in the insulin response.

Example 4.8 (26S Proteasome Complex as a Molecular Interaction 4-SuperHyperNetwork). The 26S protea-
some complex is a large protein structure that degrades ubiquitinated proteins, maintaining cellular protein
homeostasis and regulating various biological processes (cf. [29, 51, 90, 121]). Let the base set of molecular
entities be

𝑉0 = { 𝐴1, . . . , 𝐴7, 𝐵1, . . . , 𝐵7, Rpt1, . . . ,Rpt6, Rpn1, . . . ,Rpn13},

where 𝐴𝑖 and 𝐵𝑖 are the seven 𝛼- and 𝛽-subunits of the 20S core particle, Rpt 𝑗 the six ATPase subunits, and
Rpn𝑘 the thirteen non-ATPase regulatory subunits.

First-level groupings (1-supernodes in P1 (𝑉0)) are the fundamental subcomplexes:

𝐹𝛼 = {𝐴1, . . . , 𝐴7}, 𝐹𝛽 = {𝐵1, . . . , 𝐵7},
𝐹base = {Rpt1, . . . ,Rpt6}, 𝐹lid = {Rpn1, . . . ,Rpn13}.
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Second-level assemblies (2-supernodes in P2 (𝑉0)) combine rings into particle subunits:

𝑀CP = {𝐹𝛼, 𝐹𝛽}, 𝑀RP = {𝐹base, 𝐹lid}.

Third-level super-assemblies (3-supernodes in P3 (𝑉0)) isolate each particle:

𝑆core = {𝑀CP}, 𝑆reg = {𝑀RP}.

Fourth-level 4-supernodes (in P4 (𝑉0)) represent the complete 26S proteasome components:

𝑈1 = {𝑆core}, 𝑈2 = {𝑆reg}.

Then
𝑉 (4) = {𝑈1, 𝑈2}, I (4) =

{
{𝑈1, 𝑈2}

}
.

Labeling functions assign:

ℓ
(4)
𝑉

(𝑈1) = “20S core particle”, ℓ
(4)
𝑉

(𝑈2) = “19S regulatory particle”,

ℓ
(4)
I

(
{𝑈1,𝑈2}

)
= “26S proteasome assembly”,

and optionally
𝑤 (4) ({𝑈1,𝑈2}) = 1.00.

Here:

• Level 0 (𝑉0): individual proteasome subunits (𝛼, 𝛽, ATPase, non-ATPase).

• Level 1 (P1): fundamental rings and subcomplexes (𝛼-ring, 𝛽-ring, base, lid).

• Level 2 (P2): core particle (𝑀CP) and regulatory particle (𝑀RP).

• Level 3 (P3): isolated core (𝑆core) and regulatory (𝑆reg) super-assemblies.

• Level 4 (P4): top-level supernodes (𝑈1,𝑈2) representing the two principal 26S components, connected
by a single 4-superedge modeling the intact proteasome.

Example 4.9 (E. coli 70S Ribosome as a Molecular Interaction 4-SuperHyperNetwork). The E. coli 70S
ribosome is a molecular machine composed of 30S and 50S subunits, responsible for protein synthesis during
translation (cf. [1, 2, 44, 70]). Let the base set of molecular entities be

𝑉0 = { 𝑆1, . . . , 𝑆21, 16S rRNA, 𝐿1, . . . , 𝐿23, 23S rRNA, 5S rRNA},

where 𝑆𝑖 are the 21 small-subunit proteins, 𝐿 𝑗 the 23 large-subunit proteins, and the three ribosomal RNAs.

Level 1 (1-supernodes in P1 (𝑉0)). Group individual components into four functional clusters:

𝐹𝑆 = {𝑆1, . . . , 𝑆21}, 𝐹𝑟𝑆 = {16S rRNA},
𝐹𝐿 = {𝐿1, . . . , 𝐿23}, 𝐹𝑟𝐿 = {23S rRNA, 5S rRNA}.

Level 2 (2-supernodes in P2 (𝑉0)). Assemble each ribosomal subunit’s core components:

𝑀30S = {𝐹𝑆 , 𝐹𝑟𝑆}, 𝑀50S = {𝐹𝐿 , 𝐹𝑟𝐿}.

Level 3 (3-supernodes in P3 (𝑉0)). Encapsulate each subunit as a single supermodule:

𝑈30S = {𝑀30S }, 𝑈50S = {𝑀50S }.
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Level 4 (4-supernodes in P4 (𝑉0)). Define the two top-level supernodes and their interaction:

𝑉 (4) = {𝑈30S, 𝑈50S }, I (4) =
{
{𝑈30S, 𝑈50S }

}
.

Labeling functions assign:

ℓ
(4)
𝑉

(𝑈30S) = “30S ribosomal subunit”, ℓ
(4)
𝑉

(𝑈50S) = “50S ribosomal subunit”,

ℓ
(4)
I

(
{𝑈30S,𝑈50S}

)
= “70S ribosome assembly”, 𝑤 (4) ({𝑈30S,𝑈50S}

)
= 1.00.

• Level 0 (𝑉0): individual proteins and rRNAs.

• Level 1 (P1): four component clusters (small-subunit proteins, 16S rRNA, large-subunit proteins, 23S+5S
rRNAs).

• Level 2 (P2): 30S and 50S subunit assemblies.

• Level 3 (P3): supermodules representing each subunit.

• Level 4 (P4): top-level supernodes and the superhyperedge capturing the intact 70S ribosome.

This example illustrates how a molecular interaction 4-superHyperNetwork encodes the hierarchical assembly
of the bacterial ribosome from individual proteins and RNAs up to the fully assembled complex.

Theorem 4.10 (𝑛-SuperHyperNetwork Property). Every molecular interaction 𝑛-superHyperNetwork H (𝑛) is
an 𝑛-superhypernetwork in the sense of Definition [𝑛-SuperHypernetwork].

Proof. By construction:

• 𝑉 (𝑛) ⊆ P𝑛 (𝑉0) and I (𝑛) ⊆ P𝑛 (𝑉0) \ {∅}, so both supernodes and superedges lie in the 𝑛-th iterated
powerset of the base set.

• Each element of I (𝑛) is a nonempty subset of 𝑉 (𝑛) , matching the requirement that superedges connect
supernodes.

• The weight function𝑤 (𝑛) : I (𝑛) → R≥0 and the labelings ℓ (𝑛)
𝑉

, ℓ
(𝑛)
I are exactly the optional data permitted

in the general 𝑛-superhypernetwork framework.

Hence all axioms of an 𝑛-superhypernetwork are satisfied. □

Theorem 4.11 (Generalization of Molecular Interaction HyperNetworks). Let H = (𝑉0,I, ℓ𝑉 , ℓI , 𝑤) be any
molecular interaction hypernetwork (the case 𝑛 = 1). Then there is a natural identification of H with a
molecular interaction 1-superHyperNetwork H (1) given by

𝑉 (1) =
{
{𝑣} | 𝑣 ∈ 𝑉0

}
, I (1) = I ⊆ P1 (𝑉0),

with ℓ
(1)
𝑉

({𝑣}) = ℓ𝑉 (𝑣), ℓ (1)I = ℓI , and 𝑤 (1) = 𝑤. Under this identification, H (1) is isomorphic to H .

Proof. Define
Φ𝑉 : 𝑉0 −→ 𝑉 (1) , 𝑣 ↦→ {𝑣}, ΦI : I ↩→ I (1)

where we simply regard each hyperedge 𝐼 ⊆ 𝑉0 as an element of P1 (𝑉0). Then:

1. Φ𝑉 is a bijection from the original nodes 𝑉0 onto 𝑉 (1) .

2. ΦI is the identity embedding of I into P1 (𝑉0).

3. Labels are preserved since ℓ
(1)
𝑉

({𝑣}) = ℓ𝑉 (𝑣) and ℓ
(1)
I (𝐼) = ℓI (𝐼).
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4. Weights are preserved: 𝑤 (1) (𝐼) = 𝑤(𝐼).

Thus the data of H and H (1) coincide under the natural isomorphism (Φ𝑉 ,ΦI). Therefore every molecular
interaction hypernetwork is a special case of a molecular interaction 𝑛-superHyperNetwork for 𝑛 = 1, and the
class of 𝑛-superHyperNetworks strictly generalizes that of hypernetworks. □

Theorem 4.12 (Flattening Theorem). Let

H (𝑛) =
(
𝑉 (𝑛) , I (𝑛) , ℓ (𝑛)

𝑉
, ℓ

(𝑛)
I , 𝑤 (𝑛) )

be a molecular interaction 𝑛-SuperHyperNetwork over base entities 𝑉0. For each 𝑘 with 0 ≤ 𝑘 ≤ 𝑛, define the
𝑘-flattening map

𝜑𝑘 : P𝑛 (𝑉0) −→ P 𝑛−𝑘 (𝑉0), 𝑋 ↦→
⋃
𝑌 ∈𝑋

𝑌,

iterated 𝑘 times. Then

H (𝑛−𝑘 ) =
(
𝜑𝑘

(
𝑉 (𝑛) ) , 𝜑𝑘 (I (𝑛) ) , ℓ (𝑛)

𝑉
◦ 𝜑𝑘 , ℓ (𝑛)I ◦ 𝜑𝑘 , 𝑤 (𝑛) ◦ 𝜑𝑘

)
is a well-defined molecular interaction (𝑛 − 𝑘)-SuperHyperNetwork.

Proof. Since 𝑉 (𝑛) ⊆ P𝑛 (𝑉0) and I (𝑛) ⊆ P𝑛 (𝑉0), applying 𝜑𝑘 yields 𝜑𝑘 (𝑉 (𝑛) ) ⊆ P𝑛−𝑘 (𝑉0) and 𝜑𝑘 (I (𝑛) ) ⊆
P𝑛−𝑘 (𝑉0). Each 𝜑𝑘 (𝐼) remains a nonempty subset of 𝜑𝑘 (𝑉 (𝑛) ). Composing the label functions and weights
with 𝜑𝑘 preserves their codomains and assignments. Thus all axioms of Definition [Molecular Interaction
𝑛-SuperHyperNetwork] hold for H (𝑛−𝑘 ) . □

Theorem 4.13 (Entity Coverage Theorem). In any molecular interaction 𝑛-SuperHyperNetwork H (𝑛) over𝑉0,
the union of the fully flattened hyperedges covers the entire base set:⋃

𝐼∈I (𝑛)

𝜑𝑛 (𝐼) = 𝑉0.

Proof. We proceed by induction on 𝑛.

Base case 𝑛 = 1. Then H (1) is a molecular interaction hypernetwork, and by definition each base entity
participates in at least one interaction hyperedge, so

⋃
𝐼∈I (1) 𝐼 = 𝑉0.

Inductive step. Assume the statement holds for 𝑛 − 1. Consider H (𝑛) . Its 1-flattening H (𝑛−1) satisfies⋃
𝐽∈𝜑1 (I (𝑛) ) 𝜑𝑛−1 (𝐽) = 𝑉0 by the induction hypothesis. Since 𝜑𝑛 = 𝜑𝑛−1 ◦ 𝜑1 and 𝜑1 (I (𝑛) ) = 𝜑1 (I (𝑛) ), we

obtain ⋃
𝐼∈I (𝑛)

𝜑𝑛 (𝐼) =
⋃

𝐽∈𝜑1 (I (𝑛) )
𝜑𝑛−1 (𝐽) = 𝑉0.

This completes the induction. □

Theorem 4.14 (Connectivity Equivalence). Let H (𝑛) be a molecular interaction 𝑛-SuperHyperNetwork, and
let 𝐺 (𝑛) be its primal graph on 𝑛-supernodes. Then 𝐺 (𝑛) is connected if and only if the primal graph of the
fully flattened network, 𝐺 (0) , is connected.

Proof. In the primal graph𝐺 (𝑛) , two distinct 𝑛-supernodes 𝑢, 𝑣 are adjacent if they both lie in some 𝑛-superedge
𝐼. Under each flattening step 𝜑𝑘 , adjacency is preserved: if {𝑢, 𝑣} ⊆ 𝐼 then {𝜑𝑘 (𝑢), 𝜑𝑘 (𝑣)} ⊆ 𝜑𝑘 (𝐼). Thus any
path in 𝐺 (𝑛) projects to a path in 𝐺 (𝑛−1) , and iterating down to 𝐺 (0) yields a corresponding path. Conversely,
any path in𝐺 (0) lifts to paths at higher levels by inverse images under the 𝜑𝑘 . Hence connectedness is equivalent
at all levels. □
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Theorem 4.15 (Induced Subnetwork Theorem). Let H (𝑛) be a molecular interaction 𝑛-SuperHyperNetwork
on 𝑉0, and let 𝐵 ⊆ 𝑉0 be a nonempty subset of base entities. Define

𝑉 ′ = { 𝑣 ∈ 𝑉 (𝑛) : 𝑣 ⊆ P𝑛 (𝐵) }, I′ = { 𝐼 ∈ I (𝑛) : 𝐼 ⊆ P𝑛 (𝐵) }.

Then
H (𝑛) [𝐵] =

(
𝑉 ′, I′, ℓ (𝑛)

𝑉
|𝑉 ′ , ℓ

(𝑛)
I |I′ , 𝑤 (𝑛) |I′

)
is a molecular interaction 𝑛-SuperHyperNetwork on base set 𝐵.

Proof. By construction, 𝑉 ′ ⊆ P𝑛 (𝐵) and I′ ⊆ P𝑛 (𝐵) \ {∅}. Each induced hyperedge 𝐼 ′ remains a nonempty
subset of 𝑉 ′. The restrictions of ℓ

(𝑛)
𝑉

, ℓ
(𝑛)
I , 𝑤 (𝑛) to the smaller sets preserve their codomains and assign-

ments. Therefore all axioms of Definition [Molecular Interaction 𝑛-SuperHyperNetwork] hold for the induced
subnetwork H (𝑛) [𝐵]. □

5 Conclusion and Future Works

In this paper, we introduced two novel mathematical frameworks: the Molecular Interaction HyperNetwork
and the Molecular Interaction SuperHyperNetwork. We provided formal definitions, illustrative real-world
examples, and a preliminary discussion of their structural and mathematical properties.

As future work, we aim to extend the Molecular Interaction HyperNetwork and Molecular Interaction Super-
HyperNetwork by integrating advanced uncertainty-handling frameworks. These include Fuzzy Sets [127,128],
Intuitionistic Fuzzy Sets [10,11], Vague Sets [5,47], Rough Sets [87,88], Bipolar Fuzzy Sets [4], HyperFuzzy
Sets [32, 66, 108], Picture Fuzzy Sets [21, 60], Hesitant Fuzzy Sets [111, 112], Neutrosophic Sets [100, 107],
Quadripartitioned Neutrosophic Sets [40,68,126], and Plithogenic Sets [36,42,43]. Incorporating these frame-
works will potentially enhance the descriptive power and applicability of our models, especially for representing
complex and hierarchical biochemical systems under various forms of uncertainty.

Data Availability

This research is purely theoretical, involving no data collection or analysis. We encourage future researchers
to pursue empirical investigations to further develop and validate the concepts introduced here.

Ethical Approval

As this research is entirely theoretical in nature and does not involve human participants or animal subjects, no
ethical approval is required.
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Disclaimer

This work presents theoretical concepts that have not yet undergone practical testing or validation. Future
researchers are encouraged to apply and assess these ideas in empirical contexts. While every effort has been
made to ensure accuracy and appropriate referencing, unintentional errors or omissions may still exist. Readers
are advised to verify referenced materials on their own. The views and conclusions expressed here are the
authors’ own and do not necessarily reflect those of their affiliated organizations.
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Paulo Roberto Guimarães, David H. Hembry, Erica A. Newman, Jens M. Olesen, Mathias Mistretta Pires, Justin D. Yeakel, and
Timothée Poisot. Analysing ecological networks of species interactions. Biological Reviews, 94, 2018.

[23] Reinhard Diestel. Graduate texts in mathematics: Graph theory.
[24] Reinhard Diestel. Graph theory 3rd ed. Graduate texts in mathematics, 173(33):12, 2005.
[25] Siddarth Durga, M. Durgadevi, and Kannan Rama Devi. Graph theory applications in biology. 2019.
[26] Song Feng, Emily Heath, Brett Jefferson, Cliff Joslyn, Henry Kvinge, Hugh D Mitchell, Brenda Praggastis, Amie J Eisfeld, Amy C

Sims, Larissa B Thackray, et al. Hypergraph models of biological networks to identify genes critical to pathogenic viral response.
BMC bioinformatics, 22(1):287, 2021.

20

UNDER PEER REVIEW



[27] Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural networks. In Proceedings of the AAAI
conference on artificial intelligence, volume 33, pages 3558–3565, 2019.

[28] Linda A Fothergill-Gilmore. The evolution of the glycolytic pathway. Trends in Biochemical Sciences, 11(1):47–51, 1986.
[29] Sarah Frankland-Searby and Sukesh R Bhaumik. The 26s proteasome complex: an attractive target for cancer therapy. Biochimica

et Biophysica Acta (BBA)-Reviews on Cancer, 1825(1):64–76, 2012.
[30] Perry A Frey and Adrian D Hegeman. Enzymatic reaction mechanisms. Oxford University Press, 2007.
[31] Victor S. Frost and Benjamin Melamed. Traffic modeling for telecommunications networks. IEEE Communications Magazine,

32:70–81, 1994.
[32] Takaaki Fujita. Some types of hyperfuzzy set: Bipolar, m-polar, q-rung orthopair, trapezoidal, linguistic, intuitionistic, picture,

hesitant, spherical, type-m, offset, overset, and underset. Preprint.
[33] Takaaki Fujita. Short note of supertree-width and n-superhypertree-width. Neutrosophic Sets and Systems, 77:54–78, 2024.
[34] Takaaki Fujita. Superhypergraph neural networks and plithogenic graph neural networks: Theoretical foundations. arXiv preprint

arXiv:2412.01176, 2024.
[35] Takaaki Fujita. A theoretical exploration of hyperconcepts: Hyperfunctions, hyperrandomness, hyperdecision-making, and beyond

(including a survey of hyperstructures). 2024.
[36] Takaaki Fujita. Advancing Uncertain Combinatorics through Graphization, Hyperization, and Uncertainization: Fuzzy, Neutro-

sophic, Soft, Rough, and Beyond. Biblio Publishing, 2025.
[37] Takaaki Fujita. Antihyperstructure, neutrohyperstructure, and superhyperstructure. Advancing Uncertain Combinatorics through

Graphization, Hyperization, and Uncertainization: Fuzzy, Neutrosophic, Soft, Rough, and Beyond, page 311, 2025.
[38] Takaaki Fujita. Exploration of graph classes and concepts for superhypergraphs and n-th power mathematical structures. 2025.
[39] Takaaki Fujita. Short note of superhyperstructures of partitions, integrals, and spaces. Advancing Uncertain Combinatorics through

Graphization, Hyperization, and Uncertainization: Fuzzy, Neutrosophic, Soft, Rough, and Beyond, page 384, 2025.
[40] Takaaki Fujita. Some types of hyperneutrosophic set (3): Dynamic, quadripartitioned, pentapartitioned, heptapartitioned, m-polar.

2025.
[41] Takaaki Fujita and Florentin Smarandache. A concise study of some superhypergraph classes. Neutrosophic Sets and Systems,

77:548–593, 2024.
[42] Takaaki Fujita and Florentin Smarandache. A review of the hierarchy of plithogenic, neutrosophic, and fuzzy graphs: Survey

and applications. In Advancing Uncertain Combinatorics through Graphization, Hyperization, and Uncertainization: Fuzzy,
Neutrosophic, Soft, Rough, and Beyond (Second Volume). Biblio Publishing, 2024.

[43] Takaaki Fujita and Florentin Smarandache. Study for general plithogenic soft expert graphs. Plithogenic Logic and Computation,
2:107–121, 2024.

[44] Irene S Gabashvili, Rajendra K Agrawal, Christian MT Spahn, Robert A Grassucci, Dmitri I Svergun, Joachim Frank, and Pawel
Penczek. Solution structure of the e. coli 70s ribosome at 11.5 å resolution. Cell, 100(5):537–549, 2000.
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[112] Vicenç Torra and Yasuo Narukawa. On hesitant fuzzy sets and decision. In 2009 IEEE international conference on fuzzy systems,

pages 1378–1382. IEEE, 2009.
[113] Alejandro Tovar-Méndez, Jan A Miernyk, and Douglas D Randall. Regulation of pyruvate dehydrogenase complex activity in plant

cells. European journal of biochemistry, 270(6):1043–1049, 2003.
[114] Nenad Trinajstic. Chemical graph theory. CRC press, 2018.
[115] Matthew G Vander Heiden, Jason W Locasale, Kenneth D Swanson, Hadar Sharfi, Greg J Heffron, Daniel Amador-Noguez,

Heather R Christofk, Gerhard Wagner, Joshua D Rabinowitz, John M Asara, et al. Evidence for an alternative glycolytic pathway
in rapidly proliferating cells. Science, 329(5998):1492–1499, 2010.

[116] Verónica H. Villena and Dennis A. Gioia. On the riskiness of lower-tier suppliers: Managing sustainability in supply networks.
Journal of Operations Management, 2018.

[117] Souzana Vougioukli. Helix hyperoperation in teaching research. Science & Philosophy, 8(2):157–163, 2020.
[118] Souzana Vougioukli. Hyperoperations defined on sets of s -helix matrices. 2020.
[119] Souzana Vougioukli. Helix-hyperoperations on lie-santilli admissibility. Algebras Groups and Geometries, 2023.
[120] Stephan Wagner and Hua Wang. Introduction to chemical graph theory. Chapman and Hall/CRC, 2018.
[121] Xiaorong Wang, Chi-Fen Chen, Peter R Baker, Phang-lang Chen, Peter Kaiser, and Lan Huang. Mass spectrometric characterization

of the affinity-purified human 26s proteasome complex. Biochemistry, 46(11):3553–3565, 2007.
[122] Ping Wee and Zhixiang Wang. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers, 9(5):52, 2017.
[123] Alan Wells. Egf receptor. The international journal of biochemistry & cell biology, 31(6):637–643, 1999.
[124] Rebecca Willis. The role of national politicians in global climate governance. Environment and Planning E: Nature and Space,

3:885 – 903, 2020.
[125] Rui Xu and Cun-Quan Zhang. On flows in bidirected graphs. Discrete mathematics, 299(1-3):335–343, 2005.
[126] P Yiarayong. Some weighted aggregation operators of quadripartitioned single-valued trapezoidal neutrosophic sets and their

multi-criteria group decision-making method for developing green supplier selection criteria. OPSEARCH, pages 1–55, 2024.
[127] Lotfi A Zadeh. Fuzzy sets. Information and control, 8(3):338–353, 1965.
[128] Lotfi A Zadeh. Fuzzy logic, neural networks, and soft computing. In Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by

Lotfi A Zadeh, pages 775–782. World Scientific, 1996.

23

UNDER PEER REVIEW


	1 Introduction
	1.1 Graph, HyperGraph, and SuperHyperGraph
	1.2 Graph and Networks
	1.3 Our Contributions

	2 Preliminaries and Definitions
	2.1 Classical Structure, Hyperstructure, and  n -Superhyperstructure
	2.2 SuperHyperGraph
	2.3 Molecular Interaction Networks

	3 Molecular Interaction HyperNetwork
	4 Molecular Interaction n-SuperHyperNetwork
	5 Conclusion and Future Works

