

ABSTRACT

In this manuscript, we state the notion compatible mappings of type (K) in generalized fuzzy metric spaces (*M*-FMS) and by considering compatible self-maps of type (K) we established some common fixed-point (FP) results in generalized fuzzy metric spaces. These results enhance some of the previous theorems in the literature. Additionally, some examples are also demonstrated.

Existence and Uniqueness of Fixed Point

Results using Compatible Maps of Type (K) in

Generalized Fuzzy Metric Spaces

Keywords: Common fixed point; Fuzzy metric space; Compatible maps of type (K); M-FMS. MSC (2020): 47H10; 54H25.

THE TYPE OF ARTICLE: ORIGINAL RESEARCH ARTICLE

1. INTRODUCTION

Fixed point theory (FPT) is one of the most expanding fields in pure and applied mathematics. Many new nonlinear problems have been encountered in various branches of mathematics and sciences domain. FPT for solving various kind of problems in sense of uniqueness and existence of solution is very wide and interesting field. The theory of fuzzy set was initially introduced by Zadeh [16] (1965). Many authors, extend fuzzy set-in different sense like fuzzy differential operator, fuzzy integral norm and fuzzy metric space (FMS). FMS was initially defined by Kramosil and Michalek [6] (1975) using t-conorm, further by George and Veeramani [1] (1994), the modified form of the FMS was given. Jungck [4] (1986), introduced compatible maps and proved some results in the context of metric space (MS) and in FMS given by Mishra $et\ al.$ [8] (1994). Sedghi and Shobe [13] (2006), introduced a new space as M-FMS (Generalized FMS) and prove some FP results. Pant [9] (1994), established CPT for map which are non-commutative. Compatible maps of type (A) was firstly given by Jungck $et\ al.$ [5] (1993). Pathak $et\ al.$ [10] (1996), established common FP (CFP) results for compatible maps of type (P). Many mathematicians gave FP theorems in FMS in different topological

- 41 properties (ref: [2], [11], [14]). Manandhar et al. [7] (2014), in FMS gave some FP results 42 compatible maps of type (E).
- 43 Jha et al. [3] (2014), prove CFP theorems for compatible maps of type (K) in MS, further Rao 44 and Reddy [11] (2016), extend the work in FMS for compatible maps of type (K).
- 45 FPT is a widely extended and understandable concept for research in diverse metric spaces 46 and generalized FMS for uniqueness and existence of FP results. In a similar manner, in this 47 paper we extend FP results of Swati et al. [15] (2016), in generalized FMS for compatible of 48 type (K) and prove FPT for self-map in M-FMS with some examples.

49 2. Preliminaries 50

- **Definition 2.1:** [12] A continuous t-norm (t-conorm) is a binary operation $\widehat{\Xi}$: $[0,1]^2 \rightarrow [0,1]$ 52 which satisfies the following conditions for all $b_1, b_2, b_3, b_4 \in [0,1]$: 53
- 54 (T^1) $\widehat{\mathfrak{S}}$ is continuous, commutative and associative,
- 55 $(T^2) \widehat{\mathfrak{S}}(\mathfrak{d}_1, 1) = \mathfrak{d}_1,$
- (T^3) $\widehat{\mathfrak{S}}(\mathfrak{d}_1,\mathfrak{d}_2) \leq \widehat{\mathfrak{S}}(\mathfrak{d}_3,\mathfrak{d}_4)$ whenever $\mathfrak{d}_1 \leq \mathfrak{d}_2$ and $\mathfrak{d}_3 \leq \mathfrak{d}_4$. 56
- 57 Definition 2.2: [1] The 3-tuple (ຟັ, ຟັ, ອີ) is known as FM space if ຟັ is an arbitrary set, ອີ is a t-conorm, M is a fuzzy set in $\tilde{\mathbb{X}} \times \tilde{\mathbb{X}} \times [0,\infty)$ satisfies the following axioms for every $\omega, \omega, \xi \in$ 58
- 59 \mathfrak{A} and s, t > 0:
- (FM₁) $\dot{M}(\varpi, w, t) > 0$, 60
- 61 (FM₂) $\dot{\mathbb{M}}(\varpi, w, t) = 1$ if and only if $\varpi = w$,
- (FM₃) $\mathring{\mathbb{M}}(\varpi, w, t) = \mathring{\mathbb{M}}(w, \varpi, t),$ 62
- $(\mathsf{FM}_4) \ \widehat{\Xi} \left(\widecheck{\mathsf{M}}(\varpi, w, t), \widecheck{\mathsf{M}}(w, \xi, s) \right) \leq \widecheck{\mathsf{M}}(\varpi, \xi, t + s),$ 63
- (FM₅) $\dot{\mathbb{M}}(\varpi, w, \cdot) : [0, \infty) \to [0,1]$ is continuous. 64
- **Definition 2.3:** [8] A pair of self-maps $(\widetilde{\wp}, f)$ of a FMS $(\widetilde{\mathfrak{U}}, M, \widehat{\mathfrak{S}})$ is said to be compatible if 65
- $\lim M(\widetilde{\wp} T\mathfrak{p}_m, T\widetilde{\wp}\mathfrak{p}_m, t) = 1$ for t > 0, whenever sequence $\{\mathfrak{p}_m\}$ from \mathfrak{A} s.t. $\lim T\mathfrak{p}_m = 0$ 66
- $\lim \, \widetilde{\wp} \mathfrak{p}_m = \varpi$, for some $\varpi \in \mathfrak{A}$. 67
- **Definition 2.4:** [5] A pair of self-maps $(\widetilde{\wp}, \acute{T})$ of a FMS $(\widetilde{\mathfrak{A}}, \widehat{\mathbb{M}}, \widehat{\mathfrak{S}})$ is said to be compatible of 68
- type (A) if $\lim_{m\to\infty}\mathbb{M}\left(\widetilde{\wp}T\mathfrak{p}_m,TT\mathfrak{p}_m,t\right)=1$ and $\lim_{m\to\infty}\mathbb{M}\left(T\widetilde{\wp}\mathfrak{p}_m,\widetilde{\wp}\widetilde{\wp}\mathfrak{p}_m,t\right)=1$ for t>0, whenever sequence $\{\mathfrak{p}_m\}$ from \mathfrak{A} s.t. $\lim_{m\to\infty}T\mathfrak{p}_m=\lim_{m\to\infty}\widetilde{\wp}\mathfrak{p}_m=\varpi$, for some $\varpi\in\mathfrak{A}$. **Definition 2.5:** [10] A pair of self-maps $(\widetilde{\wp},T)$ of a FMS $(\mathfrak{A},\mathbb{M},\widehat{\mathfrak{S}})$ is said to be compatible of 69
- 70
- 71
- $\text{type (P)} \quad \text{if } \lim_{m \to \infty} \check{\mathbb{M}} \left(\widetilde{\wp} \widetilde{\wp} \mathfrak{p}_m, \acute{T} \acute{T} \mathfrak{p}_m, t \right) = 1 \quad \text{for } t > 0, \text{ whenever sequence } \{\mathfrak{p}_m\} \quad \text{from } \widecheck{\mathfrak{A}} \quad \text{s.t.}$ 72
- $\lim_{m\to\infty} T\mathfrak{p}_m = \lim_{m\to\infty} \widetilde{\wp}\mathfrak{p}_m = \varpi, \text{ for some } \varpi \in \widecheck{\mathfrak{A}}.$ 73
- **Definition 2.6:** [7] A pair of self-maps $(\widetilde{\wp}, \acute{T})$ of a FMS $(\widetilde{\mathfrak{A}}, \acute{\mathbb{A}}, \widehat{\mathfrak{S}})$ is said to be compatible of 74
- $\text{type (E) if } \lim_{m \to \infty} \mathring{\mathbb{M}} \big(\widetilde{\mathscr{D}} \widetilde{\mathscr{D}} \mathfrak{p}_m, \widetilde{\mathscr{D}} \mathring{T} \mathfrak{p}_m, t \big) = \mathring{T} \varpi \text{ and } \lim_{m \to \infty} \mathring{\mathbb{M}} \big(\mathring{T} \mathring{T} \mathfrak{p}_m, \mathring{T} \widetilde{\mathscr{D}} \mathfrak{p}_m, t \big) = \widetilde{\mathscr{D}} \varpi, \text{ for all } t > 0,$ 75
- whenever sequence $\{\mathfrak{p}_m\}$ from $\widecheck{\mathfrak{A}}$ s.t. $\lim_{m\to\infty} f\mathfrak{p}_m = \lim_{m\to\infty} \widetilde{\wp}\mathfrak{p}_m = \varpi$, for some $\varpi\in\widecheck{\mathfrak{A}}$. **Definition 2.7: [11]** A pair of self-maps $(\widetilde{\wp},f)$ of a FMS $(\widecheck{\mathfrak{A}},\widecheck{\mathbb{A}},\widehat{\mathfrak{S}})$ is said to be compatible of 76
- 77
- type (K) iff $\lim_{m \to \infty} \check{\mathbb{M}} \big(\widetilde{\mathscr{D}} \widetilde{\mathscr{D}} \mathfrak{p}_m, \mathring{T} \varpi, t \big) = 1$ and $\lim_{m \to \infty} \check{\mathbb{M}} \big(\mathring{T} \mathring{T} \mathfrak{p}_m, \widetilde{\mathscr{D}} \varpi, t \big) = 1$, for any t > 0, whenever sequence $\{\mathfrak{p}_m\}$ from $\check{\mathbb{M}}$ s.t. $\lim_{m \to \infty} \check{T} \mathfrak{p}_m = \lim_{m \to \infty} \widetilde{\mathscr{D}} \mathfrak{p}_m = \varpi$, for some $\varpi \in \check{\mathbb{M}}$. 78
- 79
- **Definition 2.8:** [13] A 3-tuple $(\check{\mathfrak{A}}, \acute{\mathfrak{M}}, \widehat{\mathfrak{S}})$ is said to be a generalised FMS $(\mathcal{M}$ -FMS) if $\check{\mathfrak{A}} \neq \{\emptyset\}$, 80
- $\widehat{\Xi}$ is a t-conorm, $\acute{\mathcal{M}}$ is a fuzzy set on $\mathfrak{V}^3 imes (0,\infty)$ satisfies the following axioms for 81
- every $\varpi_{\cdot}w_{\cdot}\xi_{\cdot}u\in \mathfrak{A}$ and s,t>0: 82
- 83 (M_{FM1}) $\mathcal{M}(\varpi, w, \xi, t) > 0$,
- 84 (M_{FM2}) $\mathcal{M}(\varpi, w, \xi, t) = 1 \Leftrightarrow \varpi = w = \xi$,
- (M_{FM3}) $\mathcal{M}(\varpi, w, \xi, t) = \mathcal{M}(p\{w, \varpi, \xi\}, t)$ where p is a permutation, 85

- $(\mathsf{M}_{\mathsf{FM4}}) \ \widehat{\Xi} \Big(\acute{\mathcal{M}} (\varpi, w, u, t), \acute{\mathcal{M}} (u, \xi, \xi, s) \Big) \leq \acute{\mathcal{M}} (\varpi, w, \xi, t + s),$ 86
- (M_{FM5}) $\mathcal{M}(\varpi, w, \xi, \cdot) : (0, \infty) \to [0,1]$ is continuous. 87
- **Lemma 2.9:** [13] If $(\widecheck{\mathfrak{A}}, \mathring{\mathcal{M}}, \widehat{\mathfrak{S}})$ be a generalized \mathcal{M} -FMS then $\mathring{\mathcal{M}}(\varpi, w, \xi, t)$ is non-decreasing 88 with respect to t, for all t > 0. 89
- **Definition 2.10:** [13] Let $(\check{\mathfrak{A}}, \acute{\mathcal{M}}, \widehat{\mathfrak{S}})$ be an \mathscr{M} -FMS, for some $\varpi \in \check{\mathfrak{A}}$ and $\{\mathfrak{p}_m\}$ be a sequence 90 in X. Then 91
- A sequence $\{\mathfrak{p}_m\}$ is said to converge to ϖ if for every t>0, 92

93
$$\lim_{m\to\infty} \left(\frac{1}{\acute{\mathcal{M}}(\mathfrak{p}_m,\varpi,\varpi,t)}-1\right) = 0 \text{ i.e., } \lim_{m\to\infty} \mathfrak{p}_m \to \varpi \text{ or } \mathfrak{p}_m \to \varpi \text{ as } m\to\infty.$$
94 (ii) A sequence $\{\mathfrak{p}_m\}$ is said to be a Cauchy sequence if for all $t>0$ and $n\in\mathbb{N}$ we have

95
$$\lim_{m\to\infty}\left(\frac{1}{\acute{\mathcal{M}}(\mathfrak{p}_{m+n},\mathfrak{p}_m,\mathfrak{p}_m,t)}-1\right)=0.$$
96 (iii) $\mathscr{M}\text{-FMS}\left(\widecheck{\mathfrak{A}},\acute{\mathcal{M}},\widehat{\mathfrak{S}}\right)$ in which every Cauchy sequence is convergent is said to be complete.

- 96
- 97 **Lemma 2.11:** [13] Let $(\mathfrak{A}, \mathcal{M}, \widehat{\mathfrak{S}})$ be a generalized \mathcal{M} -FMS and if $\exists 0 < k < 1$ satisfying
- 98 $M(\varpi, w, \xi, kt) \ge M(\varpi, w, \xi, t), \text{ for every } \varpi, w, \xi \in M \text{ and } t \in (0, \infty) \text{ then } \varpi = w = \xi.$

3. Main Results:

99

100

106

119

- 101 In this section, we firstly defined compatible maps of type (K) in \mathcal{M} -FMS $(\widetilde{\mathfrak{A}}, \widehat{\mathfrak{K}}, \widehat{\mathfrak{S}})$ and we
- prove CFP results in \mathcal{M} -FMS $(\check{\mathfrak{A}}, \acute{\mathcal{M}}, \widehat{\mathfrak{S}})$ for the compatible of type (K) map. 102
- **Definition 3.1:** A pair of self-maps $(\tilde{\wp}, \acute{T})$ of a \mathcal{M} -FMS $(\tilde{\mathfrak{A}}, \acute{\mathfrak{M}}, \widehat{\mathfrak{S}})$ is said to be compatible of 103
- type (K) iff $\lim_{m\to\infty} \mathring{\mathbb{M}}\big(\widetilde{\wp}\widetilde{\wp}\mathfrak{p}_m,\mathring{T}\varpi,\mathring{T}\varpi,\mathring{t}\big)=1$ and $\lim_{m\to\infty}\mathring{\mathbb{M}}\big(\mathring{T}\mathring{T}\mathfrak{p}_m,\widetilde{\wp}\varpi,\widetilde{\wp}\varpi,t\big)=1$, for every t>0, whenever sequence $\{\mathfrak{p}_m\}$ from $\check{\mathfrak{U}}$ s.t. $\lim_{m\to\infty}\mathring{T}\mathfrak{p}_m=\lim_{m\to\infty}\widetilde{\wp}\mathfrak{p}_m=\varpi$, for some $\varpi\in\check{\mathfrak{U}}$. 104
- 105
- **Example 3.2:** Consider $\mathfrak{A} = [-1,6]$ be a complete in \mathcal{M} -FMS and two self-maps $\widetilde{\wp}, T: \mathfrak{A} \to \mathfrak{A}$ 107

108 be defined as:
$$\widetilde{\wp}(\varpi) = \begin{cases} 3 & \text{if } \varpi \in [-1,3] - \left\{\frac{1}{6}\right\} \\ 6 & \text{if } \varpi = \frac{1}{6} \\ \frac{(4-\varpi)}{6} & \text{if } \varpi \in (3,6] \end{cases}$$
 and $\widehat{T}(\varpi) = \begin{cases} \varpi & \text{if } \varpi \in \left[-1,\frac{1}{6}\right) \\ 3 & \text{if } \varpi = \frac{1}{6} \\ \frac{6}{\varpi} & \text{if } \varpi \in \left(\frac{1}{6},2\right] \end{cases}$.

Now, consider a sequence $\mathfrak{p}_m=3+\frac{1}{6m}$ from \mathfrak{A} , for each non-negative integer m then 109

110
$$\lim_{m \to \infty} \widetilde{\wp} \mathfrak{p}_m = \lim_{m \to \infty} \widetilde{\wp} \left(3 + \frac{1}{6m} \right) = \lim_{m \to \infty} \frac{1}{6} \left(1 - \frac{1}{6m} \right) = \frac{1}{6} \text{ and}$$
111
$$\lim_{m \to \infty} T \mathfrak{p}_m = \lim_{m \to \infty} T \left(3 + \frac{1}{6m} \right) = \lim_{m \to \infty} \frac{1}{18} \left(3 + \frac{1}{6m} \right) = \frac{1}{6}.$$

111
$$\lim_{m \to \infty} \hat{T} \mathfrak{p}_m = \lim_{m \to \infty} \hat{T} \left(3 + \frac{1}{6m} \right) = \lim_{m \to \infty} \frac{1}{18} \left(3 + \frac{1}{6m} \right) = \frac{1}{6}.$$

113
$$\mathring{T}\left(\frac{1}{6}\right) = 3$$
, therefore $\lim_{m \to \infty} \mathring{T} \widetilde{\wp} \mathfrak{p}_m = \lim_{m \to \infty} \mathring{T} \widetilde{\wp} \left(3 + \frac{1}{6m}\right) = \lim_{m \to \infty} \mathring{T}\left(\frac{1}{6} - \frac{1}{36m}\right) = \frac{1}{6}$

114
$$\lim_{m \to \infty} \widetilde{\wp} \hat{T} \mathfrak{p}_m = \lim_{m \to \infty} \widetilde{\wp} \hat{T} \left(3 + \frac{1}{6m} \right) = \lim_{m \to \infty} \widetilde{\wp} \left(\frac{1}{6} + \frac{1}{108m} \right) = 3,$$

115
$$\lim_{m \to \infty} \widetilde{\wp} \widetilde{\wp} \mathfrak{p}_m = \lim_{m \to \infty} \widetilde{\wp} \widetilde{\wp} \left(3 + \frac{1}{6m} \right) = \lim_{m \to \infty} \widetilde{\wp} \left(\frac{1}{6} - \frac{1}{36m} \right) = 3 = T\left(\frac{1}{6} \right)$$

116
$$\lim_{m \to \infty} \hat{T} \hat{T} \mathfrak{p}_m = \lim_{m \to \infty} \hat{T} \hat{T} \left(3 + \frac{1}{6m} \right) = \lim_{m \to \infty} \hat{T} \left(\frac{1}{6} + \frac{1}{108m} \right) = 6 = \widetilde{\wp} \left(\frac{1}{6} \right)$$

- Thus, both $\widetilde{\wp}\mathfrak{p}_m$ and $\widetilde{T}\mathfrak{p}_m$ converges to $\frac{1}{6}$ i.e., $\lim_{m\to\infty}\widetilde{\wp}\mathfrak{p}_m=\lim_{m\to\infty}\widetilde{T}\mathfrak{p}_m=\frac{1}{6}$. As, $\widetilde{\wp}\left(\frac{1}{6}\right)=6$ and $\widetilde{T}\left(\frac{1}{6}\right)=3$, therefore $\lim_{m\to\infty}\widetilde{T}\widetilde{\wp}\mathfrak{p}_m=\lim_{m\to\infty}\widetilde{T}\widetilde{\wp}\left(3+\frac{1}{6m}\right)=\lim_{m\to\infty}\widetilde{T}\left(\frac{1}{6}-\frac{1}{36m}\right)=\frac{1}{6}$, $\lim_{m\to\infty}\widetilde{\wp}\widetilde{T}\mathfrak{p}_m=\lim_{m\to\infty}\widetilde{\wp}\widetilde{T}\left(3+\frac{1}{6m}\right)=\lim_{m\to\infty}\widetilde{\wp}\left(\frac{1}{6}+\frac{1}{108m}\right)=3,$ $\lim_{m\to\infty}\widetilde{\wp}\widetilde{\wp}\mathfrak{p}_m=\lim_{m\to\infty}\widetilde{\wp}\widetilde{\wp}\left(3+\frac{1}{6m}\right)=\lim_{m\to\infty}\widetilde{\wp}\left(\frac{1}{6}-\frac{1}{36m}\right)=3=\widetilde{T}\left(\frac{1}{6}\right),$ $\lim_{m\to\infty}\widetilde{T}\widetilde{T}\mathfrak{p}_m=\lim_{m\to\infty}\widetilde{T}\widetilde{T}\left(3+\frac{1}{6m}\right)=\lim_{m\to\infty}\widetilde{T}\left(\frac{1}{6}+\frac{1}{108m}\right)=6=\widetilde{\wp}\left(\frac{1}{6}\right).$ Hence, the maps are compatible of type (K) but not compatible, compatible of type (A), (P) and (F) 117 and (E). 118
- 120 **Theorem 3.3:** Consider $(\widetilde{\mathfrak{A}}, \widehat{\mathcal{M}}, \widehat{\mathfrak{S}})$ be a complete \mathcal{M} -FMS (generalized-FMS) defined the
- $\zeta_1, \zeta_2, \zeta_3, \zeta_4, \Delta_5$ and Δ_6 be six self-maps on \mathfrak{U} s.t. they satisfies the following property: 121
- 122
- $\begin{array}{l} (\mathcal{A}^{3.3.1}) \; \zeta_1 \big(\widecheck{\mathfrak{A}} \big) \subset \Delta_5 \zeta_3 \big(\widecheck{\mathfrak{A}} \big) \; \text{and} \; \zeta_2 \big(\widecheck{\mathfrak{A}} \big) \subset \Delta_6 \zeta_4 \big(\widecheck{\mathfrak{A}} \big), \\ (\mathcal{A}^{3.3.2}) \; \zeta_1 \zeta_4 = \zeta_4 \zeta_1, \; \zeta_2 \zeta_3 = \zeta_3 \zeta_2, \; \zeta_3 \Delta_6 = \Delta_6 \zeta_3, \; \text{and} \; \zeta_4 \Delta_5 = \Delta_5 \zeta_4, \end{array}$ 123

```
(A^{3.3.3}) (\zeta_1, \Delta_5\zeta_4), (\zeta_2, \Delta_6\zeta_3) are compatible of type (K) where one of them is continuous,
124
125
                                   (A^{3.3.4}) for all \varpi, w, \xi \in \mathfrak{A} and 0 < \lambda < 2 there exists constant 0 < k < 1 s.t.:
                                                 \begin{split} & \acute{\mathcal{M}}(\zeta_1\varpi,\zeta_2w,\zeta_2w,kt) \\ \geq \min \left\{ \begin{split} & \acute{\mathcal{M}}(\Delta_5\zeta_4\varpi,\zeta_1\varpi,\zeta_1\varpi,t), \acute{\mathcal{M}}(\Delta_6\zeta_3w,\zeta_2w,\zeta_2w,t), \acute{\mathcal{M}}(\Delta_5\zeta_4\varpi,\Delta_6\zeta_3w,\Delta_6\zeta_3w,t), \\ & \acute{\mathcal{M}}(\Delta_6\zeta_3w,\zeta_1\varpi,\zeta_1\varpi,\lambda t), \acute{\mathcal{M}}(\Delta_5\zeta_4\varpi,\zeta_2w,\zeta_2w,(-\lambda+2)t) \end{split} \right\}. \end{split}
126
127
                                Then, six self-maps \zeta_1, \zeta_2, \zeta_3, \zeta_4, \Delta_5 and \Delta_6 have unique CFP in \widetilde{\mathfrak{A}}.
128
                                Proof: Suppose \mathfrak{p}_0 \in \mathfrak{A}. From given hypothesis (A^{3.3.1}): \zeta_1(\mathfrak{A}) \subset \Delta_5 \zeta_3(\mathfrak{A}), \zeta_2(\mathfrak{A}) \subset \Delta_6 \zeta_4(\mathfrak{A}),
129
                                then \exists \mathfrak{p}_1, \mathfrak{p}_2 \in \mathfrak{A} s.t. \zeta_1(\mathfrak{p}_0) = \Delta_5 \zeta_3(\mathfrak{p}_0) = \mathfrak{q}_0 and \zeta_2(\mathfrak{p}_1) = \Delta_6 \zeta_4(\mathfrak{p}_2) = \mathfrak{q}_1.
130
                                Now, we generate two-sequences \{\mathfrak{p}_m\} and \{\mathfrak{q}_m\} from \mathfrak{A} in such a way that
131
                                                                             \zeta_1(\mathfrak{p}_{2m}) = \Delta_5 \zeta_3(\mathfrak{p}_{2m+1}) = \mathfrak{q}_{2m} \text{ and } \zeta_2(\mathfrak{p}_{2m+1}) = \Delta_6 \zeta_4(\mathfrak{p}_{2m+2}) = \mathfrak{q}_{2m+1}.
132
                                                                                                                                                                                                                                                                                                                                                                                               (3.1)
                                for each non-negative integer m and \lambda = -\mu + 1, where 0 < \mu < 1.
133
                                Now, we show that \{q_m\} is Cauchy in \mathfrak{U}. From (A^{3.3.4}), we have
134

\mathring{\mathcal{M}}(q_{2m+1}, q_{2m}, q_{2m}, kt) = \mathring{\mathcal{M}}(q_{2m}, q_{2m+1}, q_{2m+1}, kt) = \mathring{\mathcal{M}}(\zeta_1 \mathfrak{p}_{2m}, \zeta_2 \mathfrak{p}_{2m+1}, \zeta_2 \mathfrak{p}_{2m+1}, kt),

135
136
                                Therefore, one can have
                                                                                                                                                                 \mathcal{M}(\zeta_1 \mathfrak{p}_{2m}, \zeta_2 \mathfrak{p}_{2m+1}, \zeta_2 \mathfrak{p}_{2m+1}, kt)
137

\begin{array}{l}
\hat{\mathcal{M}}(\zeta_{1}, \gamma_{2m}, \zeta_{2}, \gamma_{2m+1}, \gamma_{2}, \gamma_{2m+1}, \kappa t) \\
\hat{\mathcal{M}}(\Delta_{5}\zeta_{4}, \gamma_{2m}, \zeta_{1}, \gamma_{2m}, \zeta_{1}, \gamma_{2m}, t), \hat{\mathcal{M}}(\Delta_{6}\zeta_{3}, \gamma_{2m+1}, \zeta_{2}, \gamma_{2m}, t), \\
\hat{\mathcal{M}}(\Delta_{5}\zeta_{4}, \gamma_{2m}, \Delta_{6}\zeta_{3}, \gamma_{2m+1}, \Delta_{6}\zeta_{3}, \gamma_{2m+1}, t), \hat{\mathcal{M}}(\Delta_{6}\zeta_{3}, \gamma_{2m+1}, \zeta_{1}, \gamma_{2m}, \lambda_{1}, \gamma_{2m}, \lambda_{1}, \lambda_{
138
139
140
                                By equation (2.1), we get

\dot{\mathcal{M}}(\mathsf{q}_{2m+1},\mathsf{q}_{2m},\mathsf{q}_{2m},kt) \ge \min \begin{cases} \dot{\mathcal{M}}(\mathsf{q}_{2m-1},\mathsf{q}_{2m},\mathsf{q}_{2m},t), \dot{\mathcal{M}}(\mathsf{q}_{2m},\mathsf{q}_{2m+1},\mathsf{q}_{2m+1},t), \\ \dot{\mathcal{M}}(\mathsf{q}_{2m-1},\mathsf{q}_{2m},t), \dot{\mathcal{M}}(\mathsf{q}_{2m},\mathsf{q}_{2m+1},\mathsf{q}_{2m+1},t), \end{cases} \\
\dot{\mathcal{M}}(\mathsf{q}_{2m+1},\mathsf{q}_{2m},\mathsf{q}_{2m},kt) \ge \min \begin{cases} \dot{\mathcal{M}}(\mathsf{q}_{2m-1},\mathsf{q}_{2m},\mathsf{q}_{2m},t), \dot{\mathcal{M}}(\mathsf{q}_{2m},\mathsf{q}_{2m+1},\mathsf{q}_{2m+1},t), \\ \dot{\mathcal{M}}(\mathsf{q}_{2m-1},\mathsf{q}_{2m},\mathsf{q}_{2m},t), \dot{\mathcal{M}}(\mathsf{q}_{2m},\mathsf{q}_{2m},\mathsf{q}_{2m},\mathsf{q}_{2m},\mu t) \end{cases} .

141
142
                                Letting as \mu assumes to 1 and using \mathcal{M}-FMS axioms, we obtain
143
144
                                                 \mathcal{M}(q_{2m+1}, q_{2m}, q_{2m}, kt) \ge \min \{ \mathcal{M}(q_{2m-1}, q_{2m}, q_{2m}, t), \mathcal{M}(q_{2m}, q_{2m+1}, q_{2m+1}, t) \}
                                Replacing t with t/k in equation (3.2), we have
145

\dot{\mathcal{M}}(q_{2m+1}, q_{2m}, q_{2m}, t) \ge \min \left\{ \dot{\mathcal{M}}\left(q_{2m-1}, q_{2m}, q_{2m}, \frac{t}{k}\right), \dot{\mathcal{M}}\left(q_{2m}, q_{2m+1}, q_{2m+1}, \frac{t}{k}\right) \right\},

146
                                                                                                                                                                               \mathcal{M}(\mathfrak{q}_{2m+1},\mathfrak{q}_{2m},\mathfrak{q}_{2m},kt)
147
                                                              \geq \min \left\{ \hat{\mathcal{M}}(q_{2m-1}, q_{2m}, q_{2m}, t), \hat{\mathcal{M}}\left(q_{2m-1}, q_{2m}, q_{2m}, \frac{t}{k}\right), \hat{\mathcal{M}}\left(q_{2m}, q_{2m+1}, q_{2m+1}, \frac{t}{k}\right) \right\},
148
                                                              \hat{\mathcal{M}}(q_{2m+1}, q_{2m}, q_{2m}, kt) \ge \min \left\{ \hat{\mathcal{M}}(q_{2m-1}, q_{2m}, q_{2m}, t), \hat{\mathcal{M}}\left(q_{2m}, q_{2m+1}, q_{2m+1}, \frac{t}{\nu}\right) \right\},
149
                                                                                                                                                                      i.e., \mathcal{M}(q_{2m+1}, q_{2m}, q_{2m}, kt)
150
                                                           \geq \min \left\{ \mathcal{M}(\mathfrak{q}_{2m-1},\mathfrak{q}_{2m},\mathfrak{q}_{2m},t), \mathcal{M}\left(\mathfrak{q}_{2m-1},\mathfrak{q}_{2m},\mathfrak{q}_{2m},\frac{t}{k^2}\right), \mathcal{M}\left(\mathfrak{q}_{2m},\mathfrak{q}_{2m+1},\mathfrak{q}_{2m+1},\frac{t}{k^2}\right) \right\},
151

\dot{\mathcal{M}}(q_{2m+1}, q_{2m}, q_{2m}, kt) \ge \min \left\{ \dot{\mathcal{M}}(q_{2m-1}, q_{2m}, q_{2m}, t), \dot{\mathcal{M}}\left(q_{2m}, q_{2m+1}, q_{2m+1}, \frac{t}{k^2}\right) \right\}.

152
                                Similarly, one can get
153
                                                           \acute{\mathcal{M}}(\mathbf{q}_{2m+1},\mathbf{q}_{2m},\mathbf{q}_{2m},kt)\geq\min\left\{\acute{\mathcal{M}}(\mathbf{q}_{2m-1},\mathbf{q}_{2m},\mathbf{q}_{2m},t),\acute{\mathcal{M}}\left(\mathbf{q}_{2m},\mathbf{q}_{2m+1},\mathbf{q}_{2m+1},\frac{t}{\iota_{m}}\right)\right\}.
154
155
                                As, limit m tending to \infty, we have
                                                                                                              \mathcal{M}(\mathfrak{q}_{2m+1},\mathfrak{q}_{2m},\mathfrak{q}_{2m},kt) \ge \min\{\mathcal{M}(\mathfrak{q}_{2m-1},\mathfrak{q}_{2m},\mathfrak{q}_{2m},t),1\}.
156
                                                                                                         \mathcal{M}(\mathfrak{q}_{2m+1},\mathfrak{q}_{2m},\mathfrak{q}_{2m},kt) \geq \mathcal{M}(\mathfrak{q}_{2m-1},\mathfrak{q}_{2m},\mathfrak{q}_{2m},t) \text{ for } t > 0.
157
158
                                Thus, for every m and t > 0, we say \mathcal{M}(q_{m+1}, q_m, q_m, kt) \ge \mathcal{M}(q_m, q_{m-1}, q_{m-1}, t). Therefore,

\dot{\mathcal{M}}(\mathbf{q}_{m+1}, \mathbf{q}_m, \mathbf{q}_m, t) \ge \dot{\mathcal{M}}\left(\mathbf{q}_m, \mathbf{q}_{m-1}, \mathbf{q}_{m-1}, \frac{t}{\nu}\right)

159
                                                                                                                      > \mathcal{\acute{M}}\left(\mathbf{q}_{m-1}, \mathbf{q}_{m-2}, \mathbf{q}_{m-2}, \frac{t}{t^2}\right) > \cdots > \mathcal{\acute{M}}\left(\mathbf{q}_1, \mathbf{q}_0, \mathbf{q}_0, \frac{t}{t^m}\right). 
160
```

```
\lim_{m\to\infty} \mathcal{M}(\mathfrak{q}_{m+1},\mathfrak{q}_m,\mathfrak{q}_m,t) = 1 \text{ for } t>0.
161
162
                      For any p integer, we have
                                                                                                                            \acute{\mathcal{M}} \big( \mathfrak{q}_m, \mathfrak{q}_{m+p}, \mathfrak{q}_{m+p}, t \big)
163
                                    \geq \widehat{\Xi}\left(\hat{\mathcal{M}}\left(\mathbf{q}_{m},\mathbf{q}_{m+1},\mathbf{q}_{m+1},\frac{t}{k}\right),\hat{\mathcal{M}}\left(\mathbf{q}_{m+1},\mathbf{q}_{m+2},\mathbf{q}_{m+2},\frac{t}{k}\right),\ldots,\hat{\mathcal{M}}\left(\mathbf{q}_{m+p-1},\mathbf{q}_{m+p},\mathbf{q}_{m+p},\frac{t}{k}\right)\right)
164
                                                                        \lim_{m\to\infty} \mathcal{M}(\mathfrak{q}_{m+1},\mathfrak{q}_m,\mathfrak{q}_m,t) \ge \widehat{\mathfrak{S}}(1,1,1\ldots,\ldots,1,1) = 1 \text{ for } t > 0.
165
                      Hence, \{q_m\} is Cauchy sequence in \mathfrak{U}, which is complete \mathcal{M}-FMS. Therefore, there exists \xi \in
166
                      \widecheck{\mathfrak{A}} and the sub-sequences \{\zeta_1(\mathfrak{p}_{2m})\},\{\Delta_5\zeta_3(\mathfrak{p}_{2m+1})\},\{\zeta_2(\mathfrak{p}_{2m+1})\},\{\Delta_6\zeta_4(\mathfrak{p}_{2m+2})\} also converges
167
168
                      \lim_{m\to\infty}\zeta_1(\mathfrak{p}_{2m})=\lim_{m\to\infty}\Delta_5\zeta_3(\mathfrak{p}_{2m+1})=\lim_{m\to\infty}\zeta_2(\mathfrak{p}_{2m+1})=\lim_{m\to\infty}\Delta_6\zeta_4(\mathfrak{p}_{2m+2})=\xi. \tag{3.3} Case (i) (\zeta_1,\Delta_5\zeta_4) is compatible of type (K) and either \Delta_5\zeta_4 or \zeta_1 is continuous. Now, we have
169
170
                                                \lim_{m\to\infty}\zeta_1(\mathfrak{p}_{2m})=\lim_{m\to\infty}\Delta_5\zeta_4(\mathfrak{p}_{2m+2})=\xi \text{ i.e., } \lim_{m\to\infty}\zeta_1(\mathfrak{p}_{2m})=\lim_{m\to\infty}\Delta_5\zeta_4(\mathfrak{p}_{2m})=\xi,
171
                     since, (\zeta_1, \zeta_5\zeta_4) is compatible of type (K), we get \lim_{m\to\infty} \zeta_1\zeta_1(\mathfrak{p}_{2m}) = \Delta_5\zeta_4\xi \text{ and } \lim_{m\to\infty} \Delta_5\zeta_4\Delta_5\zeta_4(\mathfrak{p}_{2m}) = \zeta_1\xi. Now, if map \zeta_1 is continuous then \lim_{m\to\infty} \zeta_1(\mathfrak{p}_{2m}) = \xi i.e., \lim_{m\to\infty} \zeta_1\zeta_1(\mathfrak{p}_{2m}) = \zeta_1\xi.
172
173
174
                      Therefore, \zeta_1 \xi = \Delta_5 \zeta_4 \xi.
175
                     Similarly, if \Delta_5\zeta_4 is continuous, then \lim_{m\to\infty}\Delta_5\zeta_4(\mathfrak{p}_{2m})=\xi i.e., \lim_{m\to\infty}\Delta_5\zeta_4\Delta_5\zeta_4(\mathfrak{p}_{2m})=\Delta_5\zeta_4\xi.
176
177
                      Therefore, \zeta_1 \xi = \Delta_5 \zeta_4 \xi.
178
                      Considering \xi = \varpi and w = \mathfrak{p}_{2m+1} in (A^{3.3.4}), one can have
179
                                                     \geq \min \begin{cases} \mathring{\mathcal{M}}(\Delta_5 \zeta_4 \xi, \zeta_1 \xi, \zeta_1 \xi, t), \mathring{\mathcal{M}}(\Delta_6 \zeta_3 \mathfrak{p}_{2m+1}, \zeta_2 \mathfrak{p}_{2m+1}, \zeta_2 \mathfrak{p}_{2m+1}, t), \\ \mathring{\mathcal{M}}(\Delta_5 \zeta_4 \xi, \Delta_6 \zeta_3 \mathfrak{p}_{2m+1}, \Delta_6 \zeta_3 \mathfrak{p}_{2m+1}, t), \mathring{\mathcal{M}}(\Delta_6 \zeta_3 \mathfrak{p}_{2m+1}, \zeta_1 \xi, \zeta_1 \xi, \lambda t), \\ \mathring{\mathcal{M}}(\Delta_5 \zeta_4 \xi, \zeta_2 \mathfrak{p}_{2m+1}, \zeta_2 \mathfrak{p}_{2m+1}, (-\lambda + 2)t) \end{cases}.
180
                      Since by equation (2.4), we get
181
182
                                                                                                                   \mathcal{M}(\zeta_1\xi,\zeta_2\mathfrak{p}_{2m+1},\zeta_2\mathfrak{p}_{2m+1},kt)
                                                       \geq \min \begin{cases} \mathring{\mathcal{M}}(\zeta_1 \xi, \zeta_1 \xi, \zeta_1 \xi, t), \mathring{\mathcal{M}}(\Delta_6 \zeta_3 \mathfrak{p}_{2m+1}, \zeta_2 \mathfrak{p}_{2m+1}, \zeta_2 \mathfrak{p}_{2m+1}, t), \\ \mathring{\mathcal{M}}(\zeta_1 \xi, \Delta_6 \zeta_3 \mathfrak{p}_{2m+1}, \Delta_6 \zeta_3 \mathfrak{p}_{2m+1}, t), \mathring{\mathcal{M}}(\Delta_6 \zeta_3 \mathfrak{p}_{2m+1}, \zeta_1 \xi, \zeta_1 \xi, \lambda t), \\ \mathring{\mathcal{M}}(\zeta_1 \xi, \zeta_2 \mathfrak{p}_{2m+1}, \zeta_2 \mathfrak{p}_{2m+1}, (-\lambda + 2)t) \end{cases}.
183

\dot{\mathcal{M}}(\zeta_{1}\xi,\zeta_{2}\mathfrak{p}_{2m+1},\zeta_{2}\mathfrak{p}_{2m+1},kt)

\geq \min \begin{cases} 1, \dot{\mathcal{M}}(\Delta_{6}\zeta_{3}\mathfrak{p}_{2m+1},\zeta_{2}\mathfrak{p}_{2m+1},\zeta_{2}\mathfrak{p}_{2m+1},t), \dot{\mathcal{M}}(\zeta_{1}\xi,\Delta_{6}\zeta_{3}\mathfrak{p}_{2m+1},\Delta_{6}\zeta_{3}\mathfrak{p}_{2m+1},t), \\ \dot{\mathcal{M}}(\Delta_{6}\zeta_{3}\mathfrak{p}_{2m+1},\zeta_{1}\xi,\zeta_{1}\xi,\lambda t), \dot{\mathcal{M}}(\zeta_{1}\xi,\zeta_{2}\mathfrak{p}_{2m+1},\zeta_{2}\mathfrak{p}_{2m+1},(-\lambda+2)t) \end{cases}.

184
185
186
                      by letting limit m tend to \infty, we arrive at
187
                                                                                                                                      \mathcal{M}(\zeta_1\xi,\xi,\xi,kt)
                                            \geq \min\{1, \mathcal{M}(\xi, \xi, \xi, t), \mathcal{M}(\zeta_1 \xi, \xi, \xi, t), \mathcal{M}(\xi, \zeta_1 \xi, \zeta_1 \xi, \lambda t), \mathcal{M}(\zeta_1 \xi, \xi, \xi, (-\lambda + 2)t)\}.
188
189
                      Since by from equation (2.3), when \lambda tend to 1, one can get
                                                  \mathcal{M}(\zeta_1\xi,\xi,\xi,kt) \ge \min\{1,1,\mathcal{M}(\zeta_1\xi,\xi,\xi,t),\mathcal{M}(\xi,\zeta_1\xi,\zeta_1\xi,\lambda t),\mathcal{M}(\zeta_1\xi,\xi,\xi,t)\},
190
                                                                                               \mathcal{M}(\zeta_1 \xi, \xi, \xi, kt) \ge \min\{1, 1, \mathcal{M}(\zeta_1 \xi, \xi, \xi, t)\},\
191
192
                                                                                                             \mathcal{M}(\zeta_1\xi,\xi,\xi,kt) \geq \mathcal{M}(\zeta_1\xi,\xi,\xi,t).
                      From using Lemma 2.11, we say \zeta_1 \xi = \xi.
193
194
                      Therefore, \zeta_1 \xi = \Delta_5 \zeta_4 \xi = \xi.
                                                                                                                                                                                                                                                                        (3.5)
                      Case (ii) (\zeta_2, \Delta_6\zeta_3) is compatible of type (K) and either \Delta_6\zeta_3 or \zeta_2 is continuous. Now, we get
195
                                                                                                    \lim_{m\to\infty}\zeta_2(\mathfrak{p}_{2m+1})=\lim_{m\to\infty}\Delta_6\zeta_2(\mathfrak{p}_{2m+1})=\xi,
196
                      since, (\zeta_2, \Delta_6\zeta_3) is compatible of type (K), then we get
197
                     \lim_{m\to\infty}\zeta_2\zeta_2(\mathfrak{p}_{2m+1})=\zeta_6\zeta_3\xi \text{ and } \lim_{m\to\infty}\Delta_6\zeta_3\Delta_6\zeta_3(\mathfrak{p}_{2m+1})=\zeta_2\xi. Now, if \zeta_2 is continuous then \lim_{m\to\infty}\zeta_2(\mathfrak{p}_{2m+1})=\xi i.e., \lim_{m\to\infty}\zeta_2\zeta_2(\mathfrak{p}_{2m+1})=\zeta_2\xi.
198
199
                      Also, if \Delta_6 \zeta_3 is continuous, we obtain
200
```

```
\lim_{\substack{m\to\infty\\ \varsigma\zeta_4\xi}}\Delta_6\zeta_3(\mathfrak{p}_{2m+1})=\xi \text{ i.e., } \lim_{\substack{m\to\infty\\ m\to\infty}}\Delta_6\zeta_3\Delta_6\zeta_3(\mathfrak{p}_{2m+1})=\Delta_6\zeta_3\xi.
201
                       Therefore, \zeta_1 \xi = \Delta_5 \zeta_4 \xi.
202
                                                                                                                                                                                                                                                                                                   (3.6)
                       Put \xi = \varpi = w in (A<sup>3.3.4</sup>), one can have
203
                                                204
205
                       Since by equation (3.5) and (3.6), we obtain
206

\dot{\mathcal{M}}(\xi,\zeta_{2}\xi,\zeta_{2}\xi,kt) \geq \min \begin{cases} \dot{\mathcal{M}}(\xi,\zeta_{1}\xi,\zeta_{1}\xi,t), \dot{\mathcal{M}}(\zeta_{2}\xi,\zeta_{2}\xi,\zeta_{2}\xi,t), \dot{\mathcal{M}}(\xi,\zeta_{2}\xi,\zeta_{2}\xi,t) \\ \dot{\mathcal{M}}(\zeta_{2}\xi,\xi,\xi,\lambda t), \dot{\mathcal{M}}(\xi,\zeta_{2}\xi,\zeta_{2}\xi,(-\lambda+2)t) \end{cases}.

207
208
                        as \lambda tend to 1, we have

\mathring{\mathcal{M}}(\xi, \zeta_2 \xi, \zeta_2 \xi, kt) \ge \min\{1, 1, \mathring{\mathcal{M}}(\xi, \zeta_2 \xi, \zeta_2 \xi, t), \mathring{\mathcal{M}}(\zeta_2 \xi, \xi, \xi, t), \mathring{\mathcal{M}}(\xi, \zeta_2 \xi, \zeta_2 \xi, t)\},

209
210
                                                                                                             \mathcal{M}(\xi,\zeta_2\xi,\zeta_2\xi,kt) \geq \mathcal{M}(\xi,\zeta_2\xi,\zeta_2\xi,t),
                       by using Lemma 2.11, implies that \zeta_2 \xi = \xi.
211
                       Therefore, \zeta_1 \xi = \Delta_5 \zeta_4 \xi = \zeta_2 \xi = \Delta_6 \zeta_3 \xi = \xi.
212
                                                                                                                                                                                                                                                                                                   (3.7)
                        Now, put \xi = \varpi and w = \zeta_3 \xi in (A^{3.3.4}), we obtain
213
                                                                                                                              \mathcal{M}(\zeta_1\xi,\zeta_2\zeta_3\xi,\zeta_2\zeta_3\xi,kt)
214
                                                               \geq \min \begin{cases} \dot{\mathcal{M}}(\Delta_{5}\zeta_{4}\xi, \zeta_{1}\xi, \zeta_{1}\xi, t), \dot{\mathcal{M}}(\Delta_{6}\zeta_{3}\zeta_{3}\xi, \zeta_{2}\zeta_{3}\xi, \zeta_{2}\zeta_{3}\xi, t), \\ \dot{\mathcal{M}}(\Delta_{5}\zeta_{4}\xi, \Delta_{6}\zeta_{3}\zeta_{3}\xi, \Delta_{6}\zeta_{3}\zeta_{3}\xi, t), \\ \dot{\mathcal{M}}(\Delta_{6}\zeta_{3}\zeta_{3}\xi, \zeta_{1}\xi, \zeta_{1}\xi, \lambda t), \dot{\mathcal{M}}(\Delta_{5}\zeta_{4}\xi, \zeta_{2}\zeta_{3}\xi, \zeta_{2}\zeta_{3}\xi, (-\lambda + 2)t) \end{cases}
215
                       from given (A^{3.3.2}), we get
216

\dot{\mathcal{M}}(\zeta_{1}\xi,\zeta_{3}\zeta_{2}\xi,\zeta_{3}\zeta_{2}\xi,kt)

\dot{\mathcal{M}}(\Delta_{5}\zeta_{4}\xi,\zeta_{1}\xi,\zeta_{1}\xi,t),\dot{\mathcal{M}}(\zeta_{3}\Delta_{6}\zeta_{3}\xi,\zeta_{3}\zeta_{2}\xi,\zeta_{3}\zeta_{2}\xi,t),

\dot{\mathcal{M}}(\Delta_{5}\zeta_{4}\xi,\zeta_{3}\Delta_{6}\zeta_{3}\xi,\zeta_{3}\Delta_{6}\zeta_{3}\xi,t),

\dot{\mathcal{M}}(\zeta_{3}\Delta_{6}\zeta_{3}\xi,\zeta_{1}\xi,\zeta_{1}\xi,\lambda t),\dot{\mathcal{M}}(\Delta_{5}\zeta_{4}\xi,\zeta_{3}\zeta_{2}\xi,\zeta_{3}\zeta_{2}\xi,(-\lambda+2)t),

(3.7), one can have
217
218
                       By equation (3.7), one can have
219

\dot{\mathcal{M}}(\xi,\zeta_{3}\xi,\zeta_{3}\xi,kt) \geq \min \begin{cases} \dot{\mathcal{M}}(\xi,\xi,\xi,t), \dot{\mathcal{M}}(\zeta_{3}\xi,\zeta_{3}\xi,\zeta_{3}\xi,t), \dot{\mathcal{M}}(\xi,\zeta_{3}\xi,\zeta_{3}\xi,t), \\ \dot{\mathcal{M}}(\zeta_{3}\xi,\xi,\xi,\lambda t), \dot{\mathcal{M}}(\xi,\zeta_{3}\xi,\zeta_{3}\xi,(-\lambda+2)t) \end{cases}.

220
221
                       Considering as \lambda tend to 1,

\mathring{\mathcal{M}}(\xi,\zeta_3\xi,\zeta_3\xi,kt) \ge \min\{1,\mathring{\mathcal{M}}(\xi,\zeta_3\xi,\zeta_3\xi,t)\}, \text{ i.e., } \mathring{\mathcal{M}}(\xi,\zeta_3\xi,\zeta_3\xi,kt) \ge \mathring{\mathcal{M}}(\xi,\zeta_3\xi,\zeta_3\xi,t).

222
223
                       Form Lemma 2.11, we have
                                                                                                              \xi=\zeta_3\xi \text{ and } \xi=\Delta_6\zeta_3\xi \text{ i.e., } \xi=\Delta_6\xi.
224
                       Therefore, \xi = \zeta_3 \xi = \Delta_6 \xi.
225
                                                                                                                                                                                                                                                                                                   (3.8)
226
                        Again, if we put \zeta_4 \xi = \varpi and w = \xi in (A^{3.3.4}), we obtain
227
                                                                                                                    \mathcal{M}(\zeta_1\zeta_4\xi,\zeta_2\xi,\zeta_2\xi,kt)
                      228
229
                      \begin{array}{c} \text{Im}\,(\zeta_4\zeta_1\xi,\zeta_2\xi,\zeta_2\xi,kt) \\ & \stackrel{\textstyle \acute{\mathcal{M}}}{\textstyle } (\zeta_4\Delta_5\zeta_4\xi,\zeta_4\zeta_1\xi,\zeta_4\zeta_1\xi,t), \mathring{\mathcal{M}}(\Delta_6\zeta_3\xi,\zeta_2\xi,\zeta_2\xi,t), \\ & \stackrel{\textstyle \acute{\mathcal{M}}}{\textstyle } (\zeta_4\Delta_5\zeta_4\xi,\Delta_6\zeta_3\xi,\Delta_6\zeta_3\xi,\lambda_6\zeta_3\xi,t), \\ & \mathring{\mathcal{M}}(\zeta_4\Delta_5\zeta_4\xi,\Delta_6\zeta_3\xi,\Delta_6\zeta_3\xi,t), \\ & \mathring{\mathcal{M}}(\Delta_6\zeta_3\xi,\zeta_4\zeta_1\xi,\zeta_4\zeta_1\xi,\lambda t), \mathring{\mathcal{M}}(\zeta_4\Delta_5\zeta_4\xi,\zeta_2\xi,\zeta_2\xi,(-\lambda+2)t). \end{array}  From equation (2.7), we get
230
231
232

\dot{\mathcal{M}}(\zeta_{4}\xi,\xi,\xi,kt) \geq \min \begin{cases} \dot{\mathcal{M}}(\zeta_{4}\xi,\zeta_{4}\xi,\zeta_{4}\xi,t), \dot{\mathcal{M}}(\zeta_{4}\xi,\xi,\xi,t), \dot{\mathcal{M}}(\zeta_{4}\xi,\xi,\xi,t), \\ \dot{\mathcal{M}}(\xi,\zeta_{4}\xi,\zeta_{4}\xi,\lambda t), \dot{\mathcal{M}}(\zeta_{4}\xi,\xi,\xi,(-\lambda+2)t) \end{cases} \\
\dot{\mathcal{M}}(\zeta_{4}\xi,\xi,\xi,kt) \geq \min \{1,1,\dot{\mathcal{M}}(\zeta_{4}\xi,\xi,\xi,t),\dot{\mathcal{M}}(\xi,\zeta_{4}\xi,\zeta_{4}\xi,\lambda t),\dot{\mathcal{M}}(\zeta_{4}\xi,\xi,\xi,(-\lambda+2)t)\},

233
234
235
                       as \lambda assumes to 1,

\mathring{\mathcal{M}}(\zeta_4\xi,\xi,\xi,kt) \ge \min\{1,\mathring{\mathcal{M}}(\zeta_4\xi,\xi,\xi,t)\}, \text{ i.e., } \mathring{\mathcal{M}}(\zeta_4\xi,\xi,\xi,kt) \ge \mathring{\mathcal{M}}(\zeta_4\xi,\xi,\xi,t).

236
```

```
237
                         By, considering Lemma 2.11, we get
                                                                                                                       \xi = \overline{\zeta_4}\xi and \xi = \Delta_5 \zeta_4 \xi i.e., \xi = \zeta_4 \xi.
238
239
                         Thus, \xi = \zeta_4 \xi = \Delta_5 \xi.
                                                                                                                                                                                                                                                                                                                    (3.9)
                         Using equations (3.7), (3.8) and (3.9), one can obtain
240
                                                                                                                \xi = \Delta_6 \xi = \Delta_5 \xi = \zeta_4 \xi = \zeta_3 \xi = \zeta_2 \xi = \zeta_1 \xi.
241
                         Hence, \xi is CFP of six self-maps \zeta_1, \zeta_2, \zeta_3, \zeta_4, \Delta_5 and \Delta_6.
242
                         Uniqueness: To show uniqueness of FP, let \mathfrak{u}_{\sigma} be another FP of six self-maps \zeta_1, \zeta_2, \zeta_3, \zeta_4, \Delta_5
243
                         and \Delta_6 i.e., \zeta_1\mathfrak{u}_{\sigma}=\zeta_2\mathfrak{u}_{\sigma}=\zeta_3\mathfrak{u}_{\sigma}=\zeta_4\mathfrak{u}_{\sigma}=\Delta_5\mathfrak{u}_{\sigma}=\Delta_6\mathfrak{u}_{\sigma}=\mathfrak{u}_{\sigma}. Put \xi=\varpi and \mathfrak{u}_{\sigma}=w in (A<sup>3.3.4</sup>),
244
245
                         one can have
                                         246
247
                       Letting as \lambda \to 1, we obtain  \begin{split} \mathring{\mathcal{M}}(\xi, \mathfrak{u}_{\sigma}, \mathfrak{u}_{\sigma}, kt) &\geq \min \left\{ \begin{matrix} \mathring{\mathcal{M}}(\Delta_{5}\xi, \xi, \xi, t), \mathring{\mathcal{M}}(\Delta_{6}\mathfrak{u}_{\sigma}, \mathfrak{u}_{\sigma}, \mathfrak{u}_{\sigma}, t), \mathring{\mathcal{M}}(\Delta_{5}\xi, \Delta_{6}\mathfrak{u}_{\sigma}, \Delta_{6}\mathfrak{u}_{\sigma}, t), \\ \mathring{\mathcal{M}}(\Delta_{6}\mathfrak{u}_{\sigma}, \xi, \xi, t), \mathring{\mathcal{M}}(\Delta_{5}\xi, \mathfrak{u}_{\sigma}, \mathfrak{u}_{\sigma}, t) \end{matrix} \right\}, \\ \mathring{\mathcal{M}}(\xi, \mathfrak{u}_{\sigma}, \mathfrak{u}_{\sigma}, kt) &\geq \min \left\{ \begin{matrix} \mathring{\mathcal{M}}(\xi, \xi, \xi, t), \mathring{\mathcal{M}}(\mathfrak{u}_{\sigma}, \mathfrak{u}_{\sigma}, \mathfrak{u}_{\sigma}, t), \mathring{\mathcal{M}}(\xi, \mathfrak{u}_{\sigma}, \mathfrak{u}_{\sigma}, t), \\ \mathring{\mathcal{M}}(\mathfrak{u}_{\sigma}, \xi, \xi, t), \mathring{\mathcal{M}}(\xi, \mathfrak{u}_{\sigma}, \mathfrak{u}_{\sigma}, t), \\ \mathring{\mathcal{M}}(\mathfrak{u}_{\sigma}, \xi, \xi, t), \mathring{\mathcal{M}}(\xi, \mathfrak{u}_{\sigma}, \mathfrak{u}_{\sigma}, t) \end{matrix} \right\}. \end{split}  Then, \mathring{\mathcal{M}}(\xi, \mathfrak{u}_{\sigma}, \mathfrak{u}_{\sigma}, kt) \geq \min \left\{ 1, \mathring{\mathcal{M}}(\xi, \mathfrak{u}_{\sigma}, \mathfrak{u}_{\sigma}, t) \right\} \text{ i.e., } \mathring{\mathcal{M}}(\xi, \mathfrak{u}_{\sigma}, \mathfrak{u}_{\sigma}, kt) \geq \mathring{\mathcal{M}}(\xi, \mathfrak{u}_{\sigma}, \mathfrak{u}_{\sigma}, t). \end{split} 
248
249
250
251
252
                         Hence, \xi = \mathfrak{u}_{\alpha}.
                         Thus, we established the uniqueness of CFP \xi.
253
254
                         Example 3.4: Let \check{\mathfrak{A}} = [-3,3] be a complete in \mathcal{M}-FMS and two self-maps \widetilde{\wp}, T: \check{\mathfrak{A}} \to \check{\mathfrak{A}} be
255
                        defined as: \widetilde{\wp}(\varpi) = \begin{cases} 6 & \text{if } \varpi = \frac{1}{3} \\ \varpi & \text{if } \varpi \in [-3,2] - \left\{\frac{1}{3}\right\} \text{ and } \mathring{T}(\varpi) = \left\{\frac{\frac{1}{3}}{\frac{3}{6}} & \text{if } \varpi \in [-3,2] \\ \frac{(4-\varpi)}{6} & \text{if } \varpi \in (2,3] \end{cases}
256
                        Now, consider a sequence \mathfrak{p}_m=2+\frac{1}{6m} from \mathfrak{V}, for each non-negative integer m. Letting as,
257
                        m tends to \infty, both \widetilde{\wp}\mathfrak{p}_m and \acute{T}\mathfrak{p}_m converges to \frac{1}{3} i.e., \lim_{m\to\infty}\widetilde{\wp}\mathfrak{p}_m=\lim_{m\to\infty}\acute{T}\mathfrak{p}_m=\frac{1}{3}. Since, \widetilde{\wp}\left(\frac{1}{3}\right)=0
258
                        6 and \hat{T}\left(\frac{1}{2}\right) = \frac{1}{3}, thus, one can obtain
259
                                                            \lim_{m \to \infty} \widetilde{\wp} \widetilde{\wp} \mathfrak{p}_{m} = \lim_{m \to \infty} \widetilde{\wp} \widetilde{\wp} \left( 2 + \frac{1}{6m} \right) = \lim_{m \to \infty} \widetilde{\wp} \left( \frac{1}{3} - \frac{1}{36m} \right) = \frac{1}{3} = \widehat{T} \left( \frac{1}{3} \right),
\lim_{m \to \infty} \widehat{T} \widehat{T} \mathfrak{p}_{m} = \lim_{m \to \infty} \widehat{T} \widehat{T} \left( 2 + \frac{1}{6m} \right) = \lim_{m \to \infty} \widehat{T} \left( \frac{1}{3} + \frac{1}{36m} \right) = \frac{1}{3} \neq \widetilde{\wp} \left( \frac{1}{3} \right) = 6,
\lim_{m \to \infty} \widetilde{\wp} \widehat{T} \mathfrak{p}_{m} = \lim_{m \to \infty} \widetilde{\wp} \widehat{T} \left( 2 + \frac{1}{6m} \right) = \lim_{m \to \infty} \widetilde{\wp} \left( \frac{1}{3} + \frac{1}{36m} \right) = \lim_{m \to \infty} \left( \frac{1}{3} + \frac{1}{36m} \right) = \frac{1}{3},
\lim_{m \to \infty} \widehat{T} \widetilde{\wp} \mathfrak{p}_{m} = \lim_{m \to \infty} \widehat{T} \widetilde{\wp} \left( 2 + \frac{1}{6m} \right) = \lim_{m \to \infty} \widehat{T} \left( \frac{1}{3} - \frac{1}{36m} \right) = \frac{1}{3}.
260
261
262
263
                         Hence, the maps not compatible of type (K)
264
265
                         Corollary 3.5: Consider (\check{\mathfrak{A}}, \acute{\mathcal{M}}, \widehat{\mathfrak{S}}) be a complete \mathcal{M}-FMS. If \zeta_1, \zeta_2, \zeta_3 and \zeta_4 are self-maps
266
267
                         on M s.t. they satisfies:
                         (3^{3.5.1}) \zeta_1(\widecheck{\mathfrak{A}}) \subset \zeta_3(\widecheck{\mathfrak{A}}), \zeta_2(\widecheck{\mathfrak{A}}) \subset \zeta_4(\widecheck{\mathfrak{A}});
268
                         (A^{3.5.2}) (\zeta_1, \zeta_4), (\zeta_2, \zeta_3) is compatible of type (K) where one of them is continus;
269
                           (A^{3.5.3}) for all \varpi, w, \xi \in \mathfrak{A} and 0 < \lambda < 2, \exists 0 < k < 1 s.t.:
270
                                                        \begin{split} & \acute{\mathcal{M}}(\zeta_1\varpi,\zeta_2w,\zeta_2w,kt) \\ \geq \min \begin{cases} \acute{\mathcal{M}}(\zeta_3\varpi,\zeta_1\varpi,\zeta_1\varpi,t), \acute{\mathcal{M}}(\zeta_4w,\zeta_2w,\zeta_2w,t), \acute{\mathcal{M}}(\zeta_3\varpi,\zeta_4w,\zeta_4w,t), \\ \acute{\mathcal{M}}(\zeta_4w,\zeta_1\varpi,\zeta_1\varpi,\lambda t), \acute{\mathcal{M}}(\zeta_3\varpi,\zeta_2w,\zeta_2w,(-\lambda+2)t) \end{cases}. \end{split}
271
272
273
                         Then, self-maps \zeta_1, \zeta_2, \zeta_3 and \zeta_4 have unique CFP in \mathfrak{A}.
                         Proof: If we consider \Delta_5 = \Delta_6 = I in Theorem 3.3, one can easily do the proof.
274
```

```
276
             Corollary 3.6: Consider (\widecheck{\mathfrak{A}}, \mathscr{M}, \widehat{\mathfrak{S}}) be a complete \mathscr{M}-FMS. If \zeta_1, \zeta_2 and \zeta_3 are three self-maps
277
             on \mathfrak{V} s.t. they satisfies:
```

278
$$(A^{3.6.1}) \zeta_1(\widecheck{\mathfrak{U}}) \subset \zeta_2(\widecheck{\mathfrak{U}}) \cap \zeta_3(\widecheck{\mathfrak{U}});$$

279
$$(A^{3.6.2})$$
 (ζ_1, ζ_2) , (ζ_1, ζ_3) is compatible of type (K), where ζ_1 is continus;

280 (
$$A^{3.6.3}$$
) for every ϖ , w , $\xi \in \mathfrak{A}$ and $0 < \lambda < 2$, $\exists 0 < k < 1$ s.t.:

$$\mathcal{M}(\zeta_1 \varpi, \zeta_1 w, \zeta_1 w, kt)$$

281
$$\dot{\mathcal{M}}(\zeta_{1}\varpi,\zeta_{1}w,\zeta_{1}w,kt)$$
282
$$\geq \min \begin{cases}
\dot{\mathcal{M}}(\zeta_{2}\varpi,\zeta_{1}\varpi,\zeta_{1}\varpi,t),\dot{\mathcal{M}}(\zeta_{3}w,\zeta_{1}w,\zeta_{1}w,t),\dot{\mathcal{M}}(\zeta_{2}\varpi,\zeta_{3}w,\zeta_{3}w,t),\\
\dot{\mathcal{M}}(\zeta_{4}w,\zeta_{1}\varpi,\zeta_{1}\varpi,\lambda t),\dot{\mathcal{M}}(\zeta_{2}\varpi,\zeta_{1}w,\zeta_{1}w,(-\lambda+2)t)
\end{cases}.$$

Then, self-maps ζ_1, ζ_2 and ζ_3 have unique CFP in \mathfrak{X} .

Proof: By considering $\zeta_3 = \zeta_4 = I$ in Corollary 2.2, one can have the proof.

285 4. CONCLUSION 286

281

283

284

287

288 289

290 291

292 293

294

295

296 297

298

299

300

301

302 303

304 305

306 307

308 309 310 In this paper, we initially defined the notion of compatible of type (K) for generalized FMS. By using compatible self-maps of type (K) we established CFP theorems in M-FMS. Also, some related examples are proved, since FP theory has many applications in various field of mathematics for uniqueness and existence of solution of differential and integral equations. These results extend and generalized some FP results existing in the literature.

ABBREVIATIONS

FMS: fuzzy metric space; FPT: fixed point theory; CFP: common Fixed point; s.t.: such that.

AUTHOR CONTRIBUTIONS

Rathee M. analysis the study, managed the literature and wrote the complete the manuscript. Singh R. managed the analyses of the study. All authors have read, agreed to the published version of the manuscript and approved the final manuscript.

ACKNOWLEDGEMENTS

The authors grateful to the referees for their valuable comments and thoughtful suggestions.

CONFLICTS OF INTEREST

The authors declare no conflict of interest.

Ethics Approval and Data Availability Statements

Not Applicable

References

- 311 [1] George A. and Veeramani P. (1994), On some results in fuzzy metric spaces, Fuzzy Sets 312 Systems, 64, 395-399.
- 313 [2] Grebiec M. (1988). Fixed points in fuzzy metric spaces, Fuzzy Sets and System, 27 314 (1988), 385-389.
- 315 [3] Jha K., V. Popa and K.B. Manandhar (2014). Common fixed points for compatible mappings of type (K) in metric space, Int. J. Math. Sci. Eng. Appl., 8 (2014), 383-391. 316
- [4] Jungck G. (1986). Compatible mappings and common fixed points, Int. J. Math. Math. 317 318 Sci., 9(4), 771-779.
- [5] Jungck G. P.P. Murthy and Y.J. Cho (1993). Compatible mappings of type (A) and 319 common fixed points, Math. Japonica, 38 (1993), 381-390. 320
- [6] Kramosil O. and J. Michalek (1975). Fuzzy metric and statistical metric spaces, 321 322 Kybernetika, 11, 336-344.

- 323 [7] Manandhar K.B., K. Jha and H.K. Pathak (2014). A Common Fixed-Point Theorem for Compatible Mappings of Type (E) in Fuzzy Metric space, Applied Mathematical Sciences, 8(41), 2007-2014.
- 326 [8] Mishra S.N., Sharma S.N. and S.L. Singh (1994). Common fixed point of maps in fuzzy metric spaces, Internat. J. Math. Sci., 17, 253-258.
- 328 [9] Pant R.P. (1994). Common fixed points of non-commuting mappings, J. Math. Anal. Appl., 329 188, 436–440.
- [10] Pathak H.K., Y.J. Gho, S.S. Chang and S.M. Kang (1996), Compatible mappings of type
 (P) and fixed-point theorems in metric spaces and probabilistic metric spaces, Novisad J.
 Math., 26(2), 87-109.
- [11] Rao R. and B.V. Reddy (2016). Compatible Mappings of Type (K) and common Fixed Point of a Fuzzy Metric Space, Adv. in Theoretical and Applied Math., 11(4), 443-449.
- 335 [12] Schweizer B. and A. Sklar (1960). Statical metric spaces, Pac. J. Math., 10, 314–334.
 - [13] Sedghi S. and N. Shobe (2006). Fixed point theorem in M-fuzzy metric spaces with property (E), Advances in fuzzy mathematics, 1(1), 55-65.
- [14] Sedghi S., A. Gholidahneh and K.P.R. Rao (2017). Common fixed point of two R-weakly commuting mapping in Sb-metric space, Math. Sci., 6(3), 249-253.
- [15] Swati A. K.K. Dubey and V.K. Gupta (2022). Common Fixed point of compatible type (K)
 mappings fuzzy metric spaces, South East Asian J. of Math. And Mathe. Sci., 18(2), 245 258.
- 343 [16] Zadeh L.A. (1965). Fuzzy sets, Inform. Control, 8, 338–353.