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Abstract

In a paper of the present author, solutions of inhomogeneous and homogeneous
Heun’s differential equations, are obtained with the aid of nonstandard analysis.
By using the solutions of homogeneous Heun’s differential equations given there,
polynomial solutions of homogeneous Heun’s differential equations are derived
in a form different from those presented in the past .
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1 Introduction

In a series of papers, Morita and Sato [1, 2] and Morita [3, 4, 5, 6] studied the problem of obtaining
solutions of inhomogeneous and homogeneous differential equations by using the Green’s function
and nonstandard analysis.
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In the preceding paper [6], solutions of inhomogeneous and homogeneous Heun’s differential equation
are given.

In [7] and [8], solutions and also polynomial solutions of homogeneous Heun'’s differential equation
are presented .

In the present paper, in Section 3 and 3.1 , polynomial solutions of homogeneous Heun’s differential
equation are obtained by using the solutions of homogeneous Heun’s differential equation given in
[61].

We note that the polynomial solutions presented in this paper are not those given in [7] and [8].

We give here some notations to be used in the following sections. Z is the set of all integers, R and
C are the sets of all real numbers and all complex numbers, respectively, and Z~, = {n € Z | n > a}
and Z«y, ={n € Z | n < b}.

We use () for z € C\Z<1 and k € Z~_1, which denote (2)r =[]} (z +1) = Fﬁf(;’“) fork € Zso
and (z)o = 1 for k = 0.

We use the step function H (t) for t € R, which is equal to 1 if ¢ > 0, and to 0 if ¢ < 0, and hy, which
denotes hy = 1ifk € Z~_1,and hy = 0if k € Z<o.

2 Heun’s Differential Equation

Before writing homogeneous Heun'’s differential equation, we present a related differential equation
given by

2

P(rD¢, yu(t) :={(t — t3)(t — t1)(t - t2)@

st = 10)(6 — 12) 7t~ £2)(¢ — t3) + 2t — 1) (¢ — 12)]
+(a1pit — g2)fu(t) =0, (1)

where t1, t2, t3, 71, V2, 73, @1, $1 and ¢z are constants.
In the preceding paper [6], we used a; 5141 in place of ¢ in this equation, following [7]. Here we use

q2, following [8].

We express Equation (1) as follows:

d? d
p(RDt, t)u(t) = [(Ao + At + A2t2 + A3t3)ﬁ + (Bo + Bit + B2t2)a

+(Co + Crt)ult) = 0, @)
where
Ap = —tstita, A1 =tst1 + tita + tats, Ao = —t3 —t1 —t2, Az =1,
By = vystite + yitats + yatsty, Bi = —73(ti +t2) — y1(t2 + t3) — y2(ts + t1),
Bs=7v34+v1 4+, Co=—q, Ci=apfi. (3)
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Homogeneous Heun’s equation is a special one of Equation (1), in which ¢; = 1, t3 = 0 and 2 =
a1+ 1+ 11—y —s.

As a consequence, homogeneous Heun'’s equation is expressed by the equation:

2

d d
pHe(t, RDt)u( ) [(Alt —+ Azt —+ Agt ) (Bo + Bt + BQtQ)f =+ (Co =+ Clt)}u(t)

dt? dt
2 d? d
= {[t2t = (14 12)8" + '] 5 + [yste + Bit + (o + B + )]
—q2 + a1fittu(t) =0, (4)
where
Bi = —[ys(1 +t2) + 1tz + 2] = —(vst2 + 71tz — 11 + 1+ f + 1) (5)

Comparing Equation (4) with Equation (1.1.1) in [8], variable ¢ and constants ¢z, v1, 72, v3, @1, $1 and
g2 appear in the present paper, in place of z and a, 6, ¢, v, «, 8 and ¢ in [8]. In [7], a8h appears in
place of ¢ in [8].

3 Complementary Solutions

We recall here complementary solutions of Equation (4), by using the solutions given in Section 4
of [6], and then show that special ones of them are polynomial solutions of Equation (4).

In Section 4 of [6], if v3 ¢ Z<1, a complementary solution w(¢) of Equation (4) is expressed in three
ways, as follows:

- k
poZpk tH pokzo ) kk| t2 H(t)—PokZ:Oakt H(t), (6)
where po is any number, and py, for k € Z~ _ satisfy po = 1 and
1
= ———[Pr—1Qr(0) — ha—aPr—2Ri(0)], k € Zso, 7
P tQ(k_lJr%)[Pk 1Qk(0) — hk—2pk—2 R (0)] >0 7)

where Qi (0) and Ry (0) are given by
Qk(0):=Qx(0,0) = [(1 4+ t2)(k —2) = B1](k — 1) + ¢2
=[1+t)k—24+v)—v3—mn+mnte2+ar+B1+1](k—1)+q2, k€ Zso, (8)
Ri(0):=R(0,0) =[[(k—3) + a1+ 81+ 1](k—2) + a151](k — 1)
=k-24+a)k—-2+p)k—-1), keZs:. (9)

Equation (6) shows that P, are related with p, by P, = t5(y3)wpr for k € Z~_;. By using these
relations in Equation (7), we see that P, = 1 and

P = P_1Qk(0) — ta(k — 24 v3)hi—2Pr—2Ri(0), k € Zso. (10)

Equation (6) shows that a,. are related with px, by ax = ﬁk% for k € Z~_;. By using these, we confirm
that ay, satisfy ap = 1 and

ap = %ﬁk = % . qu — 1) ar—1Qr(0) — hp—a(k — 2)! - arp—2Rx(0)].
— m[a;ﬁ&)k(ﬂ) - lhkfzakszk(O)}. (11)
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Equation (11) is given by Equations (8.3)~(8.5) in [7] and by Equations (3.3.1)~(3.3.3¢) in [8].
Theorem 3.1. We choosen € Z~o and puta; = —n+ 1, f1 = —n and

g2=-n[n—14+m+y3)ta—n+1—m]. (12)
By using these in Equations (8) and (9), we obtain R,+1(0) = Rn+2(0) = 0 and Q»+1(0) = 0, and
then by using these in Equation (11), we confirm a,+1 = an+2 = 0. AS a consequence, we have

a; =0 forl € Z~,. When we adopt these values, the solution given by Equation (6) is a polynomial
of degree n.

3.1 Complementary solution, I

In Section 3, we used the solutions given in Section 4 of [6]. We now use those in Section 4.1 of [6].

In Section 4.1 of [6], if vs ¢ Z~0, another complementary solution w(t) of Equation (4) is expressed
in three ways, as follows:

o 1 1yt -
t) = —————C R & YA 3 t*H (¢
u(t) POE pkr(2_73+k) (t) PTG =) kg Opk Cp— (t)

= R (¢ 1= t"H(t), 13
pOZ MikklT(2 - 73+/<) )= P(2 )’ Zak v )

where po is any number, and py, for k € Z~ _ satisfy po = 1 and
1 . -
77 Pr1Qr(l = 73) = hi—2Pr—2Bi(1 = 3)], k€ Z>o, (14)

where Qi (1 — ~3) and R (1 — v3) are given by

Qr(1 —73) =Qr(1 —73,0) = [(1 +t2)(k — 1 —3) — B1|(k — 73) + g2
=[1+t)k-1)—y3—m+mtet+ar+ 1 +1(k—3)+q, k€EZso, (15)
R(1 —3):=Rp(1 —73,0) = [[(k =2 —73) + a1 + B1 + 1(k — 1 — v3) + a1 B1](k — 73)
:(k/’—l—’y:g-f—al)( —1—’Y3+61)(k/’—’}/3), k€Z>1. (16)
Remark 3.1. We see that the second member of Equation (13) is obtained from the second member
of Equation (6), by replacing k by k£ + 1 — 3, where k! = I'(k + 1) is replaced by I'(k + 1 — ~3) and
Pr given by Equation (7) with Equations (8) and (9) is replaced by px given by Equation (14) with
Equations (15) and (16).

Equation (13) shows that Py are related with px by P, = t5(y3)kpx for k € Z~_1. By using these
relations in Equation (14), we see that P, = 1 and

P, = Pklek(l — ’yg) — tz(k — 1)hk,2Pk,2Rk(1 — r)/3), k € Zso. (17)

Equation (13) shows that a, are related with px by ar, =
that a. satisfy ap = 1 and

ka for k € Z~_1. Then we confirm

(2 —1’73)kpk - (2- ’Y13)kt2k [Pr—1Qx(1 = 73) = hr—2pPr—2Bi(1 = 73)]

1 1
= _ 1— —
Fah(h 1= ) (1@l = 70) = 5

ar =

- hkfgakszk(l — ’}/3)], k € Z>op. (18)
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Theorem 3.2. We choosen € Z~o andputa; =3 —n, 1 =~v3 —n—1 and
2= (13—n—1D[n+mn)tz+y—n—ml (19)

By using these in Equations (15), (16) and (18), we obtain R.1+1(1 — v3) = Rnt2(1 — v3) = 0,
Qn+1(1 —73) =0, and an+1 = ant2 = 0. As a consequence, we have a; = 0 forl € Z~,,. When we
adopt these values, the solution given by (13) is a polynomial of degree n, multipied by t* =73,
Remark 3.2. When ~3 = 1, the solution given by (13) agrees with that given by Equation (6).

4 Conclusion

In Sections 3 and 3.1, we obtain two complementary solutions of Heun’s equation. They are expressed
in three formats. The complementary solution in one format is in agreement with a solution presented
in the past, given in [7] and [8].

We show that we can construct a series of polynomial solutions of homogeneous Heun'’s equation, in
Section 3, and a series of solutions of homogeneous Heun’s equation, each of which is a polynomial
multiplied by ¢ =73, in Section 3.1. We note that each of these solutions is a special solution of (4)
given in Section 3 or 3.1.
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