


Comparison of two-parameter burr type (X) distributions and Gamma-Weibull distributions: Its Application of Heights of Students of Akwa Ibom State University, Nigeria


ABSTRACT
This paper introduces a non-nested test statistic for comparing the gamma-Weibull and the two-parameter burr type (x) distributions using the likelihood ratio test statistic and the non-nested model test statistic. The test statistic obtained is applied to the heights of 617 students collected from the Medical Centre of Akwa Ibom State University. The parameters estimate of the two-parameter Burr Type (X) and gamma-Weibull distributions were obtained using the maximum likelihood method. Some exploratory analyses were carried out using the density plots of the gamma-Weibull and the two-parameter Burr type (x) distributions. The result was compared to the critical values obtained at various levels of significance. It was observed that the four-parameter gamma-Weibull distribution is not equivalent to the two-parameter burr type (x) for heights of students at  level of significance. R codes are provided for implementation. The four-parameter Gamma-Weibull distribution is better for the heights of 617 students of Akwa Ibom State University than the two-parameter Burr Type (X) distribution.
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1.0 INTRODUCTION
Several extended Burr-type X distributions have been formed in the past decade. These distributions are widely used in modeling lifetime data as their hazard functions can fit various shapes, such as bathtub, decreasing, and increasing. The Burr-type X distribution, a well-known model in survival analysis, is one of twelve new distributions introduced by Burr in 1942 using a differential equation approach (Oh et al., 2024). According to Surles and Padgett, its initial form is a one-parameter distribution and has been extended to a two-parameter distribution by adding a scale parameter, known as two-parameter Burr-type X (BX) (Surles & Padgett, 2001). Eugene, et al (2002), introduced a generalized class of distributions based on the logit of the beta random variable with cumulative distribution function(cdf) and probability density function(pdf). Nadarajah and Kotz (2005) defined and studied the three-parameter beta-exponential distribution, obtained the mean, variance, skewness, kurtosis, mean deviation about the mean, mean deviation about the median, moment generating function, characteristic function, cumulant generating function, Renyi and Shannon entropies and other properties. As noted by (Nadarajah and Kotz,2005), the beta-exponential distribution is tractable and can be used as a model for failure time data. 
Famoye et al (2005) introduced and studied the beta-Weibull distribution and used the likelihood ratio test statistic in comparing the Weibull to that of the beta-Weibull distribution using the likelihood ratio test statistic. The likelihood ratio test statistic for the Weibull and beta-Weibull distributions, as noted by Famoye et al (2005) is
 											1
The Weibull distribution is a special case of the beta-Weibull distribution when . The   and  are the likelihood functions of the Weibull and beta-Weibull distribution over the parameter space .  . The two-parameter Burr Type (X) [Johnson et al. (1994, page 54)] is a special case of the beta-Weibull distribution when  and . The pdf of the two-parameter Burr Type (X) is 
 							2

Akinsete et al. (2008) introduced a four-parameter beta-Pareto distribution (BPD) and showed that the Pareto distribution is a special case of equation (BPD) by setting  and presented many other special cases, obtained the hazard function, the mean deviation, the Renyi and Shannon entropies, the moments of the BPD and suggested the maximum likelihood method for estimating of the BPD parameters. Akinsete et al (2008) fitted the BPD to the data sets from two rivers, namely; exceedances of flood peaks, discussed in (Choulakian and Stephens, 2001) and the flood data illustrated by (Mudholkar and Huston,1996). The data was fitted to four distributions; the Pareto distribution, the three-parameter Weibull, the generalized Pareto distribution and the beta-Pareto distribution. It was observed that the BPD provided the best fit to the flood data, followed successively by the GPD and the three-Paremeter Weibull distribution. The BPD is unimodal.
Alzaatreh et al. (2013) introduced the Gamma-Weibull distribution with the generalized gamma and gamma distribution as special cases.  The probability density function of the gamma-Weibull distribution is given by
 					3
A test statistic is a mathematical expression used by users of statistics in making decisions and drawing inferences about a population of interest. The test statistic when used with statistical table values and applied to datasets gives a useful insight into policy formulations and decision adjustments. Some of the mathematical expressions like that of the Akaike information criterion (AIC), Bayesian information criterion (BIC), consistent Akaike information criterion (CAIC), likelihood ratio and a couple of others, help in selecting the best model for a given phenomenon.
[bookmark: _Hlk190809771]Michael et al. (2019), Michael et al. (2017), Michael et al. (2021), Michael and Iseh (2025), Michael et al. (2025) used the maxLik package in R introduced (Henningsen and Toomet, 2009) for maximum likelihood estimation of a model’s parameters of the Normal, Gamma, Log-normal and Logistic distributions.
This paper developed a test statistic for comparing the gamma-Weibull and the two-parameter Burr Type (X) distributions using the likelihood ratio test statistic approach and non-nested model test statistic techniques and employs the maxLik package for parameter estimation. The density plots of the functions are presented and the application made to the heights of 617 students of Akwa Ibom State University (AKSU) Main Campus, Ikot Akpaden, Nigeria.

2 Methodology
2.1 Likelihood Function for Multiparameter Case.
Hogg et al (2013) stated the likelihood function for the multiparameter case as follows:
Let   , be independent and identically distributed with probability density function or probability mass function  , where n is a fixed positive integer and  . The likelihood function and its log are given by
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 is a vector of parameters and  is the parameter space
2.2 A Likelihood Ratio Test Statistic
Wackerly et al (2008) defined the likelihood ratio test statistic as follows:
Define 									        6
A likelihood ratio test of  versus  employs  as a test statistic and the rejection region is determined by   and  .
A value of  close to zero indicates that the likelihood of the sample is much smaller under the null hypothesis  than it is under the alternative hypothesis . Therefore, the data suggest favouring  over  . The actual value of  is chosen so that alpha ( achieves the desired result.
 denote the maximum (actually the supremum) of the likelihood function for all .
 and  can be composite because they both might contain multiple values of the parameter of interest or because other unknown parameters may be present
 denote the vector of all k parameters. That is, 
2.3 A large-sample likelihood ratio test
Let  have joint likelihood function 
Let  denote the number of free parameters that are specified by 
And let p denote the number of free parameters specified by the statement . Then, for large  has approximately a  distribution with  df.
The theorem allows us to use the table of the  to find the rejection regions with fixed  when n is large. Notice that  is a decreasing function of . Because the likelihood ratio test specified that we use RR: , this rejection may be rewritten as
RR: . For some large sample sizes, if we desire an -level test, theorem implies that . That is, a large sample likelihood ratio test has a rejection region given by
RR:  where  is based on  df.
It is important to realize that large sample likelihood ratio tests are based on , where  is the original likelihood function given by
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2.4 Test Statistic for Non-Nested Models
Let  and  be any two probability distributions, with   and  the corresponding vectors of parameters and the subscripts  and  denoting the number of parameters. To compare the two probability distributions, let consider the hypothesis:
 									       8
against
 									       9
The likelihood-ratio statistic for testing (9), that is  against  is defined as
    									       10
If  and   are nested, the statistic in (10) has a chi-square distribution with degree of freedom . If   and  are not nested, then the statistic in (10) is different from chi-square distribution.
To test the two non-nested probability distributions in null hypothesis  in (8), Vuong (1986) proposed the test statistic
 								       11
Where
      					       12
According to Vuong (1986), for a non-nested model,  is approximately standard normal distribution under  in (8).
2.5 Decision Rule
Large-Sample Level Hypothesis Tests
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Rejection Region:  				        15
At significant level ,  is rejected in favor of   if  and   is rejected in favor of if . If , we fail to reject .
2.6 Data Collection
The heights of students’ data were obtained from the Medical Centre of Akwa Ibom State University, Akwa Ibom State, Nigeria.
3.0 Results
3.1 Estimation of Models Parameters
3.1.1 Likelihood Function of the Gamma-Weibull Distribution
The pdf of the gamma-Weibull distribution is given by
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The likelihood function is defined by
 
 
The log-likelihood of the gamma-Weibull distribution denoted  is defined by
 
   17
[bookmark: _Hlk179696407]4.5.2 Estimation of the gamma-Weibull Distribution Parameters
The maximum likelihood estimators of the gamma-Weibull distribution parameters ,  and  are obtained by differentiating the log-likelihood function in (17) with respect to the parameters ,  and  and equating to zero, we have
  			    18
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The numerical solution of the nonlinear equations (18)-(21), is the maximum likelihood estimates of the parameters ,  and  denoted by .
4.9.1 Re-parameterization of the Gamma-Weibull distribution
The pdf of gamma-Weibull distribution is given by
  					    22
Let ,  and  be the maximum likelihood estimates (mle) for the parameters , of the gamma-Weibull distribution obtained iteratively.
The probability density function(pdf) of the gamma-Weibull distribution with the mle of  denoted by  ,  and  is
 23
Then, the maximum likelihood function of the gamma-Weibull distribution is defined as
 
 
 
The log-likelihood function of the gamma-Weibull distribution denoted by  is
 
 									24

4.8.1 Likelihood Function of the Two Parameters Burr- Type (X) Distribution
When  and , the beta-Weibull distribution reduces to the two-parameter Burr-Type(X) distribution [Johnson et al, (1994, page 54)] with density function.
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The likelihood function of the Two Parameters Burr- Type (X) Distribution
 
 
Taking the natural log and denoting it by , we have the log-likelihood function
   26
[bookmark: _Hlk179696634]4.8.2 Estimation of the two parameters Burr-Type(X) Distribution Parameters
The maximum likelihood estimators of the gamma-Weibull distribution parameters ,   are obtained by differentiating the log-likelihood function (26) with respect to the parameters  and  and equating to zero, we have
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The numerical solution of the nonlinear equations (27) - (28), is the maximum likelihood estimates of the parameters  and  denoted by .
[bookmark: _Hlk179702891]4.9.4 Re-parameterization of the two parameters Burr-Type (X) distribution
When  and , the beta-Weibull distribution reduces to the two-parameter Burr-Type(X) distribution [Johnson et al,(1994,page 54)] with density function.
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Let   be the maximum likelihood estimates (mle) for the parameters  of the beta-exponential distribution obtained iteratively.
The probability density function(pdf) of the beta-exponential distribution with the mle of denoted by , is
 
The likelihood function of the Two Parameters Burr- Type (X) Distribution
 
 
Taking the natural log and denoting it by , we have the log-likelihood function
 											30
[bookmark: _Hlk179696764]4.10 The likelihood Ratio Statistic
4.10.1 The likelihood Ratio Statistic for the two parameters Burr-Type (X) distribution and gamma-Weibull distribution
Given two distributions, the two parameters Burr-Type (X) distribution and the gamma-Weibull distribution and a data set, it is interesting to test which of the distributions that a given data set is from and which best fit with the hypothesis stated as follows:
  										31
										32
The two parameters Burr-Type (X) distribution and gamma-Weibull distribution
Let  be two parameters Burr-Type (X) distribution parameters and let  be the set of gamma-Weibull distribution parameters. The parameter space,  ,not necessary a subset of the parameter space 
The likelihood ratio statistic for testing  against   is given by
  							33
Where  is the likelihood function for the two parameter Bur-Type (X) distribution and  is the likelihood function for the gamma-Weibull distribution. The estimators (, ,  are the maximum likelihood estimates (mle) of   of the gamma-Weibull distribution that maximized the distribution. The estimators  are the maximum likelihood estimates(mle) of  of the two-parameters Burr-Type (X) distribution that maximized the distribution.
 
and
 
The numerator and denominator of (33) can be re-written as
 								34
By taking the log of (34),
 
 		               		35
By multiplying equation (35) by (-2), we have,
 
 						36
Under very general conditions, the quantity has an approximate chi-square distribution with 2 degrees of freedom and the chi-square value is compared to the Right Hand Side of (36). This enables the hypothesis in (31) to be tested at a given level of significance for nested models.

4.11 [bookmark: _Hlk179701042]The Variance and Test Statistics
[bookmark: _Hlk179701279]4.11.1   The Variance and Test Statistics for the two parameters Burr-Type (X) distribution and gamma-Weibull distribution
The variance statistic  is given by
  					37
is also the variance of the +limiting normal distribution of the likelihood ratio () statistic.
For the two-parameter Burr-Type(X) distribution against the gamma-Weibull Distribution,
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Test Statistic:  								  41

42
The test statistic, ,tend in distribution to a normal with mean 0 and variance 1.
Decision rule:
 							   43
 									  44
3.7 Parameters Estimates of The Two-parameter Burr Type (X) and Gamma-Weibull Distributions.
The maximum likelihood estimates of the two-parameter Burr Type (X) and Gamma-Weibull distributions parameters and log-likelihood.
Table 1: Maximum Likelihood Estimation of the model parameters for the Heights of Students data and the measures AIC and BIC
	MODEL
	
	
	
	

	Gamma-Weibull
	2.138
	0.000001367
	5.857
	9.968

	Two-parameter Burr Type (X)
	6248.4871
	
	0.5478
	




Figure 1: Plots of Gamma-Weibull distribution and Heights of Students
[image: ]

Figure 2: Plots of Two-parameter Burr Type (X) distribution and Heights of Students
[image: ]

3.10 The Variance Statistic Value for the gamma-Weibull and the Beta-Exponential Distributions
[bookmark: _Hlk179705677]Table 2:  Variance Statistic of the Pairwise two-parameter Burr Type (X), Gamma-Weibull and the two-parameter Burr-Type (X) distributions
	Models
	Gamma-Weibull distribution
	Two-parameter Burr Type (X)

	Gamma-Weibull distribution
	
	3.03842

	Two-parameter Burr Type (X)
	3.03842
	



3.11 The Test Statistic Value for Gamma-Weibull and Two-parameter Burr Type (X)
[bookmark: _Hlk179705835]Table 3: The test statistics values for the Pairwise two-parameter Burr Type (X), Gamma-Weibull and Two-parameter Burr Type (X) distributions

	Models
	Gamma-Weibull distribution
	Two-parameter Burr Type (X)

	Gamma-Weibull distribution
	
	6.229009

	Two-parameter Burr Type (X)
	-6.229009
	



3.12 Significance Levels and Critical Values 
Table 4: Critical values related to significance levels  
	S/N
	Significance Level
	Critical Value

	1
	0.0001
	3.916221

	2
	0.0011
	3.279115

	3
	0.0021
	3.088821

	4
	0.0031
	2.969387

	5
	0.0041
	2.881164

	6
	0.0051
	2.810734

	7
	0.0061
	2.751871

	8
	0.0071
	2.701156

	9
	0.0081
	2.656508

	10
	0.0091
	2.616559

	11
	0.0101
	2.580362

	12
	0.0111
	2.547234

	13
	0.0121
	2.516665

	14
	0.0131
	2.488264

	15
	0.0141
	2.461724



4.0 Discussion and Conclusion
A mathematical expression called a test statistic for comparing two non-nested models namely; Two-parameter Burr Type (X) distribution (TPBTX) and gamma-Weibull distribution (GW) is introduced. The maximum likelihood estimation of the parameters of the gamma-Weibull distribution and that of Two-parameter Burr Type (X) distributions are presented but not in closed forms. The test statistic is applied to the heights of 617 students of Akwa Ibom State University (AKSU). The test statistic introduced follows a standard normal distribution which is a pivotal quantity. R codes is provided for implementation.
For the four-parameter gamma-Weibull distribution, the values of the parameters are respectively;
For the two-parameter Burr Type (X) distribution, the values of the parameters are respectively;.
The test statistic value for comparing Two-parameter Burr Type (X) distribution and gamma-Weibull distribution is -6.229009 which is lower than the critical values -3.916221 at   level of significance. The two-parameter Burr Type (X) distribution (TPBTX) and gamma-Weibull distribution (GWD) are not equivalent in fitting the heights of students of the Akwa Ibom State University. The test statistics negative value indicates that a four-parameter Gamma-Weibull distribution is a better fit than the two-parameter -parameter Burr Type (X) distribution for the height of Akwa Ibom State University Students
The graphs of the Two-parameter Burr Type (X) and gamma-Weibull distributions and the heights of students are presented. The graphs resemble a bell-shaped curve.


Appendix
R codes
library(maxLik)
#####gamma-Weibull distribution ###X is the name of the data set
logLikgammaWeibull<-function(gammaWeibull){
alphagammaWeibull<-gammaWeibull[1]
betagammaWeibull<-gammaWeibull[2]
gammagammaWeibull<-gammaWeibull[3]
cgammaWeibull<-gammaWeibull[4]
agw<-log(cgammaWeibull)
bgw<-(alphagammaWeibull*cgammaWeibull*log(alphagammaWeibull))
cgw<-log(gamma(alphagammaWeibull))
dgw<-(alphagammaWeibull*log(betagammaWeibull))
egw<-((alphagammaWeibull*cgammaWeibull-1)*(log(X)))
fgw<-((X/gammagammaWeibull)^cgammaWeibull)/(betagammaWeibull)
sum(agw-bgw-cgw-dgw+egw-fgw)
}
mlegammaWeibull<-maxLik(logLik=logLikgammaWeibull,
start=c(alphagammaWeibull=1,betagammaWeibull=0.2,gammagammaWeibull=2,
cgammaWeibull=1.4))
summary(mlegammaWeibull)

###Plot of gamma Weibull pdf
coef(mlegammaWeibull)
a=coef(mlegammaWeibull)[1]
b=coef(mlegammaWeibull)[2]
g=coef(mlegammaWeibull)[3]
c=coef(mlegammaWeibull)[4]
gwf<-(c*((X/g)^((a*c)-1))*(exp(-(1/b)*(X/g)^c)))/(g*gamma(a)*b^a)
plot(X,gwf, xlab="Heights of Students",ylab="gamma-Weibull Density",main="gamma-Weibull Density Plot")

####the two-parameters Burr-Type (X) distribution
logLiktwoparameterBurrtypeX<-function(twoparameterBurrtypeX){
alphatwoparameterBurrtypeX<-twoparameterBurrtypeX[1]
gammatwoparameterBurrtypeX<-twoparameterBurrtypeX[2]
sum(log(2*alphatwoparameterBurrtypeX)-2*log(gammatwoparameterBurrtypeX)+
log(X)-((X/gammatwoparameterBurrtypeX)^2)+
(alphatwoparameterBurrtypeX-1)*log(1-exp(-1*((X/gammatwoparameterBurrtypeX)^2))))
}
mletwoparameterBurrtypeX<-maxLik(logLik=logLiktwoparameterBurrtypeX,start=c(alphatwoparameterBurrtypeX=2,gammatwoparameterBurrtypeX=1))
summary(mletwoparameterBurrtypeX)
coef(mletwoparameterBurrtypeX)
#####answers
Log-Likelihood(mletwoparameterBurrtypeX)
at<-coef(mletwoparameterBurrtypeX)[1]
bt<-coef(mletwoparameterBurrtypeX)[2]
at;bt

####The two-parameter Density plot
ttpbtx<-2*at*(((1-exp(-(X/bt)^2))^(at-1)))*(exp(-(X/bt)^2))/(bt^2)
ttpbtx
plot(X,ttpbtx,col="BLUE",xlab="Heights of Students",ylab="The Two-Parameter Burr Type X Density",main="The Two-Parameter Burr Type X Distribution")
plot(X,ttpbtx,xlab="Heights of Students",ylab="The Two-Parameter Burr Type X Density",main="The Two-Parameter Burr Type X Distribution")
##H t and g variance statistics for tpbtx and gamma-Weibull distribution
Atg=log(ttpbtx/gwf)
Btg=Atg^2
Ctg=sum(Btg)
Ctg
ntg=length(Atg)
Dtg=(Ctg)/ntg##first term result
##second term
Etg=Atg
Ftg=sum(Etg)
Gtg=(Ftg)/(ntg)
Htg=Gtg^2
vartg=Dtg-Htg# variance stats for ttp and gw
vartg
wtg=sqrt(vartg)##
nroottg=1/sqrt(ntg)
nroottg
NNRtg=Ftg*nroottg/wtg
NNRtg##Non nested result
Critical Values
alpha<-seq(0.0001,0.1,0.001)
qt(1-alpha/2,617)
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