
Abstract

For a graph G = (V,E), the open neighbourhood hypergraph of G, denoted by ONH(G), is the

hypergraph with vertex set V and edge set {NG(x)|x ∈ V }. A vertex cover in ONH(G) is a set

of vertices intersecting every edge of ONH(G), which is equivalent to a total dominating set in G.

Using the interplay between total dominating sets and vertex cover in hypergraphs, we determine

the total domination polynomial of some classes of graphs.
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1 Introduction

A graph is an ordered pair G = (V (G), E(G)), where V (G) is a finite non-empty set and E(G) is a

collection of unordered pairs of vertices called edges. If u and v are two vertices of a graph and if

the unordered pair {u, v} is an edge denoted by e, we say that e is an edge between u and v. We

write the edge {u, v} as uv. An edge of the form uu is known as a loop. The open neighbourhood of

a vertex v ∈ V (G) is NG(v) = {u ∈ V |uv ∈ E(G)}. If the graph G is clear from the context, we write

N(v) rather than NG(v). Notations and definitions not given here can be found in Balakrishnan and

Ranganathan, 2012,Berge and Minieka, 1973 or Henning and Yeo, 2008. A hypergraph H = (V,E) is

a finite nonempty set V = V (H) of elements called vertices, together with a finite multi set E = E(H)
of subsets of V, called hyper edges or simply edges. The order and size of H are |V | and |E|,
respectively. A k-edge in H is an edge of size k. The hypergraph H is said to be k-uniform if every

edge of H is a k-edge. Every simple graph is a 2-uniform hypergraph. In a hypergraph, an edge Ei

with |Ei| = 2, is drawn as a curve connecting its two vertices. An edge Ei with |Ei| = 1, is drawn

as a loop as in a graph. A subset T of vertices in a hypergraph H is a transversal(also called vertex

cover ) if T has a nonempty intersection with every edge of H. The transversal number τ(H) of H

is the minimum size of a transversal in H. For further information on hypergraphs refer Berge and

Minieka, 1973 or Voloshin, 2009. Let C(H, i) be the family of vertex covering sets of H with cardinality

i and let c(H, i) = |C(H, i)|. The polynomial C(H,x) =

|V (H)|
∑

i=τ(H)

c(H, i)xi
is defined as vertex cover
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polynomial of H. For a graph G = (V,E), the ONH(G) or HG is the open neighbourhood hypergraph

of G; HG = (V,C) is the hypergraph with vertex set V (HG) = V and with edge set E(HG) = C =
{NG(x)|x ∈ V }, consisting of the open neighbourhoods of vertices of V in G.A total dominating set,

abbreviated TD-set, of a graph G = (V,E) with no isolated vertex is set S of vertices of G such that

every vertex of G is adjacent to a vertex in S. The total domination number of G, denoted by γt(G),
is the minimum cardinality of a TD-set of G. Let Dt(G, i) be the family of total dominating sets of G

with cardinality i and let dt(G, i) = |Dt(G, i)|. The polynomial Dt(G, x) =

|V (G)|
∑

i=γt(G)

dt(G, i)xi
is defined

as total domination polynomial of GVijayan and Kumar, 2012. Here we need the following.

Definition 1.1. A graph G in which a vertex is distinguished from other vertices is called a rooted

graph and the vertex is called the root of G. Let G be a rooted graph. The graph G(n) obtained by

identifying the roots of n copies of G is called a one-point union of the n copies of G.

Definition 1.2. An n-gon book of k pages denoted by C
2(k)
n is the graph obtained when k copies of

the cycle Cn share a common edge.

Definition 1.3. Given k natural numbers, the generalized theta graph θ(n1, n2, . . . , nk) is obtained

by connecting two vertices u and v by k parallel paths of length n1 − 1, n2 − 1, . . . , nk − 1.

Definition 1.4. The tree Tn1,n2,n3
is a rooted tree consisting of three branches of length n1, n2 and

n3.

Theorem 1.1. Henning and Yeo, 2008 The ONH of a connected bipartite graph consists of two

components, while the ONH of a connected graph that is not bipartite is connected.

Theorem 1.2. Henning and Yeo, 2013 If G is a graph with no isolated vertex and HG is the ONH of

G, then γt(G) = τ(HG).

Theorem 1.3. Dong et al., 2002 Let G be a graph and L = {x ∈ V (G)| xx ∈ E(G)}. Then C(G, x) =
x|L|C(G− L, x).

Theorem 1.4. Dong et al., 2002 Let G be a graph with no loops and V (G) ≥ 2. Let u ∈ V (G) and

d = |NG(u)|. Then C(G, x) = xC(G− u, x) + xdC(G− u−NG(u), x).

Theorem 1.5. Dong et al., 2002 Let G = G1 ∪ G2 be the union of two graphs G1 and G2. Then,

C(G, x) = C(G1, x)C(G2, x).

Theorem 1.6. Dong et al., 2002 For the path graph Pn, where n > 1, we have

C(Pn, x) =

n
∑

i=0

(

i+ 1
n− i

)

x
i
.

Theorem 1.7. Dong et al., 2002 For the cycle graph Cn, where n ≥ 3, we have

C(Cn, x) =

n
∑

i=1

n

i

(

i

n− i

)

x
i
.

Theorem 1.8. Latheesh kumar and Anil Kumar, 2016 The total domination polynomial of a connected

bipartite graph G is the product of the vertex cover polynomials of the two components of HG,

while the total domination polynomial of a connected graph that is not bipartite is the vertex cover

polynomial of HG.

Let Pn be the path (1, 2, . . . , n). Then P
′

n is the graph with vertex set V (Pn
′

) = V (Pn) and edge

set E(Pn
′

) = E(Pn) ∪ {11}. Let P
′′

n is the graph with vertex set V (Pn
′′

) = V (Pn) and edge set

E(Pn
′

) = E(Pn) ∪ {11, nn}.
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Lemma 1.9. latheesh2017 For the graph P
′

n and P
′′

n , we have

C(P
′

n, x) = x C(Pn−1, x)

C(P
′′

n , x) = x
2 C(Pn−2, x).

2 Main Results

Definition 2.1. Let G be a graph and A be a subset of V (G). Let CA(G, x), CA∗

(G, x) and CA(G, x)
be polynomials in which the coefficient of xi is the number of vertex covering sets of cardinality i

containing at least one vertex from A, all vertices from A and no vertex from A respectively.

Lemma 2.1. If 1, 2, . . . , n are the vertices of the path Pn, then

(i) C{1}(Pn, x) = x C(Pn−1, x).

(ii) C{1}(Pn, x) = x C(Pn−1, x).

(iii) C{1,n}∗(Pn, x) = x
2 C(Pn−2, x).

(iv) C{1,n}(Pn, x) = x
2 C(Pn−4, x).

Proof. (i) Note that S is a vertex covering set of Pn containing the vertex 1 if and only if S is a vertex

covering set of the graph P
′

n shown in figure 1.

1 2 3 n− 1 n

Figure 1: The graph P
′

n

Therefore the proof follows from Theorem 1.3.

(ii) If S is a vertex covering set of Pn and S ∩ {1} = φ, then 2 ∈ S. So S is a vertex covering set of

the graph K shown in figure 2. Therefore from Theorem 1.3 the result follows.

2 3 (n− 1) n

Figure 2: The graph K.

(iii) If S is a vertex covering set of Pn containing the vertices 1 and n, then S is a vertex covering set

of the graph P
′′

n shown in figure 3.

3
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1 2 3 n− 1 n

Figure 3: The graph P
′′

n

Therefore the proof follows from theorem 1.3.

(iv) Let S be a vertex covering set of Pn such that S ∩ {1, n} = φ, then S is a vertex covering set of

the graph shown in figure 4.

2 3 (n− 2) (n− 1)

Figure 4: The graph K1

Therefore from Theorem 1.3 the proof follows.

Next, we find the total domination polynomial of the tree Tn1,n2,n3
.

va1a2an1−1an1 b1 b2
bn2−1 bn2

c1

c2

cn3−1

cn3

Figure 5: The tree Tn1,n2,n3 .

Theorem 2.2. If n1, n2, n3 are even and T1, T2 be the components of the open neighbourhood

hypergraph of the tree Tn1,n2,n3
, then

C(T1, x) = x

3
∏

i=1

C(Pni

2
, x) + x

3
3
∏

i=1

C(Pni

2
−1, x) and

C(T2, x) = x
4

[

(x+ 1)2
3
∏

i=1

C(Pni

2
−2, x) + (x+ 2)

3
∏

i=1

C(Pni

2
−1, x)

]

4
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Proof. Let X = {xi : i is odd} and Y = {yj : j is even} ∪ {v} be the partite sets of Tn1,n2,n3
.

Let T1 and T2 be the components of the open neighbourhood hypergraph of Tn1,n2,n3
, such that

E(T1) = {N(x) : x ∈ X} and E(T2) = {N(y) : y ∈ Y }. Then T1 can be represented as shown in

figure 6.

va2a4an1−2an1 b2 b4
bn2−2 bn2

c2

c4

cn3−2

cn3

Figure 6: The graph T1.

By Theorem 1.4, we have

C(T1, x) = xC(T1 − v, x) + x
3C(T1 − v − {a2, b2, c2}, x)

=
3
∏

i=1

C(Pni

2
, x) + x

3
3
∏

i=1

C(Pni

2
−1, x).

Next, we find the vertex cover polynomial of T2. It can be observed that E(T2) = {a1, b1, c1}∪E(Ta)∪
E(Tb)∪E(Tc), where the graphs Ta, Tb and Tc are shown in figure 7. Let A = {a1, b1, c1}. Note that a

set S is vertex covering set of T2 if and only if S∩A 6= φ and S is a vertex covering set of Ta∪Tb∪Tc.

From Theorem 1.5 C(Ta ∪ Tb ∪ Tc, x) = C(Ta, x)C(Tb, x)C(Tc, x). Therefore to compute the vertex

cover polynomial of T2 we need to consider the following disjoint cases only. We compute the the

vertex cover polynomials using Lemma 1.9, Lemma 2.1 and Theorem 1.3.

Case 1: If S ∩A = A, we get

C(Ta, x)C(Tb, x)C(Tc, x) = x
2C(Pn1

2
−2, x)x

2C(Pn2
2

−2, x)x
2C(Pn3

2
−2, x)

= x
6C(Pn1

2
−2, x)C(Pn2

2
−2, x)C(Pn3

2
−2, x).

Case 2: If S ∩A = {a1, b1}, proceeding as in Case 1, we get

C(Ta, x)C(Tb, x)C(Tc, x) = x
2C(Pn1

2
−2, x)x

2C(Pn2
2

−2, x)xC(Pn3
2

−1, x)

= x
5C(Pn1

2
−2, x)C(Pn2

2
−2, x)C(Pn3

2
−1, x).

Case 3: Similarly if S ∩A = {a1, c1}, we get

C(Ta, x)C(Tb, x)C(Tc, x) = x
2C(Pn1

2
−2, x)xC(Pn2

2
−1, x)x

2C(Pn3
2

−2, x)

= x
5C(Pn1

2
−2, x)C(Pn2

2
−1, x)C(Pn3

2
−2, x).

5
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Case 4: If S ∩A = {b1, c1}, proceeding as in Case 3, we get

C(Ta, x)C(Tb, x)C(Tc, x) = xC(Pn1
2

−1, x)x
2C(Pn2

2
−2, x)x

2C(Pn3
2

−2, x)

= x
5C(Pn1

2
−1, x)C(Pn2

2
−2, x)C(Pn3

2
−2, x).

an1−1 an1−3 an1−5 a3 a1

Ta :

bn1−1 bn1−3 bn1−5 b3 b1

Tb :

cn1−1 cn1−3 cn1−5 c3 c1

Tc :

Figure 7: The Graphs Ta, Tb and Tc.

Case 5: If S ∩A = {a1}, we get

C(Ta, x)C(Tb, x)C(Tc, x) = x
2C(Pn1

2
−2, x)xC(Pn2

2
−1, x)xC(Pn3

2
−1, x)

= x
4C(Pn1

2
−2, x)C(Pn2

2
−1, x)C(Pn3

2
−1, x).

Similarly, we get the results of Case 6 and 7 as given below.

Case 6: If S ∩A = {b1}, we get

C(Ta, x)C(Tb, x)C(Tc, x) = xC(Pn1
2

−1, x)x
2C(Pn2

2
−2, x)xC(Pn3

2
−1, x)

= x
4C(Pn1

2
−1, x)C(Pn2

2
−2, x)C(Pn3

2
−1, x).

Case 7: If S ∩A = {c1}, we get

C(Ta, x)C(Tb, x)C(Tc, x) = xC(Pn1
2

−1, x)xC(Pn2
2

−1, x)xC(Pn3
2

−2, x)

= x
4C(Pn1

2
−1, x)C(Pn2

2
−1, x)C(Pn3

2
−2, x).

Therefore adding the expressions in the above cases, we obtain

C(T2, x) = x
4

[

(x+ 1)2
3
∏

i=1

C(Pni

2
−2, x) + (x+ 2)

3
∏

i=1

C(Pni

2
−1, x)

]

This completes the proof.

6
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Theorem 2.3. If n1, n2, n3 are even and T1, T2 be the components of the open neighbourhood

hypergraph of the tree Tn1,n2,n3
, then

Dt(Tn1,n2,n3
, x) = C(T1, x)C(T2, x).

Proof. The proof follows immediately from Theorem 1.8.

Corollary 2.4. If n1 = n2 = n3 = 2n, then Dt(Tn1,n2,n3
, x) = x7(x+ 1)2

[C(Pn−1, x)C(Pn−2, x)]
3 + x7(x+ 2) [C(Pn−1, x)]

6 + x5(x+ 1)2 [C(Pn, x)C(Pn−2, x)]
3

+ x5(x+ 2) [C(Pn, x)C(Pn−1, x)]
3
.

Proof. The proof follows from Theorem 2.2 and 2.3.

Theorem 2.5. If n1, n2, n3 are odd and T1, T2 are the components of the open neighbourhood

hypergraph of the tree Tn1,n2,n3
, then we have

C(T1, x) = x
4

[

3
∏

i=1

C(Pni−1

2
−1

, x) + x
2

3
∏

i=1

C(Pni−1

2
−2

, x)

]

;

C(T2, x) = x(x+ 1)2
3
∏

i=1

C(Pni−1

2

, x) + x(x+ 2)

3
∏

i=1

C(Pni+1

2

, x).

Proof. Proceeding as in Theorem 2.2, we can represent T1 as shown in figure 8.

an1−1 an1−3 a2a4

v

b2 b4 bn2−3 bn2−1

cn3−1

cn3−3

c4

c2

Figure 8: The Graph T1.

Let T ∗
1 = T1 − {an1−1, bn2−1, cn3−1}, T

∗∗
1 = T1 − {v, an1−1, bn2−1, cn3−1}, and T ∗∗∗

1 = T1 −
{v, a2, b2, c2, an1−1, bn2−1, cn3−1}. Then from Theorem 1.3 and 1.4, we get,

C(T1, x) = x
3C (T ∗

1 , x)

= x
3 [

xC (T ∗∗
1 , x) + x

3C (T ∗∗∗
1 , x)

]

= x
4

[

3
∏

i=1

C(Pni−1

2
−1

, x) + x
2

3
∏

i=1

C(Pni−1

2
−2

, x)

]

.

7
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Let Pn1+1

2

= (a1, a3, a5, . . . , an1−2, an1
), Pn2+1

2

= (b1, b3, b5, . . . , bn2−2, bn2
) and Pn3+1

2

= (c1, c3, c5, . . . , cn3−2, cn3
)

be three paths. Then the edge set of the graph T2 is E(T2) = {a1, b1, c1} ∪ E(Pn1+1

2

) ∪ E(Pn2+1

2

) ∪

E(Pn3+1

2

). Let A = {a1, b1, c1}. A set S is vertex covering set of T2 if and only if S ∩A 6= φ and S is a

vertex covering set of Pn1+1

2

∪ Pn2+1

2

∪ Pn3+1

2

. From Theorem 1.5 C(Pn1+1

2

∪ Pn2+1

2

∪ Pn3+1

2

, x) =

3
∏

i=1

C(Pni+1

2

, x) Therefore to compute C(T2, x) it is enough to consider the following disjoint cases

only.

Case 1: If S ∩A = A, using Lemma 1.9 and Theorem 1.3, we get

3
∏

i=1

C(Pni+1

2

, x) = xC(Pn1−1

2

, x)xC(Pn2−1

2

, x)xC(Pn3−1

2

, x)

= x
3

3
∏

i=1

C(Pni−1

2

, x).

Case 2: If S ∩A = {a1, b1}, proceeding as in Case 1, we get

3
∏

i=1

C(Pni+1

2

, x) = xC(Pn1−1

2

, x)xC(Pn2−1

2

, x)C(Pn3+1

2

, x)

= x
2C(Pn1−1

2

, x)C(Pn2−1

2

, x)C(Pn3+1

2

, x).

Case 3: Similarly if S ∩A = {a1, c1}, we get

3
∏

i=1

C(Pni+1

2

, x) = xC(Pn1−1

2

, x)C(Pn2+1

2

, x)xC(Pn3+1

2

, x)

= x
2C(Pn1−1

2

, x)C(Pn2+1

2

, x)C(Pn3+1

2

, x).

Case 4: If S ∩A = {b1, c1}, proceeding as in Case 3, we get

3
∏

i=1

C(Pni+1

2

, x) = C(Pn1+1

2

, x)xC(Pn2−1

2

, x)xC(Pn3−1

2

, x)

= x
2C(Pn1+1

2

, x)C(Pn2−1

2

, x)C(Pn3−1

2

, x).

Case 5: If S ∩A = {a1}, we get

3
∏

i=1

C(Pni+1

2

, x) = xC(Pn1−1

2

, x)C(Pn2+1

2

, x)C(Pn3+1

2

, x)

= xC(Pn1−1

2

, x)C(Pn2+1

2

, x)C(Pn3+1

2

, x).

Similarly, we get the results of Case 6 and 7 as given below.

Case 6: If S ∩A = {b1}, we get

3
∏

i=1

C(Pni+1

2

, x) = C(Pn1+1

2

, x)xC(Pn2−1

2

, x)C(Pn3+1

2

, x)

= xC(Pn1+1

2

, x)C(Pn2−1

2

, x)C(Pn3+1

2

, x).

8
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Case 7: If S ∩A = {c1}, we get

3
∏

i=1

C(Pni+1

2

, x) = C(Pn1+1

2

, x)C(Pn2+1

2

, x)xC(Pn3−1

2

, x)

= xC(Pn1+1

2

, x)C(Pn2+1

2

, x)C(Pn3−1

2

, x).

Therefore, C(T2, x) is obtained by adding the vertex cover polynomials in the above cases. So

C(T2, x) = x(x+ 1)2
3
∏

i=1

C(Pni−1

2

, x) + x(x+ 2)

3
∏

i=1

C(Pni+1

2

, x).

Theorem 2.6. If n1, n2, n3 are odd and T1, T2 be the components of the open neighbourhood hypergraph

of the tree Tn1,n2,n3
, then

Dt(Tn1,n2,n3
, x) = C(T1, x)C(T2, x).

Proof. The proof follows immediately from Theorem 1.8.

Corollary 2.7. If n1 = n2 = n3 = 2n+1, then the TD- Polynomial of the tree Tn1,n2,n3
is Dt(Tn1,n2,n3

, x) =
x5(x+1)2 [C(Pn, x)C(Pn−1, x)]

3+x5(x+2) [C(Pn+1, x)C(Pn−1, x)]
3+x7(x+1)2 [C(Pn, x)C(Pn−2, x)]

3+
x7(x+ 2) [C(Pn+1, x)C(Pn−2, x)]

3
.

Proof. The proof follows from Theorem 2.5 and 2.6.

3 CONCLUSIONS

In this paper the relation between total domination sets and vertex covering sets is used to determine

the total domination polynomial of differend classes of graphs.
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sets to determine the total domination polynomials of various classes of graphs. By studying structural
properties of graphs and their coverings, we developed methods to compute or characterize total
domination polynomials for specific graph families. This approach not only provides deeper insight
into the combinatorial foundations of total domination, but also enhances our ability to analyze graph based
systems through polynomial invariants. The study underscores how the intersection of domination
theory and vertex cover theory can lead to efficient and unified techniques for evaluating complex
graph parameters. Future research may extend these techniques to broader classes of graphs.
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