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Existence and Uniqueness of Fixed Point
Results using Compatible Maps of Type (K) in
Generalized Fuzzy Metric Spaces

ABSTRACT

In this manuscript, we state the notion compatible mappings of type (K) in
generalized fuzzy metric spaces (M-FMS) and by considering compatible
self-maps of type (K) we established some common fixed-point (FP) results
in generalized fuzzy metric spaces. These results enhance some of the
previous theorems in the literature. Additionally, some examples are also
demonstrated.
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1. INTRODUCTION

Fixed point theory (FPT) is one of the most expanding fields in pure and applied mathematics.
Many new nonlinear problems have been encountered in various branches of mathematics
and sciences domain. FPT for solving various kind of problems in sense of uniqueness and
existence of solution is very wide and interesting field. The theory of fuzzy set was initially
introduced by Zadeh [16] (1965). Many authors, extend fuzzy set-in different sense like fuzzy
differential operator, fuzzy integral norm and fuzzy metric space (FMS). FMS was initially
defined by Kramosil and Michalek [6] (1975) using t-conorm, further by George and
Veeramani [1] (1994), the modified form of the FMS was given. Jungck [4] (1986), introduced
compatible maps and proved some results in the context of metric space (MS) and in FMS
given by Mishra et al. [8] (1994). Sedghi and Shobe [13] (2006), introduced a new space as
M-FMS (Generalized FMS) and prove some FP results. Pant [9] (1994), established CPT for
map which are non-commutative. Compatible maps of type (A) was firstly given by Jungck et
al. [5] (1993). Pathak et al. [10] (1996), established common FP (CFP) results for compatible
maps of type (P). Many mathematicians gave FP theorems in FMS in different topological
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properties (ref: [2], [11], [14]). Manandhar et al. [7] (2014), in FMS gave some FP results
compatible maps of type (E).

Jha et al. [3] (2014), prove CFP theorems for compatible maps of type (K) in MS, further Rao
and Reddy [11] (2016), extend the work in FMS for compatible maps of type (K).

FPT is a widely extended and understandable concept for research in diverse metric spaces
and generalized FMS for uniqueness and existence of FP results. In a similar manner, in this
paper we extend FP results of Swati et al. [15] (2016), in generalized FMS for compatible of
type (K) and prove FPT for self-map in M-FMS with some examples.

2. Preliminaries

Definition 2.1: [12] A continuous t-norm (t-conorm) is a binary operation &:[0,1]?> - [0,1]
which satisfies the following conditions for all »,, b,, b3, d, € [0,1]:

(T1) Sis continuous, commutative and associative,

(TZ) @(bl' 1) =0y,

(T3) S(d,,b,) < &(bs, d,) Whenever d; < b, and d; < d,.

Definition 2.2: [1] The 3-tuple (%, M, &) is known as FM space if & is an arbitrary set, S is a
t-conorm, M is a fuzzy set in A x A x [0, ) satisfies the following axioms for every @, w, & €
A and 8, > 0:

(FM1) M(w,w,t) >0,

(FM2) M(w,w,t) = 1ifand only if o = wr,

(FM3) M(w,w,t) = M(w, @, 1),

(FMs) &(M(w, w, ), M(w,§,5)) < M(®, &t + ),

(FMs) M(w,w,) : [0,00) — [0,1] is continuous.

Definition 2.3: [8] A pair of self-maps ($,T) of a FMS (¥, M, &) is said to be compatible if
lim M(@Tpm TPpm,t) =1 for £ >0, whenever sequence {p,,} from A s.t. lim Tp, =

m—oo

lim $p,, = @, for some @ € A

gefinition 2.4: [5] A pair of self-maps ($,T) of a FMS (U, M, &) is said to be compatible of
type (A) if lim M(BTpm, TTpm t) =1 and Jim M(T @Pm, PFPpm, t) = 1 for £ > 0, whenever
sequence {p,,} from A s.t. lim To, = lim Po, = @, for some w € A.

Definition 2.5: [10] A pairrgf self-map;n(@, T) of a FMS (%, M, &) is said to be compatible of
type (P) if lim M(@#pm, TTom t) =1 for £ >0, whenever sequence {p,} from A s.t.
lim TP, = I):iréo P, = @, for some w € A.

gefinition 2n.16: [7] A pair of self-maps (%, T) of a FMS (U, M, &) is said to be compatible of
type (E) if nl@l_r}r& M(P#pm, @Topm t) = Tw and Jllirgo M(TTppm, TPPm t) = Hw, for all ¢ >0,
whenever sequence {p,,} from U s.t. lim Tp,, = lim P, = @, for some @ € A.

Definition 2.7: [11] A pair of self—ma;)ns (». 1) ofrg FMS (%, M, &) is said to be compatible of
type (K) iff lim M(@#pm Tw,t) =1 and Jlim M(TTp,,, §w,t) = 1, for any £ > 0, whenever
sequence {p,,} from A s.t. lim To, = lim Po, = @, for some w € A.

Definition 2.8: [13] A 3—tu;1)7;e QLM @T)nis said to be a generalised FMS (M-FMS) if A # {@},
G is a t-conorm, M is a fuzzy set on A% x (0,) satisfies the following axioms for
every w, w, &ueWand 5,1 > 0:

(Mrma) M(w,w, &,1) >0,

(Mrm2) M(w,w,f,t) = 1’(:) w=w =¢,

(Mrm3) M (w, w, €, t) = M (p{w, w, £},4) where p is a permutation,
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(Mema) G (J\?[(w,w, u, ), M, é, 6,5)) < M(w,w, &, 1+ 8),

(Mevs) M (w, w, €,7) = (0,0) = [0,1] is continuous.

Lemma 2.9: [13] If (A, M, &) be a generalized M-FMS then M (w, w, €, ¢) is non-decreasing
with respect to %, for all £ > 0.

Definition 2.10: [13] Let (%, M, &) be an M-FMS, for some @ € A and {p,,,} be a sequence
in A. Then

(i) A sequence {p,,} is said to converge to w if for every # > 0,

lim (M;
m-oo \M (pp,@,@,t)

(i) A sequence {p,,} is said to be a Cauchy sequence if for all £ > 0 and n € N we have

—1)=Oi.e., lim p,, > w or p,, > wasm — oo.
m-—oo

1
lim < 1) =0.
- . m=co M(pm+nv pm: pm’ t)
(i) M-FMS (QI M, 6) in which every Cauchy sequence is convergent is said to be complete.
Lemma 2.11: [13] Let (%, M,&S) be a generalized M-FMS and if 30 < k <1 satisfying
M (w,w, & kt) > M (w,w,&,t), for every w,w, & € Aand ¢ € (0,0) thenw = w = ¢£.

3. Main Results:

In this section, we firstly defined compatible maps of type (K) in M-FMS (%, M, &) and we
prove CFP results in M-FMS (2, M, &) for the compatible of type (K) map.

Definition 3.1: A pair of self-maps (%,T) of a M-FMS (%, M, 8) is said to be compatible of
type (K) iff lim M(p#pn, To, Tw,t) =1 and lim M(TTp,, §w, pw,t) = 1, for every £ > 0,
whenever sequence {p,,} from A s.t. lim T, = lim P, = @, for some w € A.

Example 3.2: Consider %A = [—1,6] be a complete in M-FMS and two self-maps $,T: A - A

. 1
3 ifwel[-13]-{} fzg ifw € [—11'g)
be defined as: p(w) ={ 6 ifw= % and T(@) = ifo=7
— 6 . l
- ifo € (3,6] o @€ (6'2]
18 ifw € (2,6]

Now, consider a sequence p,, = 3 + — from 9, for each non-negative integer m then
6em
lim PP = lim @(3 +-2 ) = lim = (1 ——m) la.nd

tm o i (2 4 5) < fm 3 (a5 =3
Thus, both @p,, and Tp,, converges to g ie., T}llilgo Pom = r}}_r& Tp, = % As, (%) =6 and
T (%) = 3, therefore lim THP, = lim TH (3 + i) = r}liirgof’ (% - ﬁ) = %
Jffio PTo, = hm pT (3 + ) = rLl_r)réogo( 10:3m) =3,
i B = lim §5 (3 +2) = im B (i) =3 =7 (),

1 1
r}zliréo TTpm = nl‘Ll—I;rc}o Tt (3 + ) - nlll_r&T( 108m) =6=p (E)'
Hence, the maps are compatible of type (K) but not compatible, compatible of type (A), (P)
and (E).

Theorem 3.3: Consider (%,M,8) be a complete M-FMS (generalized-FMS) defined the
41,42, 03, 4ar As @and A4 be six self-maps on U s.t. they satisfies the following property:

(A1) ¢, (U) < As¢3(A) and & (A) < 464, (),

(A332) 0104 = {4Gh, 203 = (302, {386= A5, and A= As{,,



124
125
126

127

128
129
130
131
132
133
134
135
136
137

138

139

140
141

142

143
144
145

146
147
148

149
150
151

152
153
154

155
156
157
158

159
160

(A333) (¢y,A504), ({5, Agl3) are compatible of type (K) where one of them is continuous,
(A334) for all w,w, & € Wand 0 < A < 2 there exists constant 0 < k < 1 s.t.:
. z&[((ﬂﬂ’ w, Gur, kt) .

> min {M(A5(4w, glwv (1@, 1), M (A G3w, {2,’“" fow, 1), M (As$y@, Mg (3w, Ag{wr, t):}.

B M(Aelsw, § @, @, M), M (As{w, (uwr, (g{w’ (=1+2)%)
Then, six self-maps {3, {5, {3, {4, As and A, have unique CFP in 2.
Proof: Suppose p, € %. From given hypothesis (A331): ¢, () c A535(A), &(A) < 468,(N),
then 3 py,p, € As.t. & (pg) = Asz(po) = ao and &, (p,) = Aels(p2) = a1.
Now, we generate two-sequences {p,,} and {q,,} from 2 in such a way that

$1(P2m) = A5Gz (P2ms1) = Gzm AN G (P2me1) = A6Ca(Pomsz) = Gzmer- (3.1)
for each non-negative integermand 1 = —u + 1, where 0 < u < 1.

Now, we show that {q,,} is Cauchy in . From (A334), we have

M (G2m+15 G2ms G2ms KE) = M (Gam, Gams1 G2mer, KE) = M (G P2m CaPamsr (2P2me+1s k),
Therefore, one can have

M(szm» $Pam+1r $2P2mers k)
M(ASQPZm» {1P2ms $1P2ms ), M(A6{3p2m+1' $oP2ms (2Poms 1),
> min{ M (As{aP2m, B6S3P2m+1, 6(3p2m+1:t)xM(A6{3p2m+1x(1p2mx $1P2ms AE), ¢,
M(ASQPZmr GPams1 (GPomer, (FA + Z)t)
M (G2m-1) G2ms G2ms £)s M (G2m) G2m+1) G2m+1 £,
M(q2m+1' QZm' qur kt) 2 min M(qu—D q2mr q2m: t): M(qux qu: qu; (_.u + 1)t):
M (G2m-1) G2m+1> G2m+1, W+ 1E)
By equation (2.1), we get
. M (G2m-1, G2m> G2m> £)s M (G2m) ) 1),
M Gamstr Goms Qam k) = min{ (azm 1 G2m» G2m» 1) (G2m» G2m+1s G2m+1 )},
) M (G2m-1) G2m+1s G2m+1s (u+1)2)
. M (@2m-1, G2m> G2m> £), M (Q2m) G2me 1, G2me1, ),
M(qu+1. G2 Goms kt) > mm{ > 2m-1>412mr» Y2m ) 2my H2m+1 Y2m+1 ]
B M(qu—D qu; qu: t): M(qux qu: qu; /M‘f)
Letting as 4 assumes to 1 and using M -FMS axioms, we obtain

M(q2m+1' Q2> G2ms KE) = min{M(qu_l, G2m> G2ms 1), M(sz' G2m+1 92m+1» ’f)} (3.2)
Replacing ¢ with #/k in equation (3.2), we have

M(q2m+1' dQ2m> 92m.» t) = min {M (qu 1 92ms Q2m» ) ) (qut TO2m+1 G2m+1, 7 )}
M(Q2m+1: G2m> G2ms KT)
= min {M(qu 1 G2ms G2m> £)) M (q2m 1 92m» G2mo ) , 92ms A2m+1 G2m+1, )}

(
M (Gzm+1> G2ms Gzm, kE) = min {M(qu 1 G2m G2ms 1), M (qur G2m+1 G2m+10 7, )}
i.€., M (G2m+1, G2ms G2m, k£)
= min {M(qu 1 G2m Gzms 1), M (qu 1 92ms G2m» ) (Q2m» G2m+1 G2m+1s 72 )}
M (G2m+15 G2ms G2m, kt) = min {M(QZm—p G2m G2ms £), M (qu' 92m+1 G2m+1/ i2)}
Similarly, one can get

M(szﬂ' 92m G2m, Kt) = min {M(qu—b G2ms G2mr 1), M (qu' 92m+1 G2m+1 Lm)}
As, limit m tending to oo, we have
M(Q2m+1: G2ms G2ms KE) = min{M(QZm—l' A2m G2ms 1), 1}-
M (G2m+1> G2ms G2ms k,t) > M (G2m-1, 9G2ms G2m» t) for £ > 0.
Thus, for every m and ¢ > 0, we say M (Gm+1, G G K£) = M (Gm) Gm1, Gm-1, £)- Therefore,
M(qm+1' Imr Amo t) = M (qml Im-1 Am-1 %)

> M (qm—l: Im-2, Am-2» kt_z) >->M (ql, Ao, CIO’kim)-
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lim M (q41) G Gmp £) = 1 for £ > 0.
m—oo
For any p integer, we have
M(Qm: Im+pr Am+p» ’t)

~f .. T\ . t . t
=6 (M (qm' Im+1 Am+1» E) M <qm+1v Im+2, Am+2, E) s M (qm+p—1: qm+p! qm+p: E))
lim M (qps1) G G 1) = S(1,1,,1 ..., ...,1,1) = 1 for £ > 0.

m—oo

Hence, {q,,} is Cauchy sequence in ¥, which is complete M -FMS. Therefore, there exists ¢ €
Aand the sub-sequences {{; (Pzm)}, {8543 (P2m+1)} {$2(P2m+1)}, {A66a(P2m+2)} @ls0 converges
to & e .

T}E}}o $1(Pam) = T}ll_l}go Asl3(Pamer) = 7}11230 o(Pomer) = 7}11330 Ae8s(Pame2) =§. (3.3)
Case (i) ({1,As¢,) is compatible of type (K) and either As{, or ; is continuous. Now, we have
lim ¢y (pom) = lim A5y (pomy2) = ¢ 1€, lim & (Pom) = lim As{y(pom) =,

since, ({3, {s{,) is compatible of type (K), we get
nllifgo (141 (P2m) = As,€ and 1}11_%0 AsCaAsCa(Pam) = (€.
Now, if map ¢; is continuous then Jliirio 0 (pom) =€ i, 71111520 GG o) = GE.
Therefore, {;& = As{,¢.
Similarly, if Ag{, is continuous, then Jliirio Al (Pom) =€ e, 71111520 A QA5 (Do) = As(LE.
Therefore, {;& = As{,¢. (3.4)
Considering ¢ = @ and w = py41 iN (A334), one can have
. M(Gf» (sz,m+1' {2P2m1, kt)
M (D584¢,81€,61€,1), M (D683P2m415 $2P2ma 1) $2P2ma1s ),
= min{ M (A504€, Asl3P2m+1, Del3Pam+1, 1), M (B6l3P2ma1, 61, G2 €, L), ¢

M (A584€, $oPame1s GoPamers (4 + 2)2)
Since by equation (2.4), we get

i M(Gf: (2p,2m+1» {aPame1, kt)
M ($1§,61€,618,£), M (A683P2m+15 $2P2mr 1 $2P2m1, £))
= min M(QE: Al3P2me1, DBel3Pomats t):M(A6(3p2m+1: $1€,61&, A1), ¢
]\;[,((15» $aPame1 $2Pamer, (F4 + 2)T)
) M ($1€, $oP2mers (2p2m+1» kt)
> min {1' M (B683P2m+15 $2P2m+1s S2Pom+1, £), M (G418, B6l3Pame1, B6l3P2me1s ’f)'}

M (De83P2m1, 616 G & A8), M(G1€, &oPamerss $oPomars (4 + 2)1)
by letting limit m tend to oo, we arrive at

M($1€,€,€, kt)
> min{1, M (§,§,§,4), M($1§,6,6,4), M (§, 816,618, M), M(G1E,§,€, (-2 + 2)1)}.
Since by from equation (2.3), when A tend to 1, one can get
M(Gi€,€, € kt) = min{1,1, M ($1§,6,6,4), M (§, 61,66, 48), M(G1€,€,§, D)},
M(G1€,€,€, kt) = min{1,1, M (§€,€,€, 1)},
M(G18,6,8, k) =2 M (614,,,1).

From using Lemma 2.11, we say {;& = €.
Therefore, (& = Ag(, ¢ =¢. (3.5)
Case (i) (¢, A¢C3) is compatible of type (K) and either As{; or , is continuous. Now, we get

nllif(}o $o(Poms1) = nlll_f}go AeSo(Poms1) =6,
since, ({,,As(3) is compatible of type (K), then we get
r}li_rgo {282 (P2m+1) = (¢3¢ and nlll_f}go A6830603(Pame1) = §2€.
Now, if ¢, is continuous then T}Lillgo O (Pamer) =€ i.e.’rllillgo 00 (Pamer) = $E.
Also, if Ag{5 is continuous, we obtain
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1}3120 AeC3(Pame1) =< 1, 1}112}0 A6830605(P2me1) = A6d5€.
Therefore, {;& = As{,€. (3.6)
Put ¢ = @w = w in (A334), one can have
. ]"2[(61 fl 62 f’ (2 f’ kt) .

— {M(Asaf.;lf, 018 6), M (8608, 028, 0o, ), M (85048, Bl Al t).}_

B M(A6<3 fl (15' (15' At), M(Asﬁf' (25' (251 (_A + 2)4’—)
Since by equation (3.5) and (3.6), we obtain

’ (M 618 GE ), M (G2E, (28, (6, 4), M(E, $2€, (26, 1)

ME Qs Ga k0 = mm{ MG, 6,626, M (E, 58,558, (—A+ 2)8) }
as A tend to 1, we have

M(E, (25' ZZE' kt) 2 min{l,l, J\;[(f, {ZEv {2€v t)! M((Z'S! f! f! t)! M('S! (Zf: (2'5: t)}!

M‘(f' (25: 62 fl kt) = M‘(f; (Z 51 (Z 51 t):
by using Lemma 2.11, implies that {,¢ = ¢.

Therefore, {;§ = As{4é = $€ = D38 =¢. (3.7
Now, put ¢ = w and w = (3¢ in (A334), we obtain

) M(Qf»(z(sf:ﬁz@f'kt)
M (D5048,618,81€,1), M (8603058, 02058, (2038, %),
= min M (A504€, D60303€, Msl303E, 1),

M (8603058, $1 &, 01 E A1), M (Bs04€, (205€, (05E, (— /1+2)t)
from given (A332), we get

M08 GGE Gl k)
M (D5048, 618,816, 1), M (306058, 0302€, (3028, %),
= min M (A504€, 3306038, (30603€, 1),

M ($30603€,81€, 61, 28), M (B504€, {3058, 302€, (— /1+2)t)
By equation (3.7), one can have

M(E' 53 f! (3 fr kt) = min {

Considering as A1 tend to 1,
M(f' ZSS' 5361 kt) = min{l, M(f, (361 (36' t)}v i'e'1 M(E; (36) (Sfl kt) = M(E; (36! (35' t)
Form Lemma 2.11, we have
§=0¢and & = Agd5é ie., & = AgS.
Therefore, & = (3¢ = AG€. (3.8)
Again, if we put {,é = w and w = & in (A334), we obtain
; M((l (461 (2 fl (2 El If;t)
M (8584848, 61648, 6164, 1), M (D638, {26, (26, 1),
> min

M(f! sz’ Sz' t)! M(¢3€1 (3 El (3 El ’ff), M(f: (3 E! {351 t)!}
M(G36,8,8,M), M (§,83¢, 638, (=2 +2)8) )

M (8584848, 86838, 86038, 1),

M (86038, 8104€, 81 00E, A1), M(A5C4 008, 056, 86, (A + Z)t)
By, given hypothesis (A332), one can get

 M@GEGE G k)
M ($485848, 84818, Ca1€, 1), M (86058, (o€, {26, 1),
= min{ M (485048, D6 33€, D6 33E, 1), }
M (86038, 04018, $a0i€, 28), M ($4B504E, 058, 08, (A + 2)1)

From equation (2.7), we get
Y : M((4€, (46: (4-6' t), M(Z4-E’ f! f! t)’ M(C}f, fr E: t)r
45,5, ,k = - - .
| Masskn = m”‘{ MO $46, 48,20, T (G856, (—+ 2)D) |
M(Gad, .8 kt) = min{1,1, M (0a8, €, 8, 4), M (&, 048, 6ad, 28), M (Gad, .8, (=2 + 2)D)},

as A assumesto 1,

M({4§' 51 ‘fl kt) = min{L M((é}f: fl f' t)}v i'e'! M(Z4-E’ f! f! kt) 2 M((4f’ f! f! t)
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By, considering Lemma 2.11, we get
§=48and § = Agd 8 ie., & = (¢
Thus, § = (& = A8 . (3.9
Using equations (3.7), (3.8) and (3.9), one can obtain
§ =068 = A5 = 08 =038 = (8 = (¢,
Hence, ¢ is CFP of six self-maps {;, {5, {3, {4, As and A,.
Uniqueness: To show uniqueness of FP, let u, be another FP of six self-maps {3, {5, (3, {4, As
and A¢ i.e., (u, = {u, = fu, = {u, = Agu, = Aqu, =u,. Put & =@ and u, = w in (A334),
one can have
. ,M(Qf’ {ou,, {Qu,, kt) .
M(Asz4fv {16' {16' t)' M(AG{Buav {2110! {2110! t)! M(AS{NS! A6(3utw A6§3u01 t)!}
M(A6(3um (15: (15' At), M(Asﬁf, (Zuaﬂ (Zual (_A + 2)4’—)
Letting as A — 1, we obtain

= min{

- MA ”’t"M‘A ) ) ltl‘M‘A ’A ’A ltl
M(E,umuo,kt)Zmin{ (Sfff ) (Guzy Uy, Uy ) (5% 6Uor Belly )}’

M(Aﬁum fi ’S: t): M(Asf, Uy, Uy, t)
M(E’ f’ f' t)’ M(um uD" ut?’ t)’ M‘(s’ ut?’ ut?’ t)’}
M (u,,,8,4), M(§, 15,10, 2) '
Then, M (&, u,,u,, k) = min{1, M (£, u,,u,,£)} i.e., M(E uy,1,, kt) = M (E,u,,1,,%).
Hence, & = u,.
Thus, we established the uniqueness of CFP ¢&.

M (&, u,,u,, kt) = min{

Example 3.4: Let A = [—3,3] be a complete in M-FMS and two self-maps %, T: A - A be

6 ifo = )
defined as: () ifw € [-3,2] - {3} and F(w) = |2 o€ l-32]
erineq as. w) = w fw € |[—3,2] —{-ran w) = .
© 3 % ifw € (2,3]

&= ifo € (2,3]
Now, consider a sequence p,, = 2 + 6im from ¥, for each non-negative integer m. Letting as,
m tends to o, both $yp,, and Tp,, converges to% ie., Jim POy = Jim Tp, = § Since, $ (%) =
6and T (%) = % thus, one can obtain
Jim pon = lim 5 (2+5) = lim 5 (5-552) =5 =7 ().
lim Tp,, = JliBgOTT(Z +2-) = Jliilgo'f’(§+$) =2=p(3) =5
lim Tp,, = r}liirgogBT(Z + D) =1im p(t+=) = lim 3+ ) =1,

m—oo m-oco 3 36m m-oo \3 3em. 3
£~ L~ 1 2 (1 1 1
lim 7@, = lim 7% (2+—-) = lim (- =) =1,
m—oo S/me m—oo ® 6em m—oo 3 36m 3

Hence, the maps not compatible of type (K) in .

Corollary 3.5: Consider (%, M,&) be a complete M-FMS. If {;,{,,{; and {, are self-maps
on U s.t. they satisfies:
(3%1) 1 (A) < G(A), & (A) < & (A);
(A%52) (4, 04), ({5, {3) is compatible of type (K) where one of them is contionus;
(A353) forallm,w,E € Wand 0 <1< 2,30<k <1s.t:
. M(;ﬂﬂ {owr, S, kt) .

> min {M(Qwi (1@, @, 1), M ({yw, qzwr fow, 1), M ({3@, {w, (w, t)'}.

h M ((yw, {1@, @, /1’5'):]‘/[((3@152””' Lw, (—1+ 2)t)
Then, self-maps {3, {,, {3 and {, have unique CFP in 2.
Proof: If we consider A;= A= 1 in Theorem 3.3, one can easily do the proof.
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Corollary 3.6: Consider (%, M, &) be a complete M-FMS. If {;,{, and ; are three self-maps
on U s.t. they satisfies:
(A%81) & (A) < ¢ (A) N G(N);
(A3%2) (¢4, 0,), (¢4,¢3) is compatible of type (K), where {; is contionus;
(A36:3) for every w,w,§ EAand 0<1<2,30<k <1s.t:
. ]‘;[(,5157' $ow, §w, kt) )
M (Gw, §1@, §yw, 1), M (Saw, Syw, §yw, 1), M (Go@, Sy, S, t),}
M (yw, §yw, @, At),M({%w, Gw, Gw, (=4 + 2)%)
Then, self-maps {;, {, and {3 have unique CFP in 2.
Proof: By considering {; = {, = I in Corollary 2.2, one can have the proof.

= min{

4. CONCLUSION

In this paper, we initially defined the notion of compatible of type (K) for generalized FMS. By
using compatible self-maps of type (K) we established CFP theorems in M-FMS. Also, some
related examples are proved, since FP theory has many applications in various field of
mathematics for uniqueness and existence of solution of differential and integral equations.
These results extend and generalized some FP results existing in the literature.

ABBREVIATIONS
FMS: fuzzy metric space; FPT: fixed point theory; CFP: common Fixed point; s.t.: such that.
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