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Mathematical Modeling and Equilibrium
Analysis of Early Life Stress Using a
Modified SEIR Framework
Abstract
Early life stress (ELS) are adverse childhood exposures and exerts profound effects on brain development in children and mental health in later life. We formulated and solved a deterministic SEIR type model to describe the effects of ELS on child populations in urban areas in Kenya. The model involved environmental, genetic, neurobiological, and resilience factors with crucial dynamics and relapse. Equilibrium states were derived, and the local and global stability of the equilibriums were rigorously investigated by Mathematical analysis. The model identified significant patterns of progression of stress and provides a foundation for evaluating intervention approaches. Sensitivity of Stress Propagation Index R0  shows that resilience and environmental exposure are key determinants of the dynamics of mental health. The findings are of relevance to mental health professionals, public health policy makers, educational and social services, and the general public.
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1	Introduction
Early life stress (ELS) is a major risk factor for adverse mental health outcomes. The timing and accumulation of stress during critical developmental periods can alter neurobiological systems, increasing vulnerability to psychiatric disorders such as anxiety disorders, depression, Post Traumatic Stress Disorder (PTSD)  and drug abuse [2].
Over 60% Studies in Kenya have highlighted the high prevalence of adverse childhood experiences (ACEs) among Kenyan children and adolescents, with significant associations to mental health issues[1]. Additionally, maternal mental health has been shown to mediate the relationship between maternal ACEs and child mental health problems, emphasizing the intergenerational impact of early life stress. Most of urban populations live in informal settlements where children are routinely exposed to chronic stressors such as food insecurity, poor housing conditions, exposure to violence and lack of access to mental health care. The Nairobi Urban Health and Demographic Surveillance System (NUHDSS) has consistently reported high levels of psychosocial stress and limited mental health support structures in informal settlements [1,4].
Mathematical modeling provides a structured framework for understanding the transmission and persistence of stress effects within a population, integrating neuroimaging studies, longitudinal cohort data and psychological assessments [4]. However, there remains a gap in comprehensive models that holistically integrate genetic predispositions, environmental influences and psychosocial factors. This paper developed a modified SEIR model for ELS and analyzed its equilibrium behavior and stability. It contributes to the identification of thresholds and provides intervention strategies to reduce the burden of mental health in children.
2	Literature Review
In this chapter existing research is reviewed on the effects of early life stress (ELS) on brain development and mental health trajectories.
Impact of ELS on brain development and behavior by [7] used zebrafish as a model organism to study the impact of ELS on brain development and behavior. The model leverages the genetic and neuroanatomical similarities between zebrafish and humans to examine stress responses. A common formulation used in this type of model involved modeling stress-induced changes in gene expression using a system of differential equations:
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Where: G(t) represents the level of a specific gene expression at time t. β is the baseline gene expression rate. γ is the decay rate of gene expression. δ represents the effect of stress S(t) on gene expression.
This equation helped to understand how ELS influences gene expression patterns related to stress and developmental outcomes. Translating findings from zebrafish to human neurodevelopment requires careful consideration of species-specific differences in stress responses.
Backward bifurcation in a two strain model of Heroine Addiction by  [11], they introduced and analyzed a two-strain epidemic model with the superinfection for modeling the effect of prescribed opioids abuse on heroin addiction. The total population of the community is divided into the following groups, susceptible individuals S, individuals infected with strain one, i.e., individuals who abuse prescription opioids I1, individuals infected with strain two, i.e., individuals addicted to heroin I2, and individuals under treatment/rehabilitation R. The number of individuals in this compartments is denoted by S,I1,I2 and R respectively. The numbers 12  show the rate of infection in strains one and two, respectively. Among the various causes of heroin addiction, the use of prescription opioids is one of the main reasons. The model contains the impact of relapse of individuals under treatment/rehabilitation to drug abuse in each strain and was formulated as follows;
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Modeling of substance abuse and its progression stages by  [8] , a model was developed on Substance-Abuse and Its Progression Stages. Substance-abuse. Mathematical model was used to study the dynamism of substance abuse and its various stages of progression from the justification that substance abuse leads to substance addiction with the development of tolerance and dependence.
The model was formulated under the following assumptions that, total population comprises Susceptible (S), Substance Abusers (A), Substance Addicts (Q), substance Tolerants (T), substance Dependents (D) and Rehabilitants (R) with the assumptions that new recruitment into the system are in the susceptible class, rehabilitation does not provide permanent recovery therefore rehabilitated persons could become susceptible again and that the rehabilitation center is strictly inpatient so as to avoid relapsing. The model equations were formulated as follows:
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where N = S + A + Q + T + D + R,
subject to the initial conditions;
t = 0,	S(0) = S0,	A(0) = A0,	Q(0) = Q0,	T(0) = T0,	D(0) = D0,	R(0) = R0 with µ,γ,α,β,δ,ρ as parameters.
In this research, epidemiological approach was adopted in the mathematical model which enabled scientists to study the dynamism of substance-abuse and its various stages of progression. With this in mind, a comprehensive mathematical model was crucial for understanding the mechanisms underlying the effects of early life stress on brain development and mental health trajectories using epidemiological approach in the model development.
3	Model Development
This SEIR model is designed to study how early life stress (ELS) impacts brain development and mental health. It categorizes individuals into four groups: susceptible ( S), exposed (E), impaired (I), recovered (R), and models how individuals transition between these states based on the population changes over time. The dynamics are influenced by vital demographic processes (births and deaths) and modulated by biological, genetic, and psychological factors.
We define four compartments:
S(t): Susceptible children (not yet exposed to ELS)
E(t): Exposed children (experienced ELS, no symptoms)
I(t): Impacted children (symptomatic mental health burden)
R(t): Recovered children (temporary resolution of symptoms)
The model equations incorporating birth-death dynamics and relapse are:




	 (4)
From the above definitions and descriptions, the resulting diagram for the model is given
as;
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Figure 1: Schematic diagram of the SEIR model for Early Life Stress ( ELS )
Model Parameters:
β = 0.28: Stress exposure rate 
Ef = 0.65: Environmental factor index 
Rf = 0.35: Resilience factor 
Nf = 0.52, Gf = 0.40: Neurobiological and genetic factors 
 α = 0.18: Incubation rate 
σ = 0.12: Recovery rate 
γ = 0.06: Relapse rate 
Λ = 0.025, µ = 0.015: Birth and death rates 
 p1 = 0.70, p2 = 0.25, p3 = 0.05: Birth distribution proportions 
4	Model Analysis.
The well-posedness of the differential equations for the model formulated in this study was demonstrated by proving several theorems on the feasibility, boundedness, equilibria , local and global stabilities.
4.1	Positivity
From the model equations, we establish that the model is biologically meaningful by showing that the state variables (representing population sizes) remain non-negative and bounded for all time, given non-negative initial conditions. Positivity ensures that the population sizes are non negative, for it to be realistic due to resource limitations or other constraints.
If S = 0 at some time t0, then
                                       [image: ]0	(4)
assuming Λ > 0 and p1 > 0. This ensures S cannot become negative.
If E = 0 at some time t0, then
[image: ]0	(5)
assuming Λ > 0 and p2 > 0. This ensures E remains non-negative.
If I = 0 at some time t0, then
[image: ]0	(6)
assuming Λ > 0 and p3 > 0. This ensures I remains non-negative.
If R = 0 at some time t0, then
                                          [image: ]0	(7)
since I ≥ 0 and σ > 0. This ensures R remains non-negative.
Therefore, the system preserves positivity of all state variables, making it biologically meaningful. The solution trajectories that start in the non-negative orthant[image: ]  remain in[image: ] for all t ≥ 0.
4.2	Boundedness
For a biologically realistic model, we need to show that the total population remains bounded over time. Let N = S + E + I + R be the total population in the system.
By adding all equations in our system, we obtain:
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                                                                                                    (9)
	
Assuming that p1 + p2 + p3 = 1 (i.e., the birth rates into different compartments sum to 1), we have:
                                                          [image: ]	 (10)
This is a linear first-order ordinary differential equation which can be solved using standard techniques. Therefore, the total population N(t) is bounded above by [image: ], regardless of the initial conditions. This constant [image: ] represents the carrying capacity of the population in this model. We define a positively invariant region:
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If[image: ], then [image: ] for all t ≥ 0.
If[image: ], then N(t) will eventually be less than or equal to [image: ]increases.
This boundedness property ensures that the solutions of the system are Well-posedness and biologically meaningful. Positivity and boundedness of the SEIR-ELS model has been established thus making it biologically meaningful.
4.3	Stress Propagation Index R0
We define the infected state vector:
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We separate the system into:
F(x): the rate of new infections
V(x): the rate of transfer in/out of infected compartments (not due to new infections)
New Infection Terms
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This represents the expected number of new symptomatic cases caused by stressors in a fully susceptible population.
4.4	Sensitivity Analysis of the Stress Propagation Index R0
Sensitivity analysis is performed to evaluate the impact of model parameters on the transmission dynamics of early life stress (ELS). The normalized forward sensitivity index for each parameter x is defined as:
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4.5	Disease-Free Equilibrium ( DFE )
The Disease-Free Equilibrium represents a state of mental health system where no active progression of stress-related mental health issues occurs. Its stability is crucial in understanding how early life stress can potentially trigger or prevent long-term mental health trajectories.
At the DFE, E = I = R = 0, and
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4.6 Local Stability of Disease-Free Equilibrium We compute the Jacobian matrix of the system at the DFE:



so its eigenvalues are the diagonal entries:
λ1 = −βEf(1 − Rf) − µ < 0 
λ2 = −α(Nf + Gf) − µ < 0 
λ3 = −(σ − γRf + µ) < 0
 λ4 = −µ < 0
By Routh-Hurwitz Stability Criterion, all eigenvalues of the Jacobian have negative real parts thus when
R0 < 1, we have:
Tr(J) < 0,	det(J) > 0
This ensures that the recovery-driven feedback (relapse loop) is not stronger than the combined forces of recovery and natural death. Thus, when R0 < 1, the disease-free equilibrium is locally asymptotically stable, and this means that small perturbations from the DFE will decay over time, leading the system back to the disease-free state.
4.7	Global Stability of Disease-Free Equilibrium
To establish the global stability of DFE, we apply the Castillo-Chavez and Song theorem [3]. Consider the subsystem with E = I = 0:
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:
[image: ]0	as t → ∞








Using the Castillo-Chavez approach [3], if R0 < 1, then the disease-free equilibrium is globally asymptotically stable.
4.8	Endemic Equilibrium ( EE )
At the endemic equilibrium:
[image: ]
4.9	Local Stability of Endemic Equilibrium
The eigenvalues are the diagonal entries of the Jacobian matrix.
λ1 = −βEf(1 − Rf),
λ2 = −α(Nf + Gf) − µ,
λ3 = −σ + γRf − µ,
λ4 = −µ
Tr(J) = −βEf(1 − Rf) − α(Nf + Gf) − σ + µ − γRf − µ
The stability of the endemic equilibrium depends on the value of R0 and the biological parameters.
When
R0 > 1,	Tr(J) < 0,	det(J) > 0,
all eigenvalues have negative real parts when
σ + µ > γRf,R0 > 1
then
Tr(J) < 0,det(J) > 0
so the endemic equilibrium is locally asymptotically stable.
4.10	Global Stability of Endemic Equilibrium
Let a Lyapunov function be:
V (E,I) = a(E − E∗)2 + b(I − I∗)2
where a,b > 0 are constants. Then V˙ ≤ 0 when R0 > 1. Hence, the endemic equilibrium is globally stable when stress is endemic in the population.
5	Discussion
This study developed a compartmental SEIR model to understand the effects of early life stress on childhood and adolescent mental health, incorporating key biological, environmental, and resilience-related parameters. Key findings showed that Stress Propagation Index R0 is highly sensitive to Environmental factor index Ef, Resilience factor Rf, and Incubation rate α.
A positive index indicates that an increase in the parameter increases R0, while a negative index suggests that increasing the parameter decreases R0.





	Parameter
	Symbol
	Sensitivity Index

	Stress transmission rate
	β
	+1.000

	Environmental factor
	Ef
	+1.000

	Resilience factor
	Rf
	−0.538

	Incubation rate
	α
	−0.917

	Neurobiological factor
	Nf
	−0.518

	Genetic factor
	Gf
	−0.399

	Natural death rate
	µ
	−0.083


Table 1: Normalized sensitivity indices of R0 with respect to model parameters.
Increasing resilience factors significantly reduce the size and duration of the impacted population, while reducing environmental stressors delays symptom onset and flattened the progression curve. In contrast, increasing the incubation rate accelerated transitions from exposure to impact, underscoring the importance of early intervention.
The model also demonstrated how births, deaths, and background stress levels influence population flow through the compartments over time. 
6	Conclusion
A structured SEIR model of early life stress was developed and rigorously analyzed. Both local and global stability conditions were derived, offering insights into how resilience and environmental quality affect stress dynamics. The model is particularly suited for forecasting mental health outcomes in response to early adversity, making it a useful tool for public health and policy interventions in settings where large-scale interventions are needed. Overall, the results emphasizes on the critical role of resilience-building, environmental improvement, and early intervention in mitigating long-term psychological impacts of early life stress.
By incorporating both biological and social factors, the ELS model presents a holistic view of early life stress dynamics, offering important insights for future research and practical applications in mental health.
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