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A Modified Super Convergent Line Search Algorithm for
Solving Quadratically Constrained Quadratic Optimization

Problems

Abstract
In this paper, a modified super convergence line search algorithm is introduced to address the
use of the optimal support points of the segmented design space and the bias to evaluate the
optimal step length in a quadratically constrained quadratic optimization problem. The optimum
number of segment and the minimum number of iterations are considered and the method modified
the algorithm by linearising the quadratic constraint through the partial derivative of the Jacobian
function to attained optimal step-length and convergence. The new algorithm was applied to two
quadratically constrained problems and the results indicated that the modified algorithm satisfied
the convergent criteria in six and one iteration and achieved the optimal solutions in both problem
set respectively. This shows the effectiveness of the modified algorithm in solving quadratically
constrained quadratic optimization problems.
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1 Introduction

A variety of optimal design methods have been shown in literature as methods
of optimization of Quadratic Constrained Problems (QCP). Such as; The
active set method, The Gradient method, The Barrier Method, The Steepest
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Ascent Method, The Newton’s Method, The Quasi Newton’s Method and
The Conjugate Direction Method [see[19]]. The set back of the rate of
convergence of these methods; Newton’s Method, Quasi Newton’s Method,
Conjugate Direction Method and Steepest Ascent Method was shown in
[16], using the Rosen Brook Function to evaluate the rate of convergence
and the results showed that none of the methods converged in five iterations.
The Ordinary Line Search Method (OLSM) which is said to have originated
from Cauchy in 1894, is most frequently used technique in searching for
optimum of unconstrained function. Also, the Lagrange Method,the Active
Set Method and the Simplex Method are notable for solving constrained
problems. [20], [21] and [23], showed that both constrained function and
unconstrained function can as well be treated using the same analytical
procedure of the Ordinary Least Square (OLS) method. The method can
also be used to resolve equality and inequality constrained problems as
introduced by [35]. A general approach for solving Quadratic programming
problem with quadratic constraints was proposed by [11] in which
he considered the process of minimizing the Lagrange function through
the cutting plane algorithm. The approximate dual form converges when
the dual and the primal problem has equal objective function. [6] applied
two algorithms for solving quadratic problem with negative eigenvalue, the
problem with separable quadratic constraint and concave objective function.
The initial rectangular domain was divided using the branch and bound
algorithm into increasing small rectangle as the sizes tend to zero.In [7],
[8], and [9], the use of branch and bound algorithm featured prominently in
their propositions. [11] and [12] advocate the decomposition technique and
showed that the iteration were between the primal and dual formulation of
the main problem which can fail to converge except for special condition on
the problem structure, especially with the non convex problems. In some
cases, using the decomposition method to solve mixed integer problem
was achieved by first converting the problem form and isolating the integer
first from the objective function and making the dual problem to be linear
integer variables, then, the sequence is solved by a serial integer linear
original problem and its continuous convex quadratic primal problems. [13]
proposed a method which converges to the global optimum, the process
reduces the problem to the equivalence problem type by linearising the
Lagrange function to achieve a function of the relaxed dual problem. However,
this problem was not to be solved without the branch and bound method.
The super convergent line search algorithm method of [1] searches the
optimal feasible region in segments. The segments are the feasible region
within which the constraints are satisfied. The estimated path of convergence
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is achieved by normalizing the search direction and the optimal attained by
addition or subtraction of the incremental or reduction factor for minimization
and maximization respectively. The search scheme combined the segments
using a convex combination to minimize the variance and information matrix
component without incorporating the possible bias component and
interactions. In the segmented case of the algorithm of [1], the method
was shown to converge for quadratic problem with linear constraints in a
number of iterations but could not attain convergence for a quadratically
constrained quadratic problem due to the inability of the search scheme to
evaluate the step length. Although an assumed step length was proposed to
solve the problem but it was not iteratively efficient because the conditions
of assumption were not clearly stated. In this present study, interest is to
seek a method that will circumvent these rigorous means to achieve the
optimal of a quadratic constrained quadratic function. This work will present
a modified iteration method to resolve the quadratically constrain quadratic
optimization function that is capable of evaluating the optimal starting point,
the step length and the optimal direction of search that iteratively evaluates
the optimal design to advance the super convergent search algorithm of
the linear constrained problem to the iterative method of solving quadratic
constrained quadratic optimization method by incorporating the bias and the
precision matrices as the complete information matrix.

2 Methodology

2.1 The Quadratically Constrained Quadratic Problem

A quadratic constrained quadratic optimization problem is defined as

min/max
x

f(.) = CTx+ xTCBx

subject to : CTx+ xTCQx ≤ b

x ≥ 0

(2.1)

where, x ∈ Rn, CB ∈ Rn×n, CQ ∈ Rm×n, C ∈ Rn, b ∈ Rm and xTCBx is the
quadratic part of the objective function. CB and CQ are positive semi definite
square matrices of real numbers. CB is the coefficient of the quadratic part
of the objective function. x is a subset of real numbers n. CTx is the liner
part of the constraint equation and objective function. xTCQx is the Jacobian
of the constraint.
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2.1.1 The Algorithm

The algorithm can be summarized as
i) Select boundary optimal points from the feasible region of the segmented

design space to form design Xijk and bias matrices XiB and calculate
the weighted means x∗

j

ii) Evaluate the Average information matrix

iii) Find the optimal direction of search d̂∗

iv) Calculate the value of the step length ρ

v) Using the line equation x∗ = (x∗
j ± ρmind̂) evaluate the optimal point x∗

vi) Check for convergence, if yes , stop.
vii) If No, replace the support point of maximum variance with the optimal

value of the iteration and repeat the iteration until convergence (vi) is
achieved.

2.1.2 Optimum Number of Segments and support points

To evaluate the support points, a graph of the constraint equation in (2.1)
would give a picture of the design space and the feasible region especially
in an inequality problem. The feasible area can be segmented into non
overlapping segment, Sk. The reason for segmentation of the feasible region
is to ensure a total search of the feasible area and the reduction of the
mean square error of the search scheme. The required optimum number
of segments is as given in [1], [16], and [22] is transformed in terms of the
number of parameters of the design as

2p

p2 + p+ 1
≤ Sk ≤

p2 + p+ 2

2p
(2.2)

where, p is the number of parameters in the design.
We define Sp as the optimum number of support point per segment that is
appropriate for a search; such that,

(n+ 1) ≤ Sp ≤
1

2
n2 + n+ 1 (2.3)

where, n = p− 1 and p are as defined in (2.2). It was showed that
segmentation of the space X into S subspace such that, in the Sk subspace
the function is adequately represented by a first order function as a rapid
way to reduce the information matrix and achieve global optimum of the
response surface.
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2.1.3 Design Measure

A design measure refers to the measures or points that satisfies the
constraint equations and lies within the feasible region. The points are made
up of optimal support points, xijk, from all the segments, We elect points
that satisfy the constraint equation of the design within the Sk segment.
It is often preferred to use boundary points. In [15], the boundary points
were shown to converge faster and more efficiently since it covers the whole
design space at the same time. Care should be taken not to use the saddle
point (0, 0) when using weighted mean as a means of averaging the design
measures, (Although, the saddle point does not have any effect when using
other methods such as the Arithmetic mean,the Geometric mean and the
harmonic mean. The measures of all the optimum design points in the
design space are represented by

ξN(N×p) =


ξ1
ξ2
...
ξN


where ξN(N×p) represents the measures of all the optimum design points in
the design space and ξ are column vectors

2.1.4 Design Matrix

In each of the segments, the boundary points form the design measure
denoted by xijk . for the k − th segment corresponding to ξi. For a k − th
segment case, the matrix of the first segment is given as

X1 = Xij1 =


x111 x121 · · ·x1p1

x211 x221 · · ·x2p1
...

...
...

xn11 xn21 · · ·xnp1

 . (2.4)

the second segment is

X2 = Xij2 =


x112 x122 · · ·x1p2

x212 x222 · · ·x2p2
...

...
...

xn12 xn22 · · ·xnp2

 . (2.5)
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while the k − th segment will be given as

Xk = Xijk =


x11k x12k · · ·x1ps

x21k x22k · · ·x2ps
...

...
...

xn1k xn2k · · ·xnps

 (2.6)

where xi(j×n) = (x1, x2, · · · , xn). S = 1, 2, · · · , k. Xn×p×k is the design matrix
of the segment, such that, i = 1, 2, ..., n.j = 1, 2, ..., p. and S = 1, 2, ..., k.
and X1, X2, · · ·Xk are design matrices for 1, 2 to k segments such that n is
the row, p is the column and k is the segment.

2.1.5 Optimal Starting Point

This is a point where the search begins often evaluated as an average of
all the support points.To evaluate the mean of the support points in all the
segments, use can be made of the arithmetic mean, the harmonic mean
or the weighted mean. The weighted mean is most preferred because
it assigns weights to the design measures Xij of the design matrix. The
weighted mean is given as

Wi =
a−1
i∑N

i=1 a
−1
i

(2.7)

where, ai = xT
i xi, and

∑N
i=1 Wix

T
ij is the optimal starting point shown as

the weighted mean of X̄j. The optimal starting point of a design is vital
in forming the design, and it affects the rate of convergence of the search.
The method of selecting the best starting points is usually of great concern,
because, it is the base on which the search scheme is built. [21] confirmed
that once an optimal starting point X̄j is achieved, the search scheme is left
with evaluating the incremental value for maximization or the decremental
value for minimization case respectively. The starting point of the sequence
is known to affect performance and should be given serious consideration for
an optimal design of experiment. The weighted mean is effective in forming
optimal starting point. The reasons for performing an experiment have been
to generate the distribution of information throughout the region of interest[
see [30], and [31]]. This is so, because within the feasible region lies the
optimal point. It is worthy of note without loss of generality, that all feasible
points are local optimal points. The boundary points are effective for forming
the designs for segmented and non-segmented designs.
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2.1.6 The Coefficient of the Bias and the Bias Vector and the Bias Matrix

The coefficient of the bias, CB, is defined as the coefficients of the quadratic
component and the interaction of the objective function in (2.1). An expanded
expression of the objective function for p variables are given by

Min/Max
x

f(.) = a11x
2
1+· · ·+appx

2
p+b12x1x2+· · ·+b(p−1)(p)xp−1xp+c1x1+· · ·+cpxp

(2.8)
where, a11, · · · , app are the coefficients of the quadratic terms, b12 · · · , b(p−1)p

are the coefficients of the interaction terms, and c1, · · · cp are the coefficients
of the linear terms (variables). The expression (2.8) can be reduced to two
variables case as,

Min/Max
x

f(.) = ax2
1 + bx2

2 + cx1x2 + βx1 + θx2 + γx0. (2.9)

The coefficient of the bias of the function is

CB = (a, b, c)

where,
a is the coefficient of x2

1, b is the coefficient of x2
2, c is the coefficient of x1x2

the interaction term. The bias matrix of the design is given as XiB for the
i−th partition. In each segment of the partition, the bias matrix is obtained
by using the powers and interactions of the entries of the objective function
such that

XiB = [x2
i1, x

2
i2, xi1xi2] (2.10)

where,
x2
i1; is the first squared factor of the equation; x2

i2; is the second squared
factor of the equation and xi1xi2 is the (interaction) of the first factor and
the second factor of the equation. The minimax property of the response
function can be express by considering a response function

f(.) = g1(x) + g2(x) (2.11)

Assuming that the regression function is given as

y(x) = g(x) + ε (2.12)

and ε is normally distributed with mean 0; then,

E(g(x)) = y(x) ̸= f(.)

The regression function (2.12) is said to be bias in (2.11), and shows that
g1 and g2 are n component vectors of the gradient and the biasing effect
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respectively. The least square estimate of the regression equation in (2.12)
is given as

E(ĝ(x)) = (XTX)−1XTY, (2.13)

If Y = XBCB, then (2.13) is given as

E(ĝ2(x)) = (XTX)−1XTXBCB.

Hence,
E(f(.)) = ĝ(x) + (XTX)−1XTXBCB

It should be noted that
E(f(.)) = ∆f

where,
∆f is the gradient of the function, and
ĝ(x) is the precision matrix given as (XTX)−1; and the true estimate of
(2.11) is

E(f(.)) = (XTX)−1 + (XTX)−1XTXiBCB. (2.14)

where,
CB and XiB are as defined in (2.9) and (2.10) respectively.

E(f(.)) ≥ b̂

where,
b̂ is the bias in each segment. If the design is segmented into k segments,
then b̂ will be represented as b̂k, such that

b̂k = (XT
k Xk)

−1XT
k XiBCB.

where, k = 1, 2, · · · , S provided in (2.4) to (2.6).

2.1.7 The Mean Square Error

In the presence of the bias, the response function for the kth segment in
(2.12) can be restructured (see, [16], [1], and [23]), as

f(.) = XkCk +XBkg2

where, g2 is the vector of bias effect, Xk is the design matrix for the k −
th segment, XBk is the coefficient matrix of the bias effect for the k − th
segment.
Min(M(dt)) = minhk(M(

∑
htkCtk)), Min(M(dt)) = minhtk(M(

∑
h2
tkM(Ctk)),

M(Ctk) is the mean square error of Ctk the diagonal element of the M(Ctk).
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It follow from the relation shown in (2.14) that the mean square error for
(2.13) is given as

M(Ctk) = M−1
(εkNk) +

[
M−1

(εkNk) +XT
k XBkg2

] [
gT2 X

T
BkXk +M−1

(εkNk)

]T
(2.15)

where,
gT2 X

T
BkXk+M−1

(εkNk) = bTk , M−1
(εkNk)+XT

k XBkg2 = bk, M(Ctk) = MSE, M−1
(εkNk)

is the precision matrix; such that,

M(Ctk) = M−1
(εkNk) + bkb

T
k , (2.16)

εk =

(
x1 x2 · · · xNk

w1 x2 · · · wNk

)
,

and

N =
S∑

k=1

Nk.

Wi is the i−th weight defined in (2.7), yk is the regression defined in (2.12),
such that g(x) = CT

k xk; and xk are the N − th support point in εNk.

2.1.8 The Information Matrix

The Fisher information is a measure of the amount of information about
parameters provided by experimental data. [37] showed that in Fisher 1912,
it is a well-established characteristic of an experimental design used to
asses and optimize the design for maximization of expected accuracy of
parameter estimates. [38] the Fisher information is calculated for each pair
of parameters and it is in this notation denoted as information matrix, M .
In some cases when the information matrix is not of full rank, the precision
matrix M−1 is usually difficult to obtain. This problem is usually overcome
through matrix operation and linear algebra (see [36]). Given a convex
design space S(x), the set of all non-singular n × n matrices Sn×n such
that X ∈ S(x) and S(x) is convex if x ∈ S(x) is a convex combination of the
boundary set S(b), then

Sb = {x : xTAx = r2}

such that x = Hx1 + (1−H)x2.
Let Mx =

∑
x∈S(x) xx

T δ2e , ie,

Mx =
∑

x1,x2∈S(b)

((Hx1 + (1−H)x2)(Hx1 + (1−H)x2))
T δ2e
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If x1x
T
2 = x2x

T
1 = 0 and x1x

T
1 ̸= x2x

T
2 ̸= 0,

Mx ≤ HTM1H + (1−H)TM2(1−H)

where,
Mx is the information matrix, Sy is the boundary set, Sx is the convex set
of xs

i and Sn is the function space. [26] showed the conditions and proof
for concave case showing that the sign of the inequality will change when
the design is segmented into S segments as shown in (2.2) to obtain the
average information matrix MA of the whole design space by the convex
combination of the information of the respective segments

MA = HT
1 M1H1 +HT

2 M2H2 + · · ·+ (1−HS)
TMsHs (2.17)

The diagonal elements in (2.17) of MA are the variances and the off diagonal
are the covariances.

2.1.9 The Convex Matrices

The convex combination for the two segment design is illustrated by
considering an optimization problem given as

Optimize f(x1, x2, · · · , xn)

Subject to :g(x)

The constraint equation g(x), is graphed and segmented to evaluate Mck1,
Mck2 , · · · , Mcks for kth segments as shown in (2.16), the convex combination
matrix H1, H2, · · · , 1−Hk is as defined in (2.17)
such that for a two variable case,

d = H1b1 + (1−H1)b2

expressed as
d0 = h0b10 + (1− h0)b20

d1 = h1b11 + (1− h1)b21

d2 = h2b12 + (1− h2)b22

The variance of the relation in (2.4), to (2.6) can be evaluated as

var(di) = h2
i var(b1i) + (I − hi)

2varb2i

Taking a partial derivative ∂i with respect to hi and solving for hi, for
i = 0, 1, 2, would yield

h0 =
v20

v10 + v20
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h1 =
v21

v11 + v21

h2 =
v22

v11 + v22
Hn×n = diag(h0, h1, h2) and H is a symmetric matrix
where,

HTH + (1−H)T (1−H) = 1

The normalized convex matrices H∗ and (I −H)∗ are achieved by dividing
each diagonal entry of the symmetric matrix H by the square root of the sum
of square of the corresponding entries of H and (1−H) respectively, Using
the same rules, the convex matrix can be extended to k segments.Thus,

H∗ = diag

{
h0√

h2
0 + (1− h0)2

,
h1√

h2
1 + (1− h1)2

, · · · , hk√
h2
k + (1− hk)2

}
.

2.1.10 The Direction Vector and The Direction of Search

In the response function defined in (2.12), there exists a first-order model,

f(.) = Xa+ ε

Such that if xTx ≥ 0 of degree, m ≥ 2 ( see for instance,[16]) then

Z(.) = MξNd+ u(.)

and if MξN = wXTXwT and d = wa then
Z(.) = wXTXwT + u(.)

By least square estimate

â = (XTX)−1XTf(.)

d̂ = w(XTX)−1XTf(.)

d̂ = M−1
ξN z(.)

where, w is a convex combination matrix, such that wTw = I and The
direction vector z(.) is achieved by substituting the corresponding entries
of the mean square error into the objective function of (2.1)
z(.) = f(m1,m2, · · · ,mn) = (z1, z2, · · · , zn)T

var(d̂) = w(XTX)−1wT
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d̂ is an (n× 1) directional column vector. To evaluate the optimal
directional vector, we normalize the directional column vector d̂ to obtain

d̂∗ =



d1∑n
i d

2
i

d2∑n
i d

2
i

...
dn∑n
i d

2
i



2.1.11 The Step Length

The Step length represents the length of search in the design space
given as;

ρn×1 =

{
CTx

∗
j − bi

CT d̂∗

}
where, ρ is step length, CT is the value of the partial differential coefficient of
the Jacobian of the quadratic constraint, x∗

j is the weighted optimal starting
point, d̂∗ is the optimal direction of search, and bi is constants of the
constraint equation. In the case of a minimization problem, ρmin is used to
evaluate the optimal decreased (although these are usually dependent on
the sign) value while for maximization problem, ρmax is used to evaluate
increased optimal value. The constraints coefficient are transformed by
linearising the Jacobian of the constraint equation, CTx+ xTCQx in (1). Let
CT be defined as the partial deferential coefficient of the constraint equation
given as,

CT =

[
∂(Cx)

∂x
+

∂(xTCQx)

∂x

]
= 0

such that,
CT linearises the quadratic constraint see ([39])

ρmin/max =


ρ1
ρ2
...
ρn

 (2.18)

The step length helps in upward or down adjustment of the search along the
estimated optimal direction of search to achieve the global optimum.
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2.1.12 Optimal Point

The optimal move is achieved by substituting the values of the optimal
starting point, the step length and the direction of search in the line equation
to evaluate x∗ the optimal point. The difference for maximization problem
and minimization problem are discussed as x∗ is the value that minimizes or
maximizes the f(.) and satisfies the constraint equations

x∗ = (x∗
j − ρmind̂) (2.19)

for minimization problem and

x∗ = (x∗
j + ρmaxd̂) (2.20)

for maximization problem. where, ρmaxd̂ is increment value that maximizes
the optimal stating point x∗

j while ρmind̂ is decrement value that minimizes
the optimal point starting point.

2.1.13 Variance Replacement

This is a procedure used to eliminate the design support point
(
x1j

x2j

)
with the

maximum variance and replace it with the algorithm improved point
(
x∗
1j+i

x∗
2j+i

)
where, i = 1, 2, ...
The variance is evaluated as

V ar(x) = xiMA
−1xT

i (2.21)

where, xi are the row vectors of the support points of all the segments and
MA

−1 is the precision matrix of the design respectively. [15] demonstrated
that by improving an existing experimental design the optimizer of the
response function is approached by adding points of minimal variance to
an initial design leading to the minimum of the response function for a
minimization problem and otherwise adding for maximization problem. The
minimum variance adjustment technique is introduced as a means of
reducing variability and attaining convergence

2.1.14 Convergent Criteria

Let x∗
j+i =

(
x∗
1j+i

x∗
2j+i

)
such that x∗

j+i be the iteration estimated optimal value

at the ith iteration given in either (2.19) or (2.20). If ϵ ∈ [0, 0.01) then the
sequence is said to have converged if
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a) | f(x∗
j)− f(x∗

j+1) |≤ ϵ

b) If
(
x∗
1j+i

x∗
2j+i

)
satisfies all the constraint equation in (2.1).

c) The sequence is said to have converged, if sequence satisfies all the

convergent criteria stated in number (a) and (b) above then
(
x∗
1j+i

x∗
2j+i

)
is

a global optimum. Otherwise, do a variance replacement and repeat
the iteration.

3 Application

Two numerical examples are considered, the first problem is taken from [29]
as F5, also available in [4] and [28]. The second problem is taken from [1]
as standard quadratically constrained optimization problems.

3.1 The first problem

The problem consists of a quadratic objective function, and a linear and
quadratic constraints. The problem is defined as

min f(x) = (x1 − 1)2 + (x2 − 1)2

subject to : x1 + x2 ≤ 2

x2
2 − x1 ≤ 0

The feasible area is partitioned into two segments of X1 and X2 as the first
and second segments are given as

X1 =


1.00 1.0000000
0.25 0.5000000
0.50 0.7071068
6.25 2.5000000

 .and X2 =


1.0000 1.000000
1.2081 0.790800
3.2500 1.802776
0.2500 −0.500000

 .

The bias matrices for the two segments are evaluated as

X1B =


1.0000 1.0000
0.0620 0.2500
0.2500 0.5000
39.0620 6.2500

 .and X2B =


1.0000 1.0000
1.460 0.625
10.562 3.250
0.062 0.250

 .

The coefficient of bias of the function is

CB =
(
1.0000 1.0000

)
.
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The partial deferential coefficient of the constraint equation CT is evaluated
as

CT =

(
1.0000 1.0000
−1.0000 2.0000

)
.

The right hand side constant of the constraint equation is

b =

(
2.0000
0.0000

)
.

The information matrices of the first and the second segments are obtained
as

XT
1 X1 =

(
40.37500 17.10355
17.10355 8.000000

)
and XT

2 X2 =

(
13.084506 5.689386
5.689386 5.125365

)
.

The bias vectors are calculated as

b1 =

(
9.905
−6.680

)
.and b2 =

(
3.310
1.084

)
.

and Bias for segment the two segments are

b1b
T
1 =

(
98.10902 −66.1654
−66.1654 44.6224

)
.and b2b

T
2 =

(
10.95610 3.588040
3.588040 1.175056

)
.

The mean square errors are evaluated as

M1 =

(
98.37 −66.73
−66.73 45.95

)
.and M2 =

(
11.10 3.42
3.42 1.55

)
.

The convex matrices are evaluated as

H1 = diag.
(
0.8986024, 0.9673684

)
.

and

H2 = diag.
(
0.1013976, 0.03263158

)
.

and the normalized convex matrices

H∗
1 = diag.

(
0.9936938, 0.9994316

)
.

and

H∗
2 = diag.

(
0.1121277, 0.03371314

)
.

Average information matrix is calculated be

MA =

(
97.27279 −66.25857
−66.25857 45.89954

)
.
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The direction vector and the normalized direction of search are calculated
as

d =

(
14303.11
20787.88

)
.

and

d∗ =

(
0.5668365
0.8238303

)
.

The weighted X are

x̄j =

(
0.4535172
0.1621163

)
.

The Step lengths ρ and minimum step length ρ∗ for minimization problem is
evaluated from respectively as

p =

(
−0.9954696
−0.1196167

)
.

Optimal Step length
p∗ = −0.9954696

Optimal value is

x∗ =

(
1.0177857
0.9822143

)
.

3.1.1 Convergence criteria

To evaluate the Convergent Criteria, the optimal starting point x̄j and the
optimal value x∗ are used to evaluate the convergent criteria,f(x̄j) as f0 and
f(x∗) as f1. being function of objective function. To check if the solutions
satisfies the constraint equations,
x∗ is substituted in to the constraint equations.
Convergent Criteria 1
let Q = |(f(x̄j)− f(x∗))| < ϵ
where ϵ is a small value 0 < ϵ < 0.01 , then,

Q = |(f0((0.4535172, 0.1621163)− f1(1.0177857, 0.9822143)| < 0.01

Q is not TRUE and x∗ does not satisfies the objective function convergent
condition at ϵ = 0.01 and x∗ = (x1= 1.0177857, x2 =0.9822143).
Convergent Criteria 2
To test with the constraints equations, x∗ is substituted to check if the optimal
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values x∗ satisfies all the constraint equations. The results obtained showed
that the values of x∗ = (x1= 1.0177857, x2 = 0.9822143) satisfies the
constraint equations. x∗ is not considered to be a global solution because
first
convergence criteria is not satisfied. Hence, a variance replacement is done
to evaluate the support point with maximum Variance and replace it with
x∗. and Repeat the Iteration. The Maximum Variance is evaluated as Vm
=59.95698 corresponding to the variance of the fourth support point V4.
The fourth support point is replaced with (1.0177857,0.9822143) and the
iteration is repeated. The iteration was repeated five more times before
convergence was attained in the sixth iteration. the maximum variance
were evaluated at V4,V7,V1,V4 and V1 corresponding to support points
X4,X7,X1,X4 and X1 which was replaced with the algorithm evaluated
optimal points X∗ as (1.0678,0.9322),(1.0436,0.9564),(1.0539,0.9461),
(1.0622,0.9378) and(1.0666,0.9334) evaluated at each iteration respectively.
see Table 1 below;

Table 1: Result of Six Iterations
IT p∗ d∗ x̄j x∗ Q V m Rule 1 Rule 2
1 -0.9955 0.5668,0.8238 0.4535,0.1621 1.0178,0.9822 2.6403 - False True
2 -.09468 0.6323,0.7747 0.4691,0.1987 1.0678,0.9322 0.1087 59.9570 False True
3 -0.9257 0.6103,0.7922 0.4787,0.2230 1.0436,0.9564 0.0538 4.5780 False True
4 -.09245 0.5200,0.7846 0.4807,0.2208 1.0539,0.9461 0.0224 1.3441 False True
5 -0.9235 0.6278,0.7784 0.4824,0.2189 1.0622,0.9378 0.0187 1.3277 False True
6 -0.9232 0.6320,0.7750 0.4832,0.2179 1.0666,0.9334 0.0099 1.3093 True True

3.2 The second problem

The problem consists of quadratic objective function and quadratic constraints
given as

min f(x) = x3 −
1

2
x2

2

subject to : x2
1 + x2 + x3 ≤ 7

x2
1 − x2 + x3 ≤ 5

x3 ≥ 0

17
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Let the area be partitioned into two and the boundary points that satisfies
the constraint equation given as;

X1 =


2.44949 1 0.00
−2.44949 1 0.00
2.00000 2 0.00
−2.00000 0 0.00
2.00000 0 0.01
−2.00000 0 0.01

 .

for Segment two

X2 =


2.236068 1 0.01
2.236068 1 0.01
1.732051 3 0.01
1.732051 2 0.01
2.236068 0 0.00
2.236068 0 0.00

 .

The bias matrix for the first segment

X1B =


4
4
6
3
6

 .

and

X2B =


5
3
6
4
4

 .

The coefficient of Bias

CB =

(
−1

2

)
.

The differential of the Jacobian matrix

CT =

2 1 1
2 −1 1
0 0 1

 .
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The Right hand side constant

b =

7
5
0

 .

The Bias Vector and bias are calculated as

b1 =

 0.00
−1.40
−200.0

 .

The Bias Vector and bias are evaluated as

b2 =

 −1.1180
0.4365

−43.6492

 .

and

b1b
T
1 =

0 0.00 0
0 1.96 280
0 280.00 40000

 .

b2b
T
2 =

 1.249924 −0.4880070 48.79981
−0.488007 0.1905322 −19.05288
48.799806 −19.0528758 1905.25266

 .

The mean Square for first segment

M1 =

0.0357 0.00 0
0.0000 2.06 280
0.0000 280.00 45000

 .

the mean square error is calculated as

M2 =

 1.3499 −0.4376 21.3990
−0.4376 1.2159 −182.8634
21.3990 −182.8634 34413.3193

 .

The Convex matrices and the normalized convex combination is given as

H1 = diag.
(
0.02576501, 0.6288348, 0.5666556

)
.

and

H2 = diag.
(
0.974235, 0.3711652, 0.433444

)
.
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and the normalized convex matrices are
H∗

1 = diag.
(
0.02643716, 0.8611778, 0.7943446

)
.

and
H∗

2 = diag.
(
0.9996505, 0.5083039, 0.6074674

)
.

Average information matrix

MA =

 1.348981 −0.222356 12.99465
−0.222356 1.841907 135.07593
12.994652 135.075925 41093.33834

 .

The direction vector

Fz =

 12.08478
135.05120
41008.90785

 .

The direction of search and the optimal direction of search are calculated as
The direction of search is

d =

−0.64516711
0.05851019
0.99795709

 .

and

d∗ =

−0.54225635
0.04917721
0.83877271

 .

The optimal weighted mean as optimal starting point is obtained as

x̄j =

1.038584
0.822400
0.005446

 .

Step length p and minimum step length p∗ for minimization is evaluated

p =

 20.83297
12.6808

0.00649282

 .

optimal step length for minimization is
p∗ = 0.00649282

Optimal value is calculated as

x∗ =

1.0421049
0.8220807
0.000000

 .
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3.2.1 Convergence Criteria

To evaluate the Convergent Criteria, the optimal starting point x̄j and the
optimal value x∗ are used to evaluate the convergent criteria,f(x̄j) as f0 and
f(x∗) as f1. being function of objective function. To check if the solutions
satisfies the constraint
equations,x∗ is substituted in to the constraint equations.
Convergent criteria 1
let Q = |(f(x̄j)− f(x∗))| < ϵ
where ϵ is a small value ϵ ∈ [0, 0.01) , then,

Q = |(f0((1.038584, 0.822400, 0.005446)
−f1(1.0421049, 0.8220807, 0.0000000)| < 0.01

Q is TRUE and x∗ satisfies the objective function convergent condition of
ϵ ∈ [0, 0.01) and x∗ = (x1= 1.0421049, x2 = 0.8220807 and x3=0.000000).
Convergent Criteria 2
To test with the constraints equations, x∗ is substituted to check if the optimal
values x∗ satisfies all the constraint
equations. The results obtained also showed that the values of x∗ = (x1=
1.0421049, x2 = 0.8220807 and x3=0.000000) satisfies the constraint
equations in the first iteration. Hence, x∗ is considered a global solution.
There will be no need for another iteration.

4 Conclusion

A modified super convergent line search algorithm for solving quadratically
constrained quadratic optimization problem has been developed. Two
analytical problems were used to showed the validity of the method in solving
quadratically constrained problems using two convergence criteria; the
objective function and constraints. In the first problem, the two convergent
criteria where satisfied at the sixth iteration. Furthermore, the second problem
converged at the first iteration satisfying both the objective function and
constraint criterion,respectively. This approach provides opportunities to
compute other statistics including the mean square error, the information
matrix, the step length, the direction of search and the optimal starting
point.The approach is simple, straight forward and can be implemented for
solving various quadratically constrained quadratic optimization problems in
the fewest number of iterations.
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