



A Hybrid Intrusion Detection System Combining PCAMIX, KPCA, and Random Forest for Enhanced Anomaly Detection

ABSTRACT
.
	This study aims to develop a hybrid intrusion detection system (PKRIDS) that integrates PCAMIX-based Hotelling's T² control charts, Kernel Principal Component Analysis (KPCA), and Random Forest (RF) to improve detection accuracy while reducing false positives in network security. The hybrid approach combines statistical process control, nonlinear dimensionality reduction, and machine learning techniques. Evaluation on benchmark datasets NSL_KDD and TON_IoT used metrics including accuracy, precision, recall, F1-score, and ROC-AUC. PKRIDS employs PCAMIX for mixed-type data processing, KPCA for nonlinear pattern recognition, and RF for robust classification. On NSL_KDD, the model achieved 99.81% detection rate with 0.18% false positives (ROC-AUC=0.9975). For TON_IoT, it attained 99.86% detection rate with 0.13% false positives (ROC-AUC=0.9975). These results demonstrate PKRIDS's effectiveness in combining statistical and machine learning methods for enhanced intrusion detection. The system shows particular strength in handling both continuous and categorical variables while maintaining low false alarm rates.
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1. INTRODUCTION 

Intrusion is a formal term describing the act of compromising system resources. An intrusion can be defined as "any set of actions that attempt to compromise the integrity, confidentiality, or availability of a system resource". Detecting either failed or successful attempts to compromise a system is known as Intrusion Detection. Intrusion detection systems (IDS) detect possible intrusions. The goal of IDS tools is to detect computer attacks or illegal access and to alert concerned people about detection or security breaches (kamini, 2020). An intrusion compromises the security (e.g. availability, integrity, and confidentiality) of an information system through various means, including denial-of-service, remote-to-local, user-to-root, and information probing (Rajkumar et al, 2015).
The rapid growth of internet-based services has led to an increase in cyberattacks, making network security a critical concern. Intrusion Detection Systems (IDS) are essential tools for identifying and mitigating these threats. However, traditional IDS methods, such as signature-based and anomaly-based detection, face challenges in handling high-dimensional and mixed-type data, often resulting in high false positive rates and inconsistent performance (Axelsson, 2000; Kabiri et al., 2005).
Signature-based IDS rely on predefined patterns of known attacks, making them ineffective against novel or zero-day attacks (Ahmim et al, 2018). On the other hand, anomaly-based IDS detect deviations from normal behavior but often suffer from high false positive rates due to the difficulty in defining a clear boundary between normal and abnormal activities (Chandola et al., 2009). Furthermore, traditional IDS methods struggle with the complexity of network intrusion data, which typically includes a mixture of continuous and categorical variables with nonlinear relationships (Tang et al, 2020).
Wang et al. (2023) proposed a hybrid IDS that leverages both a random forest (RF) and an autoencoder, they utilized the probability output of the RF classifier to determine whether a sample belongs to an attack. Unknown attacks can be identified using a probability output.  An additional AE was added to reduce the false positive rate. To simulate an unknown attack in the experiments, they explicitly removed samples belonging to one attack class from the training set. Furthermore, the additional AE detection module decreased the false positive rate.
Shaohui et al. (2021) proposed Hotelling's T2 multivariate control charts based on Principal Component Analysis mix (PCA mix) with a bootstrap control limit and applied it to the network intrusion detection system. It was compared with the conventional Hotelling's T2 control chart based on PCA. The experimental results revealed that the proposed method performed better than its counterparts in terms of intrusion detection.
In recent years, there has been a significant surge in interest regarding the application of anomaly detection methods that leverage multivariate statistical process control and machine learning techniques to identify security breaches within computer networks (Kamini, 2020; Shaohui, 2021). Despite the advancements in these methodologies, several critical challenges persist. Compounding these challenges is the complexity of network intrusion data, which typically exhibit a mixture of high-dimensional datasets that include both continuous and categorical variables as well as nonlinear relationships.
To address these limitations, this paper proposes a hybrid intrusion detection system (PKRIDS) that combines PCAMIX-based Hotelling's T² control charts, Kernel Principal Component Analysis (KPCA), and Random Forest (RF). The hybrid model leverages the strengths of statistical process control, nonlinear dimensionality reduction, and machine learning to improve detection accuracy and reduce false positives. The proposed approach is evaluated on two benchmark datasets, NSL_KDD and TON_IoT, demonstrating its effectiveness in detecting both known and unknown attacks while maintaining low false alarm rates. The hybrid model leverages the strengths of statistical process control, nonlinear dimensionality reduction, and machine learning to improve detection accuracy and reduce false positives.
The main contributions and findings of this paper are as follows:
· A hybrid intrusion detection system (PKRIDS) is proposed, which combined PCAMIX-based Hotelling's T² control charts, Kernel Principal Component Analysis (KPCA), and Random Forest (RF). It improves the accuracy of IDS and provides a new research method for intrusion detection.
· Scalability: The hybrid approach is scalable and can be applied to different datasets and environments.
· Robustness: The integration of statistical, nonlinear, and machine learning techniques ensures robust performance in detecting both known and unknown attacks.
2. material and methods 

This section introduces an intrusion detection technique utilizing multivariate control charts. The monitoring system is set up in two steps: data preprocessing and the construction of a hybrid intrusion detection approach.
2.1 Datasets
[bookmark: _Hlk184074379]In this study, we used two popular dataset NSL_KDD and TON_IoT.


2.1.1 NSL_KDD dataset
A dataset called NSL_KDD was developed to address some of the issues with the KDDCUP99 dataset. This dataset eliminates redundant data from the KDDCUP99 dataset, modifies the ratio of positive and negative samples in the KDD‐CUP99 dataset, and increases the reasonableness of the number of samples in the training and testing datasets. In the absence of a publicly available intrusion detection dataset based on the network, this can serve as a benchmark dataset for various intrusion detection techniques, despite the fact that it might not be an exact representation of current real networks. The kddtrain+ file that was processed with the original dataset was chosen as the experimental dataset for this investigation. With 41 attributes, including 32 continuous and 9 discrete attributes, the dataset is a combination of high-dimensional datasets. Furthermore, the normal data in the training dataset make up roughly 53–45% of the total, while the remaining data are attack data. The disparity between attack and normal data is also unbalanced.

Table 1: Table 1: NSL_KDD dataset characteristics
	Class
	Size
	Percent (%)

	Normal
	8449
	55.6%

	Dos
	5,226.05
	34.4%

	Probe
	1,390.068
	9.15%

	U2R
	116.97
	0.77%

	R2L
	12.15
	0.08%

	Total
	15,192
	100

	
	
	



2.1.2	TON_IoT dataset

The new Internet of Things (IoT) and Industrial IoT (IIoT) dataset TON_IoT was gathered from a large-scale, realistic network in 2020. The Cyber Range and IoT Labs at UNSW Canberra, Australia, created the network to replicate the scalability and complexity of Industry 4.0 and industrial IoT. According to Alsaedi et al., the dataset includes seven different attack types in addition to normal data: backdoor, ddos, ransomware, injection, xss, password, and scanning. 2020). The "Train_Test_Windows 7" file is chosen as the experimental dataset for this work. Along with having 132 attributes—120 continuous and 12 discrete—the dataset is part of a collection of high-dimensional datasets. Furthermore, not only does the training dataset contain roughly 62–58 percent normal data, with the remaining data being attack data. The disparity between attack and normal data is also unbalanced, and the attack data's data proportion of different attack types is likewise highly unbalanced.

Table 2: TON_IoT dataset Characteristics
	Class
	Size
	Percent (%)

	
	  	Normal
	
5,680.39
	
62.58%

	DDos
	1,211.78
	13.35%

	      Backdoor
	1,010.27
	11.13%

	    Injection
	567.31
	6.25%

	      Password
	430.25
	4.74%

	     Scanning
	127.99
	1.41%

	           Ransomware
	46.29
	0.51%

	                      XSS
	2.72
	0.03%

	Total
	9,077
	100

	
	
	



2.2	Data Pre-processing
In this approach, data preprocessing is separated into three key components before dimensional reduction. Feature extraction, eigenvalue conversion, and missing-value management.

2.2.1	Feature extraction: The NSL_KDD dataset has 5 discrete and 13 continuous features after removing features that have a lot of similar values or missing values and don't impact the outcome. In contrast, the TON_IoT dataset has 1 discrete and 42 continuous features. (Table 3).

Table 3: Features of datasets
	
Dataset
	
Class
	
Num
	
Total


	NSL_KDD
	     Continuous
	13
	18

	
	
Discrete
	
5
	

	
TON_IoT
	
     Continuous
	
42
	43

	
	
Discrete
	
1
	


		

2.2.2	Transforming eigen values
All features were converted to numbers to make the computation easier. Since the PCAMIX approach can instantly reduce the dimension of high-dimensional and mixed data, only discrete features need to be converted into character types during this phase, while continuous features need to be standardized.

Table 4: Eigenvalue transformation
	
Dataset
	
Feature’s name
	
Eigenvalue transformation


	
NSL_KDD
	
Protocol type
	
UDP=1, TCP=2, ICMP=3

	
	
Flag
	
RSTR = 1; S0 = 2; S1 = 3; S2 = 4; S3 = 5; SF = 6; SH = 7
OTH = 8; REJ = 9; RSTO = 10; RSTOS0 = 11

	
	
Class
	
Normal=0, Abnormal=1



[bookmark: _Hlk149133748]2.2.3	Handling missing values
The dataset will be checked during the data preparation process to see if any attribute values are missing. This approach removes features with a large number of the same or missing values without affecting the final result.

2.3	PCAMIX-based Hotelling's T² Control Chart

The multivariate Hotelling's T2 control chart is used to train the reduced dimension data after the PCA mix algorithm has reduced the dimension of the data and performed generalized singular value decomposition (GSVD). Standard PCA and Multiple Correspondence Analysis (MCA) are combined in the PCAmix method. Shaohui et al. (2021), which is explained below. The precise procedures are as follows:

· Let m denote the number of observation units,  denote the number of continuous variables,  denote the number of discrete variables,  denote the m x  continuous matrix and   denote the m x   discrete matrix.
· Let A be the m x (  matrix that combines the normalized matrix  and normalized matrix : A=(  ).
· Build a diagonal matrix B, that is, the weights matrix of the rows of A. The b rows are weighted by , such that B=	 
· Build a diagonal matrix C, that is, the weights matrix of the columns of A. The  first columns are weighted by 1 (as the calculation method of the Euclidean distance in PCA). The  last columns are weighted by  (as the weighted distance represented by X2 distance in MCA), where j=1, 2, …, .
That is, C = diag (1, 1, …,).
· The GSVD of A gives the decomposition 
A = Y Λ  									
where Λ is the diagonal matrix of the radical of the eigenvalue of matrix A. Let r represent the rank of matrix A; then, Y be the matrix of the eigenvector of the m x r matrix A and let Z be the matrix of the eigenvector of the () x r matrix A.
The eigenvector matrix Y can be expressed as follows:
Ymix = A C Z									
·  Or directly computed from the GSVD decomposition as
Ymix= Y Λ									
· The eigenvector matrix Z can be expressed as
Zmix = CZΛ									
Where matrix Zmix   is divided up as follows:  contains the factor scores of the  continuous variable and  contains the factor score of the  discrete variables.
· Calculate the mean value α of matrix Zmix after dimension reduction and use n to
 represent the dimension of Zmix :  				
· The covariance matrix ϕ and the T2 statistic can be calculated as follows:
 			
T2 =		

2.4	 Kernel Principal Component Analysis (KPCA)

PCA is used to diagonalize the estimated covariance matrix 𝐂 from input data. PCA was initially proposed for linear data. As a result, this approach does not work well with nonlinear data. To address this nonlinear challenge, Schölkopf et al. (1997) suggested a Kernel PCA technique. 
Kernel PCA calculates Principal Component Scores in higher-dimensional space via a nonlinear mapping Φ ∶ℝ𝑝→𝐹, 𝑦 ↦𝐘. This mapping can be executed by utilizing kernel functions known from the Support Vector Method (SVM) (Boser et al., 1992). Assume that the centered data are mapped to feature space 𝐹, Φ (), ..., Φ (). The feature space covariance matrix with a size of 𝑛 × 𝑛.
									
The next step is estimating the eigenvalues 𝜆 ≥ 0.
𝜆𝐕 = 𝐂𝐹𝐕 										
In general, mapping Φ(.) is not always calculated. To solve this problem, a dot product calculation from to vector in the feature space is performed. Let 𝐊 with a size of 𝑛 × 𝑛 defined as =. The principal component score (PCs)  is computed using projection of Φ () to eigenvector , where 𝑣 =1, 2, ..., 𝑙.
							
Nonlinear mapping is not required to solve the eigenvalue problem and principal component calculation. To replace this, the kernel function can be constructed
 )= .									

2.5 Random Forest (RF)

A classifier called random forest is made up of several tree-structured classifiers.
 {} 										where the {θ_k} are independent, identically distributed random vectors, and each tree votes for the most popular class at input X. Random Forest (RF) is a powerful ensemble classifier that uses bagging and feature randomness to train multiple Decision Trees. (Brieman, 2001). Decision trees are a popular classification method. It tries to learn a set of if-then rules for classifying the data.

 [image: ]
Figure 1. Illustration of Random Forest.
2.6	 Hybrid Model (PKRIDS)
The hybrid model integrates the outputs of PCAMIX and KPCA into the Random Forest classifier. The steps are as follows:

2.6.1 Feature selection
A crucial step in machine learning is feature selection, which eliminates superfluous or irrelevant features in order to determine the most pertinent input variables. It improves the simplicity, accuracy, and efficiency of the model (Baker, 2009; Mitra, 2002; Miller, 2002; Almuallim, 1994).
In order to maximize model performance with fewer features, this study used the training dataset (11,850 observations) instead of the entire dataset. To rank attributes by importance, three feature selection techniques were used: correlation, gain ratio, and information gain.
A step-wise modelling approach was used to identify the best features: models were constructed by starting with the top four ranked attributes and gradually adding more until all 30 attributes were present. The most predictive characteristics for the study were found with the aid of this methodical assessment.
2.6.1.1	Correlation
Using the correlation algorithm, Table 5 shows the features ranked from highest to lowest in order of importance. According to the findings, the top four most important characteristics are: Protocol type, Srv_count, Rerror_rate, Srv_rerror_rate, On the other hand, the least significant characteristics found were: Dst_host_count, Number_compromised, Src_bytes, Warm. Prioritizing important variables for model optimization is aided by this ranking.


=== Attribute selection 10-fold cross-validation (stratified), seed: 1 ===
	average merit
	average rank
	attribute

	0.428 +- 0.002
	1   +- 0
	2 protocol_type

	0.371 +- 0.002
	2   +- 0
	12 srv_count

	0.261 +- 0.001
	3   +- 0
	15 rerror_rate

	0.256 +- 0.001
	4   +- 0
	16 srv_rerror_rate

	0.256 +- 0.001
	5   +- 0
	4 flags

	0.251 +- 0.001
	6   +- 0
	29 dst_host_srv_rerror_rate

	0.246 +- 0.002
	7   +- 0
	28 dst_host_rerror_rate

	0.238 +- 0.003
	8   +- 0
	21 dst_host_srv_count

	0.208 +- 0.002
	9   +- 0
	17 same_srv_rate

	0.199 +- 0.003
	10   +- 0
	22 dst_host_same_srv_rate

	0.166 +- 0.001
	11   +- 0
	27 dst_host_srv_serror_rate

	0.157 +- 0.002
	12.4 +- 0.66
	26 dst_host_serror_rate

	0.156 +- 0.001
	12.7 +- 0.46
	14 srv_serror_rate

	0.155 +- 0.001
	13.9 +- 0.3
	13 serror_rate

	0.142 +- 0.003
	15   +- 0
	24 dst_host_same_src_port_rate

	0.135 +- 0.001
	16.3 +- 0.46
	18 diff_srv_rate

	0.134 +- 0.003
	16.7 +- 0.46
	11 counts

	0.131 +- 0.001
	18   +- 0
	3 service

	0.095 +- 0.004
	19   +- 0
	23 dst_host_diff_srv_rate

	0.083 +- 0.004
	20.4 +- 0.49
	9 logged_in

	0.083 +- 0.002
	20.6 +- 0.49
	8 num_failed_logins

	0.074 +- 0.001
	22   +- 0
	19 srv_diff_host_rate

	0.055 +- 0.003
	23.6 +- 0.8
	25 dst_host_srv_diff_host_rate

	0.055 +- 0.004
	23.9 +- 0.7
	6 dst_bytes

	0.051 +- 0.005
	24.7 +- 0.9
	1 duration

	0.045 +- 0.003
	25.8 +- 0.4
	20 dst_host_count

	0.029 +- 0.003
	27.1 +- 0.3
	10 num_compromised

	0.007 +- 0.001
	28.3 +- 0.46
	5 src_bytes

	0.007 +- 0.009
	28.6 +- 0.66
	7 hots


[bookmark: _Toc197551963][bookmark: _Hlk168869575]Table 5:  Pearson Correlation ranked features from the most important to the least important
2.6.1.2	Gain Ratio
The features ranked by the Gain Ratio are listed in Table 6. From the third column, the four best attributes are Protocol_type, dst_bytes, src_bytes, and srv_diff_host_rate, whereas the least four features are count, dst_host_srv_diff_host_rate, dst_host_count, and logged_in. The Gain Ratio algorithm shares the three best attributes: (protocol_type,dst_bytes, and src_bytes) and the two least attributes (dst_host_count and logged_in) with the Information Gain Algorithm as shown in Table 7.

=== Attribute selection 10-fold cross-validation (stratified), seed: 1 ===
	average merit     
	average rank  
	 attribute

	 0.168 +- 0.002    
	1   +- 0      
	2 protocol type

	 0.115 +- 0.001      
	2   +- 0        
	6  dst_bytes

	 0.11 +- 0.001       
	3   +- 0        
	5 src_bytes

	 0.078 +- 0.001      
	4.5 +- 0.67   
	19 srv_diff_host_rate

	 0.074 +- 0.006      
	5.2 +- 1.25    
	16 srv_rerror_rate

	 0.065 +- 0.005      
	6.2 +- 1.17    
	29 dst_host_srv_rerror_rate

	 0.063 +- 0          
	7.1 +- 0.7      
	3 service

	 0.062 +- 0.003     
	7.6 +- 1.74   
	12 srv_count

	 0.061 +- 0.001      
	8.9 +- 0.7     
	15 rerror_rate

	 0.061 +- 0          
	9.5 +- 0.5      
	4 flags

	 0.056 +- 0.001     
	11.2 +- 0.4    
	18 diff_srv_rate

	 0.055 +- 0.001     
	11.8 +- 0.4     
	24 dst_host_same_src_port_rate

	 0.049 +- 0.002     
	13.6 +- 1.02    
	13 serror_rate

	 0.049 +- 0.001     
	13.9 +- 0.7      
	1 duration

	 0.047 +- 0.001     
	15   +- 0.63     
	7 hots

	 0.047 +- 0.001     
	15.9 +- 1.22    
	17 same_srv_rate

	 0.046 +- 0.001     
	16.7 +- 0.46     
	8 num_failed_logins

	 0.041 +- 0.001    
	18.6 +- 0.8     
	27 dst_host_srv_serror_rate

	 0.04 +- 0.001     
	19.1 +- 0.83    
	28 dst_host_rerror_rate

	 0.04 +- 0.001     
	19.2 +- 0.87    
	14 srv_serror_rate

	 0.034 +- 0.001     
	21.5 +- 0.67    
	10 num_compromised

	 0.032 +- 0.002     
	22.4 +- 0.8     
	26 dst_host_serror_rate

	 0.028 +- 0.003     
	23.2 +- 0.6     
	21 dst_host_srv_count

	 0.026 +- 0.008     
	23.9 +- 2.21    
	22 dst_host_same_srv_rate

	 0.024 +- 0         
	24.4 +- 0.49    
	23 dst_host_diff_srv_rate

	 0.02 +- 0         
	25.6 +- 0.49    
	11 counts

	 0.016 +- 0.001   
	27   +- 0       
	25 dst_host_srv_diff_host_rate

	 0.012 +- 0.001     
	28   +- 0       
	20 dst_host_count

	 0.006 +- 0.001     
	29   +- 0        
	9  logged_in


[bookmark: _Toc197551964]Table	6:  Gain Ratio ranked features from the most important to the least important
2.6.1.3	Information Gain
The Information Gain algorithm is used to rank features in Table 7, with the top four attributes being src_bytes, dst_bytes, service, and protocol_type. Features like num_failed_logins, num_compromised, logged_in, and dst_host_count are the least significant. Notably, among the three algorithms (Correlation, Gain Ratio, and Information Gain), protocol_type is the most important feature, whereas dst_host_count and num_compromised are consistently among the least important.

=== Attribute selection 10-fold cross-validation (stratified), seed: 1 ===
	 average merit
	average rank        
	     attribute

	[bookmark: _Hlk168925190] 0.402 +- 0.003
	1   +- 0
	5 src_bytes

	 0.33 +- 0.002
	2   +- 0
	6 dst_bytes

	 0.261 +- 0.002
	3   +- 0
	3 service

	 0.182 +- 0.002
	4   +- 0
	2 protocol_type

	 0.137 +- 0.001
	5   +- 0
	 12 srv_count

	 0.11 +- 0.001
	6   +- 0
	           4 flags

	 0.102 +- 0.002
	7.1 +- 0.3
	 24 dst_host_same_src_port_rate

	 0.097 +- 0.001
	7.9 +- 0.3
	 29 dst_host_srv_rerror_rate

	 0.081 +- 0.001
	9.5 +- 0.67
	 18 diff_srv_rate

	 0.08 +- 0.002
	9.8 +- 0.75
	 28 dst_host_rerror_rate

	 0.078 +- 0.001
	 10.7 +- 0.46
	 1 duration

	 0.072 +- 0.002
	 12.3 +- 0.46
	  21 dst_host_srv_count

	 0.072 +- 0.001
	 12.7 +- 0.46
	  15 rerror_rate

	 0.068 +- 0.001
	 14   +- 0
	  16 srv_rerror_rate

	 0.06 +- 0.001
	 15.5 +- 0.81
	  19 srv_diff_host_rate

	 0.059 +- 0.001
	 16.2 +- 0.98
	  17 same_srv_rate

	 0.058 +- 0.001
	 17.2 +- 0.87
	  23 dst_host_diff_srv_rate

	 0.053 +- 0.006
	 18.1 +- 1.45
	  22 dst_host_same_srv_rate

	 0.055 +- 0.003
	 18.2 +- 0.98
	  11 counts

	 0.046 +- 0.001
	 19.8 +- 0.4
	  13 serror_rate

	 0.041 +- 0.002
	 21.4 +- 0.49
	  26 dst_host_serror_rate

	 0.04 +- 0
	 21.6 +- 0.49
	  27 dst_host_srv_serror_rate

	 0.032 +- 0.001
	 23   +- 0
	  14 srv_serror_rate

	 0.022 +- 0
	 24   +- 0
	 7 hot

	 0.014 +- 0.001
	 25   +- 0
	  25 dst_host_srv_diff_host_rate

	 0.011 +- 0
	      26   +- 0
	  8 num_failed_logins

	 0.007 +- 0
	      27   +- 0
	   10 num_compromised

	 0.005 +- 0
	      28.1 +- 0.3
	  9 logged_in

	 0.004 +- 0
	      28.9 +- 0.3
	   20 dst_host_count



[bookmark: _Toc197551965]Table	7: Information Gain ranked features from most important to least important.
In summary, Protocol_type, src_bytes, and dst_bytes are the top features that are consistently ranked by multiple algorithms, indicating their significance for intrusion detection. On the other hand, num_compromised, logged_in, and dst_host_count were often among the least significant, indicating little effect on classification. 

2.6.2	Performance Evaluation for Selected Features
In this study, the qualities ranked for each feature selection method were sequentially modelled to assess the performance of the algorithms. This is accomplished by first choosing the top four attributes from each algorithm and then adding the next rated attribute one after the other until all 30 attributes have been included.

2.6.2.1	Correlation
According to Table 8, the PKRIDS model had the lowest RMSE (0.1465) with 17 features and the highest ROC (0.993) with 25 features. However, the Correlation algorithm did not achieve the objective of feature selection, which is to minimize features while maximizing performance, because the optimal performance required 17 to 25 features, which is nearly equal to the full 30 features. As a result, this approach was judged inappropriate for feature selection in this investigation.

[bookmark: _Toc197551966]Table	8:   Performance of the correlation ranked Attributes on the PKRIDS model.
	PKRIDS Model

	No. of Attributes
	ROC
	

RMSE

	4
	0.981
	0.1886

	5
	0.911
	0.2653

	6
	0.929
	0.2447

	7
	0.948
	0.2279

	8
	0.959
	0.2109

	9
	0.961
	0.2091

	10
	0.975
	0.1941

	11
	0.975
	0.1916

	12
	0.978
	0.1884

	13
	0.978
	   0.1884

	14
	0.979
	0.1885

	15
	0.977
	0.1872

	16
	0.989
	   0.1867

	17
	0.991
	0.1465

	18
	0.990
	0.1467

	19
	0.986
	0.1628

	20
	0.987
	0.1627

	21
	0.987
	0.1629

	22
	0.987
	0.1629

	23
	0.987
	0.1608

	24
	0.990
	0.1508

	25
	0.993
	0.1469

	26
	0.945
	0.2459

	27
	0.944
	0.2466

	28
	0.945
	0.2459

	29
	0.944
	0.2461


	Best		0.993	       0.1465

2.6.2.2	Gain Ratio
The outcomes of sequential modeling with the Gain Ratio approach are shown in Table 9. The IDS model had the lowest RMSE (0.1242) with 26 features and the highest ROC (0.997) with 21 features. However, the Gain Ratio algorithm also failed to find a minimal yet effective feature subset because the optimal performance required 21–26 features, which is close to the total feature count. As a result, this study comes to the conclusion that the Gain Ratio is inappropriate for feature selection in this particular situation.
[bookmark: _Toc197551967]Table 9:   Performance of the Gain Ratio ranked Attributes on the PKRIDS model
	PKRIDS Model

	No. of Attributes
	ROC
	

RMSE

	4
	0.981
	0.1694

	5
	0.969
	0.1818

	6
	0.972
	0.1802

	7
	0.980
	0.1709

	8
	0.983
	   0.1502

	9
	0.978
	0.1573

	10
	0.987
	0.1429

	11
	0.987
	0.1417

	12
	0.984
	0.1468

	13
	0.979
	0.1532

	14
	0.974
	0.1568

	15
	0.981
	0.1258

	16
	0.974
	   0.1550

	17
	0.975
	0.1560

	18
	0.974
	0.1549

	19
	0.971
	0.1575

	20
	0.971
	0.1575

	21
	0.997
	0.1250

	22
	0.997
	0.1297

	23
	0.997
	0.1308

	24
	0.997
	0.1308

	25
	0.997
	0.1294

	26
	0.997
	0.1242

	27
	0.997
	0.1301

	28
	0.997
	0.1315

	29
	0.997
	0.1308


	Best 		0.997	       0.1242

2.6.2.3	Information Gain
The Information Gain method's sequential modeling results are displayed in table 10. With 17 features, the IDS model had the highest ROC (0.998), and with 18 features, the lowest RMSE (0.1288). In contrast to the other algorithms, Information Gain only needed 17–18 features to achieve optimal results, which is a substantial reduction from the full set of 30 features. This is the only appropriate algorithm for this purpose in the study since it effectively satisfies the feature selection objective of optimizing performance while minimizing features.
[bookmark: _Toc197551968][bookmark: _Hlk168845352]Table 10:   Performance of the Information Gain ranked Attributes on the PKRIDS model
	PKRIDS Model

	No. of Attributes
	ROC
	

RMSE

	4
	0.953
	0.1869

	5
	0.978
	0.1993

	6
	0.988
	0.1405

	7
	0.986
	   0.1404

	8
	0.984
	   0.1420

	9
	0.982
	0.1441

	10
	0.978
	0.1509

	11
	0.978
	0.1509

	12
	0.988
	0.1587

	13
	0.971
	0.1585

	14
	0.971
	0.1585

	15
	0.970
	0.1583

	16
	0.971
	   0.1564

	17
	0.998
	0.1299

	18
	0.997
	0.1288

	19
	0.968
	0.1541

	20
	0.968
	0.1542

	21
	0.970
	0.1535

	22
	0.975
	0.1537

	23
	0.978
	0.1540

	24
	0.969
	0.1556

	25
	0.971
	0.1543

	26
	0.969
	0.1552

	27
	0.943
	0.2466

	28
	0.969
	0.1550

	[bookmark: _Hlk168924591]29
	0.969
	0.1564


	Best         		0.998	       0.1288

2.6.2.4	Performance summary of feature selection 
The performance comparison of three feature selection algorithms - Correlation, Gain Ratio, and Information Gain - tested using sequential modeling from 4 to 30 features. The Information Gain algorithm produced the highest ROC value (0.998) and the lowest RMSE (0.1288) using just 17–18 features, according to the results, which are shown in Table 11. As a result, it is the only algorithm that has effectively achieved the study's feature selection goals by enhancing model accuracy and drastically lowering the number of features.

[bookmark: _Toc197551969][bookmark: _Hlk198407928]Table 11: Performance summary of feature selection algorithms used for selecting the best features
	Algorithm 
	Highest ROC value 
	Lowest RMSE value 
	Range of best features

	Correlation 
	0.993
	0.1465
	17-25

	Gain Ratio 
	0.997
	0.1243
	21-26

	Information Gain 
	0.998
	0.1288
	17-18



According to feature selection results, performance is improved by using fewer features rather than all of them. The Information Gain algorithm yielded the best results with 17–18 features (ROC: 0.998, RMSE: 0.1288) when compared to all 30 features (ROC: 0.969, RMSE: 0.1564). For the hybrid intrusion detection model, this study selects the top 18 ranked features after removing the 12 least important features. Src_bytes, dst_bytes, service, protocol_type, srv_count, flag, dst_host_same_src_port_rate, dst_host_srv_rerror_rate, diff_srv_rate, dst_host_rerror_rate, duration, dst_host_srv_count, rerror_rate, srv_rerror_rate, srv_diff_host_rate, same_srv_rate, dst_host_diff_srv_rate, and dst_host_same_srv_rate are the features that were chosen.

2.6.3 Development of PKRIDS framework 
2.6.3.1	Proposed PCAMIX-KPCA-RF Intrusion Detection System (PKRIDS)

In order to handle unbalanced network data, this study proposes a hybrid intrusion detection system that combines machine learning and multivariate statistical control. Three elements are integrated into the PKRIDS framework: (1) A PCAMIX-Hotelling T2 chart that uses statistical thresholds and principal component analysis to identify anomalies; (2) KPCA-based control charts that use kernel transformations to identify nonlinear patterns; and (3) A Random Forest classifier that uses ensemble decision trees to categorize attacks. This cohesive method addresses the inherent class imbalance while efficiently detecting and classifying network anomalies by utilizing both statistical and machine learning techniques.

Steps for PKRIDS Framework 
(a)	Hotelling's T2 Statistic for PCAMIX:
Step 1: Compute the principal component scores  using the eigenvectors ​ and data points
​= ⟨​,  (​) ⟩									
Step 2: Calculate the Hotelling's T2 statistic  using the principal component scores: 
 								
where ​ denotes the eigenvalues associated with the principal components.
(b)	KPCA implementation for Data Transformation:
Step 3: Transform the input data matrix  using the KPCA algorithm:
Assuming that we have a dataset  where m is the number of observations and n is the number of features, KPCA maps the data into a higher-dimensional feature space Φ(X) using a kernel function
							
where p is the number of principal components to be retained.
Step 4:	Obtaining the principal Component Scores:
The principal component scores ZKPCA​ are obtained by projecting the data onto the eigenvectors derived from the covariance matrix of the transformed data:
​ 									
where represents the matrix of eigenvectors corresponding to the largest eigenvalues.
(c)	Incorporating Hotelling's , KPCA into Random Forests:
[bookmark: _Hlk169026065]Step 5: Combine the original data features , the Hotelling's  statistic and KPCA into the Random Forest classifier: 		
The hybrid intrusion detection model equation incorporating PCAMIX - Hotelling's , KPCA, and Random Forests can be represented as follows in a single equation:
						 
where:
·  represents the predicted intrusion labels.
·  is the original data matrix.
·   denotes the Hotelling's  statistic calculated based on the principal component scores obtained from PCAMIX.
·  represents the transformed feature scores derived from the KPCA transformation.
· RF signifies the Random Forest classifier used to predict intrusion labels based on the combined feature set.

2.6.3.2	Exploratory Visualization of Phase Two in the PKRIDS Framework

Building upon the flowchart presented below, this section provides a detailed visual interpretation of Phase 2 using scatter plots and Hotelling’s T² control charts derived from PCAmix and KPCA components.

Scatter plots of PCAMIX scores for the NSL_KDD dataset, showing the separation of normal and attack instances across different dimensions (Dimensions 1-3, 4-6, and 7-9).
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[bookmark: _Hlk199157892]Figure 2: Scatter plots of PCAMIX scores for the NSL_KDD dataset

Different patterns across principal components are revealed by the scatter plot analysis. Despite some overlap, Dimensions 1-3 capture the most significant variance and exhibit the strongest class separation (red/blue clusters). Dimensions 4-6, which represent additional but less important information, show decreased discriminative power with increased overlap. Noise seems to dominate dimensions 7-9, which exhibit total class overlap with no discernible division.
Effective dimensionality reduction is demonstrated by the progression, where:
The primary discriminative structure is present in the first three dimensions, Minor additional variance is added by middle dimensions (4-6), The classification value of higher dimensions (7-9) is insignificant.



Scatter plots of KPCA scores for the NSL_KDD dataset, showing the separation of normal and attack instances across different dimensions (Dimensions 1-3, 4-6, 7-9, 10-12).


























Plot A: Dim 1-3
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Plot B: Dim 4-6
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Plot C: Dim 7-9
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Plot D: Dim10-12
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[bookmark: _Hlk199335698][bookmark: _Hlk199886958]Figure 3: Scatter plots of KPCA scores for the NSL_KDD dataset

The significance of these dimensions for dataset modeling is highlighted by Plot (A), which displays distinct red and blue clusters demonstrating distinct nonlinear relationships and class separation. Dense red clusters contrast with scattered blue points in the scatter plot (B) for dimensions 4-6, which shows partial separation and captures nonlinear variance but has less class differentiation than dimensions 1-3. Completely dispersed points with substantial overlap are seen in dimensions 7-9, suggesting that they mostly contain noise or very few nonlinear patterns. Plotting dimensions 10–12 shows a star-like pattern with centrally clustered blue points and outward-radiating red points, indicating that these dimensions capture distinct but ultimately unimportant dataset characteristics for intrusion detection.










Combine features of Pcamix_score and Kpca_score for the NSL_KDD dataset


						

Plot A: Dim 1-3
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Plot C: Dim 7-9
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Plot E: 13-15
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Plot B: Dim 4-6
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Plot D: Dim 10-12
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Plot F: Dim 16-18
[image: ]Plot G: Dim 19-21
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Figure    4: Combine features of Pcamix_scoreNSL and Kpca_scoreNSL Using NSL_KDD Dataset


The graphs display the combined PCAmix-KPCA results, which improve outlier identification by utilizing KPCA's nonlinear pattern detection and PCAmix's mixed-data handling.
Strong clustering is evident in Dimensions 1-3, which also exhibit effective linear-nonlinear complementarity with distinct normal (blue)/attack (red) separation and discernible outliers. Partial separation with linear attack patterns versus scattered normal points is seen in dimensions 4-6. Heavy overlap is seen in dimensions 7-9, which mainly capture noise.
While dimensions 13–15 show dense normal clusters with linear attack spreads, dimensions 10–12 form non-discriminative star patterns. This pattern is maintained with weaker separation in dimensions 16–18. Complete overlap and little useful information are visible in dimensions 19–21.
The hybrid approach offers thorough anomaly identification across all dimensions by fusing the linear analysis of PCAmix with the nonlinear detection of KPCA.

Control chart for combine features of PCAmix and KPCA Using NSL_KDD Dataset

[image: ]

Figure     5: Control chart for combine features of PCAmix and KPCA Using NSL_KDD Dataset
Using a UCL of 17.8934, the chart applies Hotelling T2 to NSL-KDD (21 variables). 2,941 anomalies (19.4%) were identified as red points above UCL in an analysis of 15,191 observations.
Dense clusters (T2>800) in the first 5,000 observations suggest focused attacks. Sporadic anomalies in later observations point to changing threats. Baseline points are normal traffic.
Although the 21-feature method increases sensitivity, it requires verification to lower false positives. The pattern shows: Waves of early attacks, Subsequent isolated incidents, Possible fresh dangers. While careful pattern analysis is necessary to predict intrusions, this shows improved anomaly detection.








Scatter plots of PCAMIX scores for the TON_IoT dataset, showing the separation of normal and attack instances across different dimensions (Dimensions 1-3, 4-6, and 7-9).

Plot A: Dim 1-3	
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Plot B: Dim 4-6
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Plot C: Dim 7-9
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Figure 6: Scatter plots of PCAMIX scores for the TON_IoT dataset

Plot (A) for dimensions 1–3 shows clear red and blue point groups. The blue points disperse but line up in specific patterns; the red points bunch more together. These aspects reveal important contrasts. There is a lot of mixing in dimensions 4–6 where blue points are scattered and red points create little clusters. These aspects don't really help to define the classes. Plot C's scattered red and blue clusters imply that these dimensions pick up background noise or minor fluctuations.


Scatter plots of KPCA scores for the TON_IoT dataset, showing the separation of normal and attack instances across different dimensions (Dimensions 1-3, 4-6, 7-9,10-12 and 13-15).












Plot A: Dim 1-3
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Plot C: Dim 7-9
[image: ]



















Plot B: Dim 4-6
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Plot D: Dim 10-12
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Plot E: Dim 13-15
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Figure 7: Scatter plots of KPCA scores for the TON_IoT dataset

Variations in class separation between normal and anomalous data points are exposed by scatter plot analysis over several KPCA dimensions. Dimensions 1–3 show the best separation, catching significant nonlinear relationships where normal points are more dispersed and anomalous points are tightly clustered, so indicating important variability in normal behavior. In Dimensions 4–6, the differences between classes lose their clarity even if some structural patterns still show. Plotting shows more overlap between normal and anomalous points as the study moves into Dimensions 7–9 and beyond, implying a drop in discriminative power. Dimensions 13–15 show dense overlap and little structure; Dimensions 10–12 show limited separation with starburst-like patterns. Early KPCA dimensions generally help greatly in anomaly detection; later dimensions mostly capture noise or low-variance patterns.


Combine features for PCAmix and KPCA Using TON_IoT Dataset


Plot A: Dim 1-3D
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Plot C: 7-9D
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Plot B: Dim 4-6D
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Plot D: Dim 10-12D
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Plot E: Dim 13-15D
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Plot G: Dim 19-21D
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Plot F: Dim 16-18D
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Plot H: Dim22-25D
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Figure 8: Scatter plots of Combine features for PCAmix and KPCA Using TON_IoT Dataset


Using PCAmix and KPCA features together on the TON_IoT dataset shows different efficacy in different dimensions in separating normal from anomalous data. Though some overlap still, normal points cluster tightly in Dimensions 1–3 while anomalies are more scattered. Separations in Dimensions 4–6 get better; in Dimensions 7–9 and 10–12, where anomalies are further isolated and sometimes form subgroups, they get clearer. Dimensions 16–18 show modest separation; dimensions 19–21 and 22–25 show strong isolation of anomalies, so indicating their great value for outlier detection. These graphs show that whereas later dimensions capture more complicated patterns, different dimension sets help to identify anomalies in their own right. By using both linear and nonlinear feature, PCAmix and KPCA improve the performance of the hybrid IDS overall.



T2   Control chart for the Combine features using TON_Iot Dataset

[image: ]

Figure 9: T2   Control chart for the Combine features for PCAmix and KPCA Using TON_IoT Dataset
The Hotelling's T2 statistic for 12,102 samples utilizing 26 combined features from the TON_IoT dataset is shown in this figure. Values above the upper control limit (UCL), which is displayed in red, were considered anomalies. The UCL was set at 27.1. Outliers were identified in 2,941 samples (about 19.4%). The first 5,000 samples show a dense concentration of anomalies that most likely correspond to particular attack scenarios. Significant departures from typical behavior were indicated by some T2 values that were higher than 800. Anomalies spread out more as the chart goes along, indicating changes in network behavior or novel intrusion patterns. The findings show that the detection of irregularities is improved by combining PCAmix and KPCA features. But doing so also makes the model more complex, necessitating thorough validation to reduce false positives and boost detection accuracy.

Flowchart of the proposed PKRIDS framework, showing the integration of PCAMIX, KPCA, and RF is illustrated in Figure 10.
[image: ]


Figure 10:	Information flow of the proposed PKRIDS

This flowchart outlines the key components and implementation stages of the proposed PKRIDS (PCAmix - KPCA - Random Forest Intrusion Detection System). It illustrates how the system integrates statistical and machine learning techniques - beginning with data preprocessing and feature selection, followed by dimensionality reduction using PCAmix and KPCA, and concluding with anomaly detection and classification using control charts and a Random Forest model

3. results and discussion

The performance of the proposed model is evaluated using two distinct datasets: NSL_KDD and TON_IOT. The results are summarized in the confusion matrix presented in Table 12.

3.1 Performance evaluation of the PKRIDS

PKRIDS demonstrated its efficacy in intrusion detection by achieving >99.7% detection accuracy on both datasets with remarkably low false alarm rates (<0.2%), as indicated in Table 12.


	Dataset
	Dimension
	TP
	FN
	FP
	TN
	TP rate
	FP rate
	F1
	Hit (%)

	NSL_KDD
	10
	10181
	14
	19
	1180
	0.9981
	0.0018
	0.9446093
	99.71

	
	
	
	
	
	
	
	
	
	

	TON_IOT
	12
	8570
	9
	12
	486
	0.9986
	0.0013
	0.97199308
	99.76



Table 12:  Confusion matrix and other performance metrics

The model performed well on the NSL_KDD dataset, producing 10,181 true positives (TP), 1,180 true negatives (TN), 14 false negatives (FN), and 19 false positives (FP). With an overall hit rate of 99.71 percent and an F1 score of 0.9446, it achieved a 99.81 percent true positive rate and an exceptionally low 0.18 percent false positive rate. 8570 TP, 9 FN, 19 FP, and 486 TN were even better results from the TON_IoT dataset. The model achieved a 99point 76 percent hit rate, a 99point 86 percent true positive rate, a 0point 9720 F1 score, and a 0point 13 percent false positive rate. Further analysis with ROC, AUC, and P-R curves validated the model's ability to handle unbalanced intrusion detection datasets and showed consistent differentiation between malicious and legitimate traffic.
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Figure 11 : ROC Curve Vs AUC value for the NSL_KDD dataset

With a TPR of 99.0% and an FPR of 0.78%, the ROC curve for NSL_KDD (Fig 11) shows outstanding performance in our analysis. The model's strong ability to differentiate intrusions from regular traffic is confirmed by the curve's placement in the upper left corner. Only 79 real intrusions were overlooked, according to the high TPR, while the low FPR indicates few false alarms. With a high likelihood of accurately ranking positive instances above negative ones, the model's near-perfect classification ability is further validated by its remarkable AUC of 0.9975.


[image: ]
Figure 12: Precision-Recall (P-R) curve for the NSL_KDD dataset

With a precision of 0.99, a recall of 0.98, and an AUC of 0.8816, the hybrid intrusion detection method (PKRIDS) is clearly very successful, as shown by the P-R curve for the NSL_KDD dataset. This set of metrics demonstrates how well the model can identify intrusions while preserving a low false positive rate. The model's ability to distinguish between intrusions and non-intrusions across a range of thresholds is further supported by the AUC value. These findings collectively imply that the model offers a strong defence against possible threats and is appropriate for real-world network security applications.
[image: ]
Figure 13: ROC Curve Vs AUC value for TON_IOT

The balance between True Positive Rate (TPR) and False Positive Rate (FPR) across classification thresholds is depicted by the ROC curve for the TON_IOT dataset (Fig. 13). With a remarkable TPR of 99.65%, the model accurately detects almost all intrusions and misses only 40 real attacks. By infrequently misclassifying benign traffic as malicious, it maintains strong specificity with an FPR of 2.07%. The near-perfect AUC of 0.9975 validates the model's exceptional ability to distinguish between legitimate traffic and intrusions, despite the fact that this FPR is marginally higher than NSL-KDD's. These findings show strong performance with the ideal sensitivity-specificity ratio for real-world implementation.

[image: ]

Figure 14: P-R Curve for TON_IOT

With precision=0.9989, recall=0.9965, and AUC=0.8819., the P-R curve analysis shows how effective PKRIDS is on the TON_IoT dataset. The AUC shows consistent performance across thresholds, confirming the model's ability to detect intrusions accurately while minimizing false positives. According to the findings, PKRIDS is especially well-suited for protecting IoT environments from changing threats.
PKRIDS consistently strikes the ideal balance between low false positive rates and high true positive rates across the two assessed datasets. For operational network security systems where, alert fatigue must be prevented, this dual capability minimizes unnecessary alerts while ensuring dependable threat detection. These P-R curve results offer thorough confirmation of the robustness of PKRIDS when paired with ROC curve and confusion matrix results. The method's consistent high performance across all evaluation metrics makes it particularly valuable for enhancing security in IoT ecosystems where both detection accuracy and operational efficiency are paramount.
4. Conclusion

In order to efficiently identify anomalies in mixed-type, high-dimensional network data, this paper introduced PKRIDS, a hybrid intrusion detection model that combines PCAMIX, KPCA, and Random Forest. The model showed very low false positive rates and high detection accuracy when tested on the NSL-KDD and TON_IoT datasets. The system's performance and interpretability were greatly improved by the application of feature integration and dimensionality reduction. The model's sensitivity to different attack patterns was further confirmed by exploratory visualizations and Hotelling's T2 control charts. Future research will concentrate on real-time deployment, dynamic threshold adaptation, and application in edge and IoT-based environments, even though the model works well in offline settings.
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