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Abstract

Graph theory is a branch of mathematics focused on the study of networks, where
nodes (called vertices) are connected by links (called edges). A hypergraph general-
izes the classical notion of a graph by allowing edges—called hyperedges—to connect
more than two vertices simultaneously. A superhypergraph further extends this con-
cept by introducing recursively nested powerset layers, thereby enabling hierarchical
and self-referential relationships among hyperedges. Graphs are widely used to repre-
sent complex networks. In this context, hypernetworks and superhypernetworks serve
as natural generalizations of graphs, capturing higher-order and hierarchical relation-
ships, respectively.

Such graph-based frameworks are also extensively applied in fields such as biology
and biochemistry. A Molecular Interaction Network models biochemical interactions
among molecules, where nodes represent molecular entities and edges represent pair-
wise interactions or reactions.

In this paper, we extend the concept of Molecular Interaction Networks by proposing
two new frameworks: the Molecular Interaction HyperNetwork and the Molecular In-
teraction SuperHyperNetwork, both grounded in the structures of hypernetworks and
superhypernetworks. These frameworks offer new insights into multi-scale biochemi-
cal systems, with potential applications in drug target identification and pathway analy-
sis. We hope that future research will further explore the mathematical, biological, and
computational aspects of the Molecular Interaction HyperNetwork and the Molecular
Interaction SuperHyperNetwork.

Keywords: Superhypergraph, Hypergraph, Molecular Interaction Networks, HyperNet-
works, SuperHyperNetworks

1 Introduction

1.1 Theories of Graphs, Hypergraphs, and Superhypergraphs

Graph theory is a branch of mathematics focused on the study of networks, where
nodes (called vertices) are connected by links (called edges) [41,/42]. Graphs have
been extensively studied and applied in a wide range of disciplines, including social
science, artificial intelligence, graph neural networks (GNNs), and general network
analysis (cf. [SOL81,/94]).

Mathematical structures can often be extended into hyperstructures and superhypery
structures by utilizing the power set and n-th iterated powerset constructions [63}/185]
186}/189]]. These generalized frameworks are particularly useful for modeling hierar-
chical and multi-layered systems in both theoretical and practical contexts.

When applied to graph theory, these extensions give rise to two important generaliza-
tions: the hypergraph [25,29,/49,149]] and the superhypergraph [60,(77,[183,/184]. A
hypergraph allows each edge—called a hyperedge—to connect more than two vertices
simultaneously, capturing complex many-to-many relationships. A superhypereraph



1.3 Graph in biology and biochemistry

Graph-based and network-based approaches have also played a central role in many
studies in biology [[17,/45,/150], chemistry [82,201L208]], biophysics [[194]], bioelectric-
ity [86], bioinformatics [[104},221}227]], and biochemistry [[197]. Examples of graph
concepts in biology and biochemistry include the Molecular Graph [48] 100} [136],
Protein—Protein Interaction (PPI) Graph [30L/128,|196], Signal Transduction Network
[8OL174,211]], Phylogenetic Tree [[108l120,/148|, and RNA Secondary Structure Graph
[[124}|132]. Hypergraphs are likewise employed in fields such as biology and biochem-
istry [38,/49,541|117]]. As such, graph-based models are widely utilized across various
domains in the life sciences.

In this paper, we focus on a class of graph-based models known as Molecular Inter-
action Networks, which describe biochemical interactions among molecules. In such
models, nodes represent molecular entities (e.g., proteins, genes, or metabolites), and
edges represent pairwise interactions or chemical reactions [[14}/85L/110}133].

1.4 Our Contributions

This paper introduces two novel generalizations: the Molecular Interaction HyperNet-
work and the Molecular Interaction SuperHyperNetwork, which extend the structure
of Molecular Interaction Networks using the frameworks of hypernetworks and su-
perhypernetworks, respectively. We present their formal definitions, investigate their
mathematical properties, and provide concrete real-world examples. These newly pro-
posed models are intended to support future research on hierarchical and multi-scale
representations of molecular interaction networks.

1.5 Structure of this paper

This subsection outlines the structure of the paper. Section 2 presents the Preliminar-
ies and Definitions, including foundational concepts such as Classical Structure, Hy-
perstructure, and n-Superhyperstructure, as well as Hypergraph, SuperHyperGraph,
and Molecular Interaction Networks. Section 3 introduces and defines Molecular In-
teraction HyperNetworks, while Section 4 focuses on the definition and analysis of
Molecular Interaction SuperHyperNetworks. For each, concrete examples and related
mathematical theorems are discussed. Finally, Section 5 provides the conclusion of the
paper along with directions for future work.
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2 Preliminaries and Definitions

This section provides an overview of the fundamental concepts and definitions essen-
tial for the discussions presented in this paper. For the sake of simplicity, all graphs
considered herein are assumed to be simple, undirected, and finite, unless stated other-
wise.

2.1 Classical Structure, Hyperstructure, and n-Superhyperstructure

A Classical Structure represents a general mathematical concept, while a Hyperstruc-
ture can be defined using the power set, and an n-Superhyperstructure can be defined
using the n-th powerset [[1,/64}(72L/188]]. Intuitively, the n-th powerset is a repeated
application of the powerset operation [12,/64,/65}/187]. Relevant definitions and simple
examples are provided below.

Definition 2.1 (Set). [103}/116}/134]] A set is a well-defined collection of distinct ob-
jects, called elements or members.

Definition 2.2 (Subset). [103}116}/134]] Let A and B be sets. We say that A is a subset
of B, written A C B, if every element of A is also an element of B; that is,

ACB <= Vax(xe€A=x€B).

Definition 2.3 (Base Set). [61]] A base set S is the foundational set from which com-
plex structures such as powersets and hyperstructures are derived. It is formally defined
as:

S = {z | = is an element within a specified domain}.

All elements in constructs like P(.S) or P,,(S) originate from the elements of .S.

Definition 2.4 (Powerset). [61]] The powerser of a set S, denoted P(S), is the collec-
tion of all possible subsets of .S, including both the empty set and S itself. Formally, it

is expressed as:
P(S)={A| AC S}.

Example 2.5 (Post-translational Modification Combinations). Post-translational mod-
ifications are chemical changes made to proteins after synthesis, altering their activity,
localization, stability, or interaction with other molecules (cf. [[127,142}172[]). Consider
a protein domain that can undergo three types of post-translational modifications:

S ={P, Ac, Me},

where P = phosphorylation, Ac = acetylation, Me = methylation. Then the powerset
P(S) enumerates all possible modification states:

P(S) = {0, {P}, {Ac}, {Me}, {P,Ac}, {P,Me}, {Ac,Me}, {P,Ac,Me}}.



[left=lem]®: unmodified protein. {P}, {Ac}, {Me}: single modification states.
{P, Ac}, {P,Me}, {Ac,Me}: dual-modification states. {P,Ac,Me}: fully
modified protein.

This enumeration guides the design of experiments probing cross-talk between differ-
ent modifications and their combinatorial effects on protein function.

Definition 2.6 (n-th Powerset). (cf. [[61},66L/188])

The n-th powerset of a set H, denoted P, (H), is defined iteratively, starting with the
standard powerset. The recursive construction is given by:

P\(H)=P(H), P,+1(H)=P(P,(H)), forn>1.
Similarly, the n-th non-empty powerset, denoted P (H), is defined recursively as:
Py(H) = P*(H), Py, (H) = P*(Pi(H)).
Here, P*(H) represents the powerset of H with the empty set removed.

Example 2.7 (Gene Regulatory Programs via n-th Powersets). In eukaryotic gene reg-
ulation [43]230], a gene’s expression is controlled by combinations of regulatory ele-
ments such as promoters Pr, enhancers En, and silencers Si. Let

H = {Pr, En, Si}.

First powerset P! (H): all subsets of regulatory elements regulating a single gene:

PYH)=P(H) ={0,{Pr}, {En}, {Si}, {Pr,En}, {Pr,Si}, {En, Si}, {Pr, En, Si} }.

Second powerset P?(H): sets of regulatory programs for multiple genes. For in-
stance, choose two programs:

Ay ={Pr}, Az ={Pr,En}, Az = {En,Si}.

Then
P*(H)=P(P'(H)), M ={A1,A}, My={Ay As}.

Third powerset P(H ): meta-programs across cell types or tissues:
P3(H) = P(P*(H)), T ={M, M},

where T' might represent a tissue-specific regulatory program comprising two distinct
gene-level programs M; and Mo.



This hierarchy

Regulatory Elements — P'(H) — P*(H) — P3(H)
S~—— ~——

H Gene Programs Multi-gene Programs Tissue-level Programs

illustrates how iterated powersets capture increasingly higher-order combinations in
gene regulatory networks.

Definition 2.8 (Classical Structure). (cf. [181,188]]) A Classical Structure is a mathe-
matical framework defined on a non-empty set H, equipped with one or more Classical
Operations that satisfy specified Classical Axioms. Specifically:

A Classical Operation is a function of the form:
#o: H™ — H,

where m > 1 is a positive integer, and H™ denotes the m-fold Cartesian product of
H. Common examples include addition and multiplication in algebraic structures such
as groups, rings, and fields.

Definition 2.9 (Hyperoperation). (cf. [[173,2055207]) A hyperoperation is a general-
ization of a binary operation where the result of combining two elements is a set, not a
single element. Formally, for a set .S, a hyperoperation o is defined as:

0: 8 xS —=P(S),
where P(.5) is the powerset of S.

Definition 2.10 (Hyperstructure). (cf. [61,/181,/188|]) A Hyperstructure extends the
notion of a Classical Structure by operating on the powerset of a base set. Formally, it
is defined as:

H = (P(5),0),

where S is the base set, P(.5) is the powerset of .S, and o is an operation defined on
subsets of P(S). Hyperstructures allow for generalized operations that can apply to
collections of elements rather than single elements.

Example 2.11 (Metabolic Pathway Hyperstructure of Glycolysis). A metabolic path-
way is a series of enzyme-catalyzed biochemical reactions that convert substrates into
products, sustaining cellular processes and energy flow (cf. [31,|146]). In biochem-
istry, metabolic pathways involve sequences of enzyme-catalyzed reactions converting
substrates into products. We model part of the glycolysis pathway as a hyperstructure

H = (P(9), o),
where the base set of metabolites is
S = {Glucose, ATP, ADP, Glucose-6-Phosphate, Fructose-6-Phosphate, Fructose-1, 6-Bisphosphate},

and the hyperoperation
0:8%x 8 — P(9)



is defined on single metabolites by the stoichiometry of key reactions:

Glucose o ATP = {Glucose-6-Phosphate, ADP},
Fructose-6-Phosphate o ATP = {Fructose-1, 6-Bisphosphate, ADP},

xoy={x,y} ifno direct reaction occurs.

We extend o to mixtures by

AoB= U (aob), A,BCS.
acA, beB

Concrete computations:
{Glucose} o {ATP} = {Glucose-6-Phosphate, ADP},
{Glucose, ATP} o {Fructose-6-Phosphate, ATP}
= (Glucose o F‘ructose—6—Phosphate) U (ATP ) ATP) u...

= {Glucose, Fructose-6-Phosphate, . .. }.

Thus H captures the many-to-many relationships of metabolites in glycolysis: com-
bining substrates yields all possible products, and mixing mixtures yields the union of
individual reaction outcomes, modeling both single-step and multi-step biochemical
processes within one algebraic framework.

Definition 2.12 (SuperHyperOperations). (cf. [188]) Let H be a non-empty set, and
let P(H) denote the powerset of H. The n-th powerset P™(H) is defined recursively
as follows:

PU(H)=H, P"'(H)=P(P"H)), fork>0.

A SuperHyperOperation of order (m,n) is an m-ary operation:
omm) . H™ s P (H),

where P (H) represents the n-th powerset of H, either excluding or including the
empty set, depending on the type of operation:

* If the codomain is PI*(H) excluding the empty set, it is called a classical-type
(m, n)-SuperHyperOperation.

* If the codomain is P™(H) including the empty set, it is called a Neutrosophic
(m, n)-SuperHyperOperation.

These SuperHyperOperations are higher-order generalizations of hyperoperations, cap-
turing multi-level complexity through the construction of n-th powersets.



Definition 2.13 (n-Superhyperstructure). (cf. [62,188]]) An n-Superhyperstructure fur-
ther generalizes a Hyperstructure by incorporating the n-th powerset of a base set. It is
formally described as:

SH, = (Pn(S),0),

where S is the base set, P,,(S) is the n-th powerset of S, and o represents an opera-
tion defined on elements of P, (.S). This iterative framework allows for increasingly
hierarchical and complex representations of relationships within the base set.

Example 2.14 (2-Superhyperstructure of Protein Complex Assembly). Protein com-
plex assembly is the biological process where multiple protein subunits interact and
bind to form a functional multi-protein complex (cf. [[109,{139,{153])). In cellular bio-
chemistry [23]], many functional units arise by hierarchical assembly of protein sub-
units.

* Base set S of protein subunits:

S = {Actin, Myosin, Tropomyosin, Troponin}.

* First-level complexes P*(S):
Cy = {Actin, Myosin} (actomyosin),
C3 = {Actin, Tropomyosin, Troponin} (thin filament regulatory unit),
C3 = {Myosin, Troponin} (myosin-troponin interaction).
+ Second-level supervertices P2(S):

Define the superhyperoperation
*: P2(S) x P*(S) — P(P*(9))

by
XxY ={XUY, XNY, XAY}, X,Y CP*S),

where X AY is the symmetric difference. For example,

Ml*Mg = {{01702,03}, {01}7 {02703}}

Thus (P2 (9), *) is a 2-Superhyperstructure modeling the hierarchical assembly of pro-
tein complexes—first forming binary and ternary subcomplexes, then organizing them
into larger functional modules such as the sarcomeric apparatus in muscle fibers.



2.2 SuperHyperGraph

In classical graph theory, a hypergraph generalizes the notion of a standard graph
by allowing each edge—known as a hyperedge—to connect more than two vertices.
This generalized framework enables the representation of complex, higher-order re-
lationships among elements, making it particularly valuable across various scientific
domains [25,(92,193]]. The literature recognizes several well-established extensions
of HyperGraphs, including Directed HyperGraphs [9,/170}219|], Fuzzy HyperGraphs
[[149177,210]], Regular HyperGraphs [44,46], Soft HyperGraphs [10,1588]], and Neu-
trosophic HyperGraphs [8}|11}[137[140]. A SuperHyperGraph further extends the con-
cept of a hypergraph by incorporating recursively defined powerset structures into the
classical formulation. This advanced model captures hierarchical and self-referential
relationships within data and has recently been introduced and actively explored in the
literature [33,591|66}/162]]. Related concepts include the Fuzzy SuperHyperGraph [98]]
and the Plithogenic SuperHyperGraph [113}|143}[147}|191]], which further expand the
model to handle uncertainty and multi-valued logic in hierarchical structures.

The concepts of HyperGraph, SuperHyperGraph, along with their related extensions
and concrete examples, are presented below.

Definition 2.15 (Graph). [35,41}[52203]] A graph is a mathematical structure consist-
ing of a set of vertices and a set of edges, where each edge connects a pair of distinct
vertices.

Definition 2.16 (Subgraph). [35//41] Let G = (V, F) be a graph. A subgraph of G is
a graph G’ = (V' E') such that

v'cV, E'C{{u,v}€E|uveV'}.
In other words, G’ is obtained by selecting a subset of vertices and retaining only those

edges of G whose endpoints both lie in V.

Definition 2.17 (Hypergraph). [25,29] A hypergraph H = (V(H), E(H)) consists
of:

* A nonempty set V' (H) of vertices.

* A set E(H) of hyperedges, where each hyperedge is a nonempty subset of
V (H), thereby allowing connections among multiple vertices.

Unlike standard graphs, hypergraphs are well-suited to represent higher-order relation-
ships. In this paper, we restrict ourselves to the case where both V' (H) and E(H) are
finite.

Definition 2.18 (Subhypergraph). (cf. [25,[29]) Let H = (V, E) be a hypergraph. A
subhypergraph of H is a hypergraph H' = (V’, E') such that

V' Cv, E'g{e€E|e§V’}.



Equivalently, H' is obtained by choosing a subset of vertices and keeping only those
hyperedges of H that lie entirely within V.

Example 2.19 (Citric Acid Cycle as a Hypergraph). The Citric Acid Cycle is a central
metabolic pathway that generates energy by oxidizing acetyl-CoA into carbon dioxide
and high-energy molecules (cf. [6}/157,209,[217]). Model the key steps of the citric
acid (TCA) cycle as a hypergraph H = (V, E):

Vertices (metabolites):

V = { Acetyl-CoA, Oxaloacetate, Citrate, Isocitrate, a-KG, Succinate, Fumarate, Malate }.

Hyperedges (enzyme-catalyzed reactions):

e1 = {Acetyl-CoA, Oxaloacetate, Citrate},
es = {Citrate, Isocitrate},

es = {Isocitrate, a-KG},

eq = {a-KG, Succinate},

es = {Succinate, Fumarate},

e¢ = {Fumarate, Malate},

er = {Malate, Oxaloacetate}.

Here each hyperedge e; connects all substrates and products of the ¢-th step simultane-
ously, capturing the stoichiometry of that reaction.

Interpretation:

[left=1em]e; (citrate synthase) consumes Acetyl-CoA + Oxaloacetate to form
Citrate. ey (a-ketoglutarate dehydrogenase) transforms a-KG into Succinate
(via intermediates), etc. Representing each reaction as a hyperedge highlights
multi-component interactions in one step, unlike a simple pairwise graph.

This hypergraph formalism aids pathway analysis by recognizing reactions involving
more than two metabolites as single cohesive units.

Definition 2.20 (n-SuperHyperGraph). [183}/184]

Let V) be a finite base set of vertices. For each integer k& > 0, define the iterative
powerset by
P(Vo) = Vo, P (Vo) = P(P*(V0)),
where P(-) denotes the usual powerset operation. An n-SuperHyperGraph is then a
pair
SHT™ = (V, E),
with
VCP*(Vy) and E CP"(Vp).

Each element of V' is called an n-supervertex and each element of E an n-superedge.



Example 2.21 (Global Climate Research Consortia as a 2-SuperHyperGraph). Global
climate refers to the long-term patterns and averages of temperature, humidity, wind,
and precipitation across the entire Earth(cf. [36,/121,218]]). Let the base set of re-
searchers be

Vo = {Alice, Bob, Carol, Dave}.

First-level research groups (1-supervertices in P*(V;)) are:
R, = {Alice, Bob}, Ry = {Bob, Carol}, Rz = {Carol, Dave}.
Second-level consortia (2-supervertices in P2 (Vo)) are:
Co = {R1, R2}, Cs={R2, R3}.
We then form the 2-SuperHyperGraph
SHT® = (V,E)

by
V:{COM 05}7 E:{{COUC,@}}'

Here:

* Each 2-supervertex C, and Cg represents a research consortium composed of
overlapping labs.

* The single 2-superedge {C.,, C3} models a joint international summit bringing
together both consortia.

» This structure captures three hierarchical levels: individual researchers — lab
groups — consortia — inter-consortium collaboration.

Example 2.22 (2-SuperHyperGraph of Protein Complex Hierarchies). Protein com-
plex hierarchy refers to the multi-level organization of proteins into subunits, com-
plexes, and higher-order assemblies with distinct biological functions (cf. [[144}/145|
169]). In muscle contraction, proteins assemble hierarchically into complexes and
higher-order modules. We model this as a 2-SuperHyperGraph:

Base set of proteins:

Vo = {Myosinll, Actin, Tropomyosin, Troponin}.

First-level complexes (P! (1p)):

C1 = {Myosinll, Actin}, C5 = {Actin, Tropomyosin, Troponin}, C5 = {Myosinll, Troponin}.
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Second-level supervertices (P2(1})):

My ={C1, Cao}, My ={Cy, Cs}, Ms={Cy, Cs}.

Define the 2-SuperHyperGraph
SHT® = (V, E),
with
V ={My, My, Ms}, E={{My, My}, {Ms, Ms}}.

Interpretation:

[left=1em]Each M; is a 2-supervertex representing a higher-order module of pro-
tein complexes (e.g. thick vs. thin filament assemblies). Each {M;, M} € E is
a 2-superedge linking modules that coexist or interact within the sarcomeric unit
during contraction.

Thus (P?(Vy), E) captures the hierarchical organization from individual proteins to
complexes and then to functional modules in muscle biochemistry.

Example 2.23 (Corporate Hierarchy as a 3-SuperHyperGraph). Let the base set of
employees be
Vo = {Alice, Bob, Carol, Dave, Eve, Frank}.

First-level committees (1-supervertices in P* (Vb)) might be:

Cy = {Alice, Bob}, (5 = {Carol, Dave}, C3 = {Eve, Frank}, C; = {Bob, Carol}.

Second-level departments (2-supervertices in P2(V;)) could group these committees
into:
DSales = {Cla 04}7 DEngineering = {027 CS}

Third-level divisions (3-supervertices in P3(V;)) then organize departments into:

UCommercial - {DSales } P UTechnical = {DEngineering } .

We form the 3-SuperHyperGraph
SHT® = (V, E)
by setting
V' = { Ucommercial; UTechnical } E = {{ Ucommercial, UTechnicat } } -

Interpretation:

11
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» P%(V}): individual employees.

o PL(V}): cross-functional committees C;.

s P2(Vp): departments Dsgges and Dengincering-

« P3(Vp): top-level divisions Ucommercial a1d Urechnical-

* The single 3-superedge { Ucommercial; UTechnical } models a company-wide strategic

initiative linking both divisions.

This example illustrates how a 3-SuperHyperGraph captures four hierarchical lay-
ers—employees, committees, departments, divisions—and their inter-division collab-
oration in one unified structure.

2.3 Molecular Interaction Networks

Molecular interaction networks represent biochemical relationships, where nodes cor-
respond to molecules (such as proteins, genes, or metabolites), and edges denote phys-
ical or functional interactions among them [40,|{141}/152[159]. Due to their biochem-
ical significance, molecular interaction networks have been the subject of extensive
research across various disciplines [[107./135/[215|[216]]. The formal definition of molec-
ular interaction networks is provided below.

Definition 2.24 (Network). (cf. [47,171]]) A network (or graph) is an ordered triple
N = (V, E, w)

where

* V is a nonempty finite set of vertices (or nodes);

« EC {{u,v} | u,v €V, u# v} is the set of undirected edges, each joining two
distinct vertices;

* w: ' = Ry is a weight function assigning a nonnegative real weight to each
edge (omitted if unweighted).

If edges are directed, one instead writes
N:(V,A,w)7 ACV XV,

and each (u,v) € A is an arc from u to v. In either case, one may also include an
optional vertex-labeling ¢y : V' — Ly to record vertex types.

12
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Definition 2.25 (Molecular Interaction Network). (cf. [40,(141,[152,/159]) A molecular
interaction network is a labeled hypergraph

N = (V7 I7 gV; EI)

where

» V is a finite set of molecular entities (e.g. proteins, metabolites, genes);

Z C P(V)\ {0} is a set of interactions, each interaction I € T being the sub-
set of entities participating simultaneously in a biochemical event (e.g. complex
formation [[180]], enzymatic reaction [55], regulatory effect);

e ly:V — Ly is a vertex-labeling function assigning to each entity its type or
identifier (e.g. “kinase”, “ligand”, “metabolite”);

e {7: T — Lz is an interaction-labeling function assigning to each interaction its

EE RT3

category or attributes (e.g. “binding”, “phosphorylation”, confidence score).

Optionally, one may equip N with a weight function w: Z — R to record interaction
strengths or probabilities.

Example 2.26 (Yeast Protein—Protein Interaction Network). Yeast protein—protein in-
teraction refers to physical or functional associations between yeast proteins, essential
for cellular processes and regulatory networks (cf. [21}34,99])). Let

V = {P53, MDM2, ATM, CHK2},

T = {{P53,MDM2}, {ATM, P53}, {ATM, CHK2}, {CHK2, P53} }.

Define
by (x) = “protein”  (Vx € V),

¢7({P53, MDM2}) = “ubiquitination”, ¢z({ATM,P53}) = “phosphorylation”,
z({ATM, CHK2}) = “activation”, ¢z({CHK2,P53}) = “phosphorylation”.
If we include confidence scores:

w({P53, MDM2}) = 0.95, w({ATM, P53}) = 0.80, w({ATM, CHK2}) = 0.85, w({CHK2, P53}) = 0.90.

Then N = (V,Z, ¢y, ¢z, w) models a small yeast protein—protein interaction network,
capturing both the participants and the types and strengths of their interactions.
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3 Molecular Interaction HyperNetwork

A Molecular Interaction HyperNetwork is a mathematical framework developed to rep-
resent complex biochemical systems, where interactions may involve multiple molec-
ular entities simultaneously. We now present the formal definition of a Molecular In-
teraction HyperNetwork.

Definition 3.1 (Hypernetwork). A hypernetwork is an ordered triple
H=(V, & w)

where

* V is a nonempty finite set of nodes;

o £ CP(V)\{0} is the set of hyperedges, each hyperedge e € £ being a nonempty
subset of nodes (allowing multi-node interactions);

* w: & = Ry¢ is a weight or attribute function on hyperedges (omitted if un-
weighted).

A directed hypernetwork may be defined by replacing £ C P (V') with a set of ordered
tuples of nodes or by equipping each e € £ with a head-tail partition. One can further
add a node-labeling ¢y, : V — Ly and a hyperedge-labeling l¢ : £ — Lg to record
types or properties.

Definition 3.2 (Molecular Interaction HyperNetwork). A molecular interaction hyper-
network is a tuple
H = (Vvv Ia éV? gl-v ’LU)

where

e V is a finite set of molecular entities (e.g. proteins, metabolites, genes);

Z CP(V)\{0} is aset of interaction hyperedges, each I € T being a nonempty
subset of entities participating in a single biochemical event (e.g. complex for-
mation or multi-enzyme reaction);

* ly : V — Ly labels each node by its type or identifier (e.g. “kinase”, “ligand”);

» {7 : T — Lz labels each hyperedge by its interaction category (e.g. “binding”,
“phosphorylation cascade”);

* w:Z — R>( assigns a nonnegative weight or confidence score to each interac-
tion.
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Example 3.3 (Eukaryotic DNA Replication Pre-Initiation as a Molecular Interaction
HyperNetwork). DNA replication is the biological process of copying a cell’s DNA,
producing two identical DNA molecules before cell division (cf. [24,(126,/129]). Con-
sider the assembly and activation of the eukaryotic DNA replication pre-initiation com-
plex. Let

V = {ORC, Cdc6, Cdt1, MCM2-7, CDK2, DDK}

be the set of molecular entities: the origin recognition complex (ORC), loading factors
Cdc6 and Cdtl, the MCM?2-7 helicase, and the two kinases CDK2 and DDK. Define
two interaction hyperedges:

Z = { Doading, lactivation }
where
Toading = {ORC, Cdc6, Cdtl, MCM2-7},  Iactivation = {MCM2-7, CDK2, DDK}.
Label each node by its functional class:

“origin-binding factor”, x = ORC,

0y () “helicase loader”, x = Cdc6, Cdt1,
xTr) =
v “replicative helicase”, r = MCM2-7,
“kinase”, x = CDK2,DDK.

Label each hyperedge by its biological process:
L1 (oading) = “MCM2-7 helicase loading”,  £7(Iactivation) = “helicase activation by phosphorylation”.
Optionally, assign confidence scores based on experimental evidence:

w(loading) = 0.92,  w(lactivation) = 0.88.

* lioading models the coordinated loading of the MCM2-7 helicase onto origin
DNA by ORC, Cdc6, and Cdtl.

* I, ctivation captures the subsequent activation of the loaded helicase by CDK2
and DDK phosphorylation.

This hypernetwork illustrates a multi-step, multi-protein process in which hyperedges
represent higher-order interactions essential for DNA replication initiation.

Example 3.4 (Human Hemoglobin Interaction HyperNetwork). Human hemoglobin
is a protein in red blood cells that transports oxygen from the lungs to body tissues and
organs(cf. [106}/112])). Let

V ={a1, oz, B1, B2, Oz}
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be the set of molecular entities (four globin subunits and oxygen). Define the set of
interaction hyperedges

T = {Etetramer7 Eo, }a

where
Etetramer = {alv Qg, 517 ﬂQ}v E02 = {ah a2, 517 ﬁQa 02}

The labeling functions are

Ly (a;) = “globin subunit”, ¢y (5;) = “globin subunit”, ¢, (O2) = “oxygen molecule”,

13

07(Eftetramer) = “hemoglobin tetramer assembly”, ¢z(Ep,) = “oxygen binding”.
Optionally, assign confidence scores:

w(Etetramer) = 1007 'LU(EO2) = 0.98.

Here:

* Fietramer Captures the multi-protein assembly of two « and two 3 chains into
the functional hemoglobin tetramer.

* o, captures the cooperative binding of molecular oxygen to the assembled
tetramer.

This example illustrates a molecular interaction hypernetwork where hyperedges rep-
resent complex biochemical events involving more than two entities.

Example 3.5 (Pyruvate Dehydrogenase Complex as a Molecular Interaction Hyper-
Network). Pyruvate Dehydrogenase Complex is a multi-enzyme system that converts
pyruvate into acetyl-CoA, linking glycolysis to the Krebs cycle [[101}|163}|164}[200].
Let

V = {El, E2, E3, Pyruvate, CoA, NAD"},

be the set of molecular entities: the three enzyme subunits of the pyruvate dehy-
drogenase complex (E1, E2, E3) and its substrates/cofactors (pyruvate, coenzyme A,
NAD™). Define the interaction hyperedges

T = { Lassembly, Icatalysis }
where
Lussembly = {EL,E2,E3},  ILeatalysis = {E1, E2, E3, Pyruvate, CoA,NAD™}.
Label each node by its type:
ty(E1) = by (E2) = fy(E3) = “enzyme subunit”, fy(Pyruvate) = £y, (CoA) = ¢y, (NAD™) = “substrate/cofactor
Label each hyperedge by its biological process:

07 (Lassembly) = “complex assembly”, £z (Icatalysis) = “oxidative decarboxylation reaction”.
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Optionally, assign confidence scores:
w(Iassembly) = 090, w(Icatalysis) = 0.85.

Here:

* I ssembly models the multi-enzyme assembly of E1, E2, and E3 into the func-
tional pyruvate dehydrogenase complex.

* I.atalysis captures the coordinated catalytic event converting pyruvate plus CoA
and NAD™ into acetyl-CoA and NADH.

This example demonstrates a molecular interaction hypernetwork in which hyperedges
represent both the assembly of a multi-protein complex and its multi-participant enzy-
matic reaction.

Theorem 3.6 (Hypernetwork Property). Every molecular interaction hypernetwork
H = (V,Z,ly,lz,w) is a hypernetwork in the sense of Definition [Hypernetwork].

Proof. Let H = (V,Z, 0y, ¢z, w) be a molecular interaction hypernetwork. We verify
each condition of Definition [Hypernetwork]:

1. Node set: By hypothesis, V' is a nonempty finite set of molecular entities.

2. Hyperedge set: By construction,
I < P(V)\{0},
and each I € 7 is a nonempty subset of V.

3. Weight function: The map w: 7 — R assigns a nonnegative real weight or
confidence score to each hyperedge, as required.

4. Optional labels: The node-labeling ¢y : V' — Ly and hyperedge-labeling {7: Z —
L7 are admissible extensions under the general hypernetwork definition and do
not violate any axioms.

Since all structural requirements of a hypernetwork are satisfied,  is indeed a hyper-
network in the sense of Definition [Hypernetwork]. O

Theorem 3.7 (Generalization of Molecular Interaction Networks). Let N = (V, Iy, by, {7, w)
be a molecular interaction network in which every interaction involves at most two en-

tities, i.e. T, C {{u,v} | u,v € V} U {{v} | v € V}. Then N is a special case of the
molecular interaction hypernetwork H obtained by setting I = T,.
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Proof. Let H = (V,Z, 4y, {1, w) be the candidate hypernetwork obtained by taking
T = T,. We check that H satisfies the definition of a molecular interaction hypernet-
work:

1. Node set: By hypothesis, V is a finite set of molecular entities.
2. Hyperedges: Since I C {{u,v} | u,v € V} U{{v} | v € V}, we have
< P(V)\{0},
and each element of 7 is a nonempty subset of V' of cardinality one or two.

3. Node-labeling: The map ¢y : V — Ly is unchanged and labels each entity by
its type or identifier.

4. Hyperedge-labeling: The map ¢7: 7 — Lz likewise remains valid, assigning
each interaction its category.

5. Weight function: The function w: Z — R>( assigns a nonnegative score to each
interaction.

All conditions of Definition [Molecular Interaction HyperNetwork] are thus met. More-
over, because every interaction in Z involves at most two entities, H is precisely the
original molecular interaction network N, viewed as a special case of a hypernetwork
where hyperedges have size < 2. Therefore, N embeds directly into the hypernetwork
framework without alteration. O

Theorem 3.8 (Induced Subhypernetwork). Let H = (V,Z, 0y, {1, w) be a molecular
interaction hypernetwork and let U C V' be any nonempty subset of molecular entities.
Define

Iy ={Ie€Z:1CU},

and restrict labels and weights accordingly. Then
HU] = (U, I, tvlv, lzlz,, wiz,)

is itself a molecular interaction hypernetwork.

Proof. 1. U is nonempty and finite since U C V.

2. Iy C P(U) \ {0} by construction, and each I € Z;; remains a nonempty inter-
action hyperedge.

3. The restricted maps ¢y |y and ¢z |z, still assign valid labels to nodes and hyper-
edges.

18


	In the text, do not use the first person "we".

	In the text, do not use the first person "we".


4. The restricted weight w|z,, remains a nonnegative function on Zy;.

Thus H[U] satisfies all axioms of Definition [Molecular Interaction HyperNetwork].
O

Theorem 3.9 (Primal Graph Theorem). Let H = (V,Z, ¢y, {7, w) be a molecular
interaction hypernetwork. Its primal graph G(H) is the labeled simple graph

G(H) = (‘/’ Ea EV? ¢)
where

E={{u,v} CV:3I€T, {u,v} CI}, ¢({u,v})= max w(l).

I2u,v

Then G(H) is a molecular interaction network.

Proof. * V is finite and nonempty.

* Each {u,v} € F arises from some hyperedge I C V,so E C {{u,v} | u,v €
V1

* The node-labeling ¢y, is unchanged.

* The bond-order labeling ¢/ assigns a nonnegative weight to each edge, taking the
maximum confidence among all hyperedges that contain both u and v.

Hence G(?) meets the definition of a molecular interaction network (a special case of
Definition [Hypernetwork] with hyperedges of size at most two). U

Theorem 3.10 (Coverage of Entities). In any molecular interaction hypernetwork H =
(V,Z, by, bz, w), every entity participates in at least one interaction:

Ur=w

1€l

Proof. By the biochemical semantics of molecular interaction hypernetworks, each
entity v € V must appear in at least one biochemical event I € Z. Formally, if
some v did not appear in any I, then v would be isolated and never part of an inter-
action—contradicting the intended modeling. Therefore the union of all hyperedges
equals V. O
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4 Molecular Interaction n-SuperHyperNetwork

A Molecular Interaction n-SuperHyperNetwork is a mathematical framework designed
to model hierarchical biochemical systems. It captures multi-scale molecular interac-
tions using n-level nested groupings of molecular entities and their associated inter-
action events. We formally define a Molecular Interaction n-SuperHyperNetwork as
follows.

Definition 4.1 (n-SuperHypernetwork). [66] Let V; be a finite base set of nodes.
Define the n-th iterated powerset recursively by

P(Vo) =Vo,  PM(Vo) =P(P*(Vo)) (k= 0).
An n-superhypernetwork is a tuple
N = (V, €, w)

where

o V C P™(Vy) is a finite set of n-supernodes;

*« £ C P*(Vp) is a finite set of n-superedges, each superedge e € & being a
nonempty subset of V;

* w: & — R is an optional weight function assigning a nonnegative real weight
(or confidence) to each superedge.

In other words, both vertices and hyperedges of the network are drawn from the n-th
powerset of the base node set, capturing up to n levels of hierarchical grouping.

Example 4.2 (Disaster Response as a 2-SuperHypernetwork). Disaster response in-
volves coordinated actions by emergency services, governments, and communities to
manage and mitigate the impact of disasters (cf. [27,/111,[156]). Let the base set of
individual responders be

Vo = {Alice, Bob, Carol, Dave}.
First-level collections (teams, in P1(V})) are
T, = {Alice,Bob}, T, = {Bob,Carol}, T3 = {Carol, Dave}.
Second-level collections (task forces, in P?(Vp)) are
Fa={T1,Tx}, Fp={T2Ts}.
Define the 2-superhypernetwork

NE = (V,&,w)
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by
V={FaFg}, &={{Fa Fg}},

with weights
’LU({FA, FB}) = 0.85.

Here:

* Each supernode Fi4, Fp € V is a 2-supernode, representing a pair of overlap-
ping teams working together.

* The single superedge { F4, Fi } connects these two task forces, modeling a joint
multi-team operation.

» The weight 0.85 might represent the confidence or coordination efficiency of that
joint operation.

This construction captures individual responders — teams — task forces and the coop-
erative relations among those forces, all within a single unified 2-superhypernetwork
framework.

Definition 4.3 (Molecular Interaction n-SuperHyperNetwork). Let V[, be a finite set
of molecular entities (e.g. proteins, metabolites, genes). For each integer n > 1, define
the iterated powerset

PO(Vo) = Vo, PHHL(Vo) = P(P* (W) (k> 0).
A molecular interaction n-superHyperNetwork is a quintuple
Hn) — (V("), M, ggl)’ g(In)’ w(n))

where

« V() C P™(Vp) is a finite set of n-supernodes;

« I C P*(Vp) \ {0} is a finite set of n-superedges, each I € T(™) being a
nonempty subset of V' (");

. Zi,n PR 74 (ORI Ly labels each n-supernode by its biological or chemical role
(e.g. “multi-protein complex”);

. 6(1”) : T() — L7 labels each n-superedge by its interaction type (e.g. “cascade”,
“assembly”);

T ACORY R assigns a nonnegative confidence score to each n-superinteraction.
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Example 4.4 (EGF Receptor Signaling Pathway as a Molecular Interaction 2-Super-
HyperNetwork). The EGF receptor signaling pathway is a molecular cascade activated
by epidermal growth factor, regulating cell growth, differentiation, survival, and pro-
liferation through kinase-mediated interactions (cf. [[154,|155/179,213}214]]). Let the
base set of molecular entities be

Vo = { EGF, EGFR, GRB2, SOS, RAS, RAF, MEK, ERK]}.

First-level interaction hyperedges (in P! (V})) are the elementary binding or activation

events:
E, = {EGF, EGFR}, E, = {EGFR, GRB2, SOS},

E; = {SOS, RAS}, E,={RAS, RAF},
Es = {RAF, MEK}, FEs={MEK, ERK}.
These form the set of 1-supernodes:
VW =B\, By, B3, By, Es, Es} C P'(Vo).
Next, group related events into functional modules (2-supernodes in P?(Vj)):
Fr={E\, B}, Fs={FE3 Es}, Fu={E5 Es}.

Thus
V® = {Fg, Fs, F;i} € P2(Vp).

Finally, define the 2-superinteraction hyperedges (in P2(;)) linking these modules:
I® = {{Fg, Fs}, {Fs,Fa}}.

Labeling functions assign biological roles and interaction types:

KE,Q ) (Fr) = “Receptor complex assembly”,

(2 (Fg) = “RAS activation module”,

Eg ) (Fpr) = “MAPK phosphorylation cascade”,

6(1-2 ) ({Fg, Fs}) = “Signal propagation (receptor — RAS)”,
(2 ({Fg, Fs}) = “Signal propagation (RAS — MAPK)”.

Weights (confidence scores) might be
w® ({Fg, Fs}) = 0.95, w®({Fs, Fa}) = 0.90,
reflecting high-confidence pathway activation.

In this 2-SuperHyperNetwork:

* Level 0 (Vp) are individual proteins.
e Level 1 (V) are elementary interactions.

* Level 2 (V(?) are functional modules grouping those interactions.
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* Hyperedges Z(?) connect modules to model the hierarchical signal-transduction

cascade.

Example 4.5 (Glycolytic Pathway as a Molecular Interaction 2-SuperHyperNetwork).
The glycolytic pathway is a series of enzymatic reactions that convert glucose into
pyruvate, generating ATP and NADH in cells (cf. [51,202]). Let the base set of molec-

ular entities be

Vi = { Glucose, ATP, HK, G6P, PGI, F6P, PFK, FBP, ALD, GAP, TPI}.

Define the first-level interaction hyperedges (1-supernodes in P (V})) corresponding

to the elementary enzymatic steps:

E; = {Glucose, HK, ATP},
E, = {G6P, PGI},
Es = {F6P, PFK, ATP},
E4 = {FBP, ALD},
Es = {GAP, TPI}.
Thus
VW = {E|,Ey, Fs, Ey, Es} C PYVp).

Next, group these into two functional modules (2-supernodes in P2 (Vj)):
Fprep = {Ela E2a E3}; Fpayoff = {E4, ES}
Hence

V(Q) = {Fprep7 Fpayoff} g PQ(%)

Finally, define the second-level interaction hyperedges (2-superedges):

I(Q) = { {Fprepa Fpa}’OH}}'

Label each 2-supernode and the 2-superedge:
ZE,Q ) (Fprep) = “Preparatory phase of glycolysis”,
Eg)(Fpayoﬁ‘) = “Payoff phase of glycolysis”,

Optionally, assign a confidence score:

w(2) ({FPFGW Fpayoff}) = 0.90.

In this 2-SuperHyperNetwork:

6(12 ) ({Fprep> Fpayosi }) = “Phase transition in glycolysis”.
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Level 0 (V)): individual metabolites and enzymes.

Level 1 (V(): elementary enzymatic interactions.

Level 2 (V(2)): functional modules (preparatory vs. payoff phase).

* 2-superedge {Fprep, Fpayort } models the hierarchical linkage between the two
phases of glycolysis.

Example 4.6 (EGFR Signaling as a Molecular Interaction 3-SuperHyperNetwork). Let
the base set of entities be

Vo = { EGF, EGFR, GRB2, SOS, RAS, RAF, MEK, ERK, PI3K, AKT, mTOR}.

First-level interaction hyperedges (1-supernodes in P*(V;)) correspond to elementary
binding or activation events:

E, = {EGF,EGFR}, E, = {EGFR,GRB2,S0S},
BEs = {SOS,RAS},  E; = {RAS,RAF},

Es = {RAF,MEK}, Es = {MEK,ERK},

E; = {EGFR,PI3K}, Es = {PI3K, AKT},

Eo = {AKT, mTOR}.

Thus
VW =By, Fy,...,Ey} C PY(Vp).

Second-level modules (2-supernodes in P2(V;)) group these into functional units:
Fr={E\, Ey}, Fy ={FE3,E4,E5,Es}, Fp={FE7 Es, Eo}.

Hence
V® = (Fg, Far, Fp} C P2(Vp).

Third-level supermodules (3-supernodes in P3(V;)) capture overarching signaling branches:
Ul:{FRaF]W}7 UQZ{FR,FP}.

Thus
VO = (U, Uy} C P(Vp).

Define the single 3-superinteraction hyperedge
I® = {{ Uy, Us}}.
Labeling functions record functional roles:
6%}3 )(Ul) = “EGFR—MAPK signaling supermodule”,
0% (U,) = “BEGFR—PI3K-AKT-mTOR supermodule”,
6(13) ({U 1, U 2}) = “Integrated proliferative and survival signaling”.
Optionally, assign a confidence weight:

w® ({Uy, Us}) = 0.95.
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e Level 0 (Vp): individual molecular entities.

o Level 1 (V(): elementary interactions (ligand—receptor, adapter binding, kinase
activation).

e Level 2 (V(Z)): functional modules (receptor complex, MAPK cascade, PI3K-AKT-mTOR
branch).

o Level 3 (V®): supermodules integrating MAPK-driven proliferation and PI3K—AKT-mTOR-
driven survival pathways.

+ Z() captures the coordination between these two critical signaling branches.

Example 4.7 (Insulin Signaling Pathway as a Molecular Interaction 3-SuperHyper-
Network). The insulin signaling pathway regulates glucose uptake and metabolism
by transmitting signals from insulin receptors to intracellular effectors like AKT and
GLUTH4 (cf. [[167,176L/195])). Let the base set of molecular entities be

Vo = {Insulin, IR, IRS, PI3K, PDK1, AKT, AS160, GLUT4}.

First-level interaction hyperedges (1-supernodes in P*(V;)) correspond to elementary
signaling steps:

E; = {Insulin, IR}, E, = {IR, IRS},

E5 = {IRS, PI3K}, E, = {PI3K, PDK1},

Es; = {PDK1, AKT}, E¢ = {AKT, AS160},

E; = {AS160, GLUT4}.
Thus

VW =By, By,...,Er} C PHVp).

Second-level modules (2-supernodes in P2 (Vj)) group these steps into functional blocks:
Fr={E\, Ez}, Fg={Fs E4,Es}, Fr={Es, Er}.

Hence
V@) = {Fg, Fx,Fr} C P*(Vp).

Third-level supermodules (3-supernodes in P3(V;)) capture the two main signaling
arms:

Uy ={Fr,Fx}, U= {Fk,Fr}.

Thus
VO = (U, U} C PP(Vp).

Define the 3-superinteraction hyperedge

I® = {{Uy,Us}}.
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Labeling functions record biological roles:

é%}n’ ) (U1) = “Receptor-proximal and PI3K activation module”,

EEE ) (Usz) = “PI3K-AKT-mediated glucose uptake module”,

Z(IS ) ({U1,Uz}) = “Integrated insulin signaling cascade”.

Optionally, assign a confidence weight:

w® ({Uy,Us}) = 0.92.

e Level 0 (Vp): individual molecules.
o Level 1 (V(1): elementary binding and phosphorylation events.

o Level 2 (V). functional blocks—receptor activation (F'r), kinase cascade
(Fx), and transporter regulation (Fr).

* Level 3 (V®)): supermodules integrating early PI3K activation (U;) and down-
stream GLUT4 translocation (Us).

o 7(3) models the coordination between these two critical modules in the insulin
response.

Example 4.8 (26S Proteasome Complex as a Molecular Interaction 4-SuperHyperNet-
work). The 26S proteasome complex is a large protein structure that degrades ubiqui-
tinated proteins, maintaining cellular protein homeostasis and regulating various bio-
logical processes (cf. [53,/90,/168},212]]). Let the base set of molecular entities be

Vo={A1,..., A7, By,...,B7, Rpty,...,Rpts, Rpny,...,Rpnys},

where A; and B; are the seven a- and 3-subunits of the 20S core particle, Rpt; the six
ATPase subunits, and Rpn,, the thirteen non-ATPase regulatory subunits.

First-level groupings (1-supernodes in P (V})) are the fundamental subcomplexes:

F,={A,..., A}, Fg={By,...,Br},
Froase = {Rpty,...,Rptg}, Fia = {Rpny,...,Rpngs}.

Second-level assemblies (2-supernodes in P?(V})) combine rings into particle sub-
units:

MCP = {Fav FB}7 MRP = {Fba367 Flid}~

Third-level super-assemblies (3-supernodes in P3(V})) isolate each particle:

Score = {MCP}7 Sreg = {MRP}-
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Fourth-level 4-supernodes (in P*(V;)) represent the complete 26S proteasome compo-
nents:

U, = {Score}a Uy = {Sreg}-

Then
VW = (U, U}, IW = {{U:, Us}}.

Labeling functions assign:
Kﬁff)(Ul) = “20S core particle”, Eg‘)(Ug) = “19S regulatory particle”,

6(14) ({U1,Us}) = “268 proteasome assembly”,

and optionally
w® ({Uy, Us}) = 1.00.

Here:

Level 0 (Vj): individual proteasome subunits («, 3, ATPase, non-ATPase).

e Level I (P*): fundamental rings and subcomplexes (a-ring, 3-ring, base, lid).

Level 2 (P?): core particle (Mcp) and regulatory particle (Mgp).

Level 3 (P3): isolated core (Score) and regulatory (Sreg) Super-assemblies.

Level 4 (P*): top-level supernodes (Uy, Us) representing the two principal 26S
components, connected by a single 4-superedge modeling the intact proteasome.

Example 4.9 (E. coli 70S Ribosome as a Molecular Interaction 4-SuperHyperNet-
work). The E. coli 70S ribosome is a molecular machine composed of 30S and 50S
subunits, responsible for protein synthesis during translation (cf. [[2}[3}79,/125]]). Let
the base set of molecular entities be

Vo={S51,...,521, 16StRNA, Lq,..., La3, 23S rRNA, 5S rRNA},

where S; are the 21 small-subunit proteins, L; the 23 large-subunit proteins, and the
three ribosomal RNAs.

Level 1 (1-supernodes in P! (Vo). Group individual components into four functional

clusters:
Fg={S1,...,521}, F.s={16SIRNA},

FL = {Ll, ce 71423}, F’I‘L = {238 I'RNzA7 58 I'RNA}

Level 2 (2-supernodes in PQ(VO)). Assemble each ribosomal subunit’s core compo-
nents:

Msps = {Fs, Frs}, Msos ={Fp, F.p}.
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Level 3 (3-supernodes in P3(V})). Encapsulate each subunit as a single supermodule:

Usos = { Mzos },  Usos = { Msos }-

Level 4 (4-supernodes in P*(1;)). Define the two top-level supernodes and their
interaction:

VW = {Usgs, Usos }, W = {{ Usos, Usos } }-

Labeling functions assign:
fg)(U3os) = “30S ribosomal subunit”, E@(Uws) = “508S ribosomal subunit”,

2(14) ({U305, USOS}) = “70S ribosome assembly”, w(4) ({U3QS7 US()S}) = 1.00.

Level 0 (Vj): individual proteins and rRNAs.

Level 1 (P*): four component clusters (small-subunit proteins, 16S rRNA, large-
subunit proteins, 23S+5S rRNAs).

Level 2 (P?): 30S and 50S subunit assemblies.

Level 3 (P3): supermodules representing each subunit.

Level 4 (P*): top-level supernodes and the superhyperedge capturing the intact
70S ribosome.

This example illustrates how a molecular interaction 4-superHyperNetwork encodes
the hierarchical assembly of the bacterial ribosome from individual proteins and RNAs
up to the fully assembled complex.

Theorem 4.10 (n-SuperHyperNetwork Property). Every molecular interaction n-superHyperNetwork
H ") is an n-superhypernetwork in the sense of Definition [n-SuperHypernetwork].

Proof. By construction:

o V) C P(Vp) and ZW C P™(Vp) \ {0}, so both supernodes and superedges
lie in the n-th iterated powerset of the base set.

* Each element of Z(") is a nonempty subset of V™), matching the requirement
that superedges connect supernodes.

* The weight function w(™) : Z(") — R>q and the labelings é%}b),E(I") are exactly
the optional data permitted in the general n-superhypernetwork framework.
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Hence all axioms of an n-superhypernetwork are satisfied. O

Theorem 4.11 (Generalization of Molecular Interaction HyperNetworks). Let H =
(Vo,Z, 4y, bz, w) be any molecular interaction hypernetwork (the case n = 1). Then
there is a natural identification of H with a molecular interaction 1-superHyperNetwork
HD given by

VO = {{v} [veV}, IW=TCP (W),

with 6(1) v}) = by (v), 6(1) = {7, and wY) = w. Under this identification, HD g
v T
isomorphic to H.
Proof. Define
Dy Vo — VY v (v}, O7:T—7TW

where we simply regard each hyperedge I C Vj as an element of P (V). Then:

1. ®y is a bijection from the original nodes V; onto V1),

2. ®7 is the identity embedding of Z into P (V).

3. Labels are preserved since ZS) ({v}) =4y (v) and E(Il)(l) ={z(I).

4. Weights are preserved: w) (I) = w(I).
Thus the data of  and H) coincide under the natural isomorphism (®y,, ®7). There-
fore every molecular interaction hypernetwork is a special case of a molecular interac-

tion n-superHyperNetwork for n = 1, and the class of n-superHyperNetworks strictly
generalizes that of hypernetworks. O

Theorem 4.12 (Flattening Theorem). Let
H(n) — (V("), ™M, g&f% g(zn)’ w("))

be a molecular interaction n-SuperHyperNetwork over base entities V. For each k
with 0 < k < n, define the k-flattening map

ok PM(Vo) — P FW,), X |V
YeX

iterated k times. Then
HO = (e(V), i (T0), 4 0 i, 687 0 o1, 0™ o0 )

is a well-defined molecular interaction (n — k)-SuperHyperNetwork.

29


	In the text, do not use the first person "we".


Proof. Since V(") C P™(V;) and Z(") C P™(Vy), applying ¢y, yields ¢ (V™) C
Pk(Vp) and ¢ (ZM) € P"*(V,). Each @i (I) remains a nonempty subset of

Pk (V(”)). Composing the label functions and weights with ¢, preserves their codomains

and assignments. Thus all axioms of Definition [Molecular Interaction n-SuperHyperNetwork]
hold for H (%), O

Theorem 4.13 (Entity Coverage Theorem). In any molecular interaction n-SuperHyperNetwork
H(™) over Vi, the union of the fully flattened hyperedges covers the entire base set:

Iez()

Proof. We proceed by induction on n.

Base case n, = 1. Then H(V) is a molecular interaction hypernetwork, and by definition
each base entity participates in at least one interaction hyperedge, so | J;c7z) I = V.

Inductive step. Assume the statement holds for n — 1. Consider (™). Its 1-flattening
H( =D satisfies UJESO](I(n)) ©n—1(J) = V, by the induction hypothesis. Since ¢,, =
n—1 01 and gol(I(”)) = cpl(I(”)), we obtain

U eh= U ¢uar(d) ="

Iez(n) Jep1(ZT(™)
This completes the induction. O

Theorem 4.14 (Connectivity Equivalence). Let H"™) be a molecular interaction n-SuperHyperNetwork,
and let G be its primal graph on n-supernodes. Then G\") is connected if and only
if the primal graph of the fully flattened network, G0, is connected.

Proof. In the primal graph G(™), two distinct n-supernodes u, v are adjacent if they
both lie in some n-superedge I. Under each flattening step ¢, adjacency is preserved:
if {u,v} C I then {pg(u),or(v)} C @i(I). Thus any path in G(™) projects to a
path in G(*~1)_ and iterating down to G©) yields a corresponding path. Conversely,
any path in G(9) lifts to paths at higher levels by inverse images under the . Hence
connectedness is equivalent at all levels. O

Theorem 4.15 (Induced Subnetwork Theorem). Let H™ be a molecular interaction
n-SuperHyperNetwork on Vy, and let B C V{y be a nonempty subset of base entities.
Define

Vi={veV®.yCcPYB)}, T ={IcI™: .I1CP"B)}.

Then
HM[B] = (V, T, £y, 6892, w™)7)

is a molecular interaction n-SuperHyperNetwork on base set B.
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Proof. By construction, V' C P™*(B) and Z' C P™(B) \ {0}. Each induced hyper-
edge I’ remains a nonempty subset of V. The restrictions of 25}1), K(In), w™ to the
smaller sets preserve their codomains and assignments. Therefore all axioms of Defi-

nition [Molecular Interaction n-SuperHyperNetwork] hold for the induced subnetwork
H™(B]. 0

5 Conclusion and Future Works

In this paper, we introduced two novel mathematical frameworks: the Molecular In-
teraction HyperNetwork and the Molecular Interaction SuperHyperNetwork. We pro-
vided formal definitions, illustrative real-world examples, and a preliminary discussion
of their structural and mathematical properties.

As future work, we aim to extend the Molecular Interaction HyperNetwork and Molec-
ular Interaction SuperHyperNetwork by integrating advanced uncertainty-handling frame-
works. These include Fuzzy Sets [223}[225]226]], Intuitionistic Fuzzy Sets [[1820],
Vague Sets [[7,32,84]], Rough Sets [[165,|/166], HyperRough Sets [67/69,/75]], SuperHy-
perRough Sets [58/71]], Bipolar Fuzzy Sets [5], HyperFuzzy Sets [|57,/119|{193]], Picture
Fuzzy Sets [37,/102], Hesitant Fuzzy Sets [198}[199], Neutrosophic Sets [|182}(192],
Quadripartitioned Neutrosophic Sets [[741|122,222]], and Plithogenic Sets [[63}/78/190].
Building on these extensions, we plan to investigate applications in Al [4,28}(68/76],
linear programming [114}|115,[229], algorithm design [73}/224}228]], neural networks
[95,/105}[131]], and decision-making [83}|158]]. Incorporating these frameworks will
potentially enhance the descriptive power and applicability of our models, especially
for representing complex and hierarchical biochemical systems under various forms of
uncertainty.
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