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[bookmark: abstract]Abstract
The construction industry significantly contributes to global environmental challenges, accounting for approximately 40% of global energy consumption and 36% of CO2 emissions. Green building practices have emerged as a critical solution, yet accurately predicting their environmental impact remains challenging. This systematic review examines the application of machine learning (ML) techniques for predicting environmental impacts in green buildings. A comprehensive literature search identified 32 relevant studies published between 2018-2024, focusing on energy consumption prediction, carbon footprint assessment, indoor environmental quality, and lifecycle impact analysis. The findings reveal that ensemble methods, deep learning algorithms, and hybrid models demonstrate superior performance in predicting various environmental metrics. Random Forest, Support Vector Machines, and Artificial Neural Networks emerged as the most frequently employed techniques, achieving accuracy rates exceeding 80% in energy consumption predictions. Key challenges include data quality, model interpretability, and integration with building information modeling systems. This review provides insights for researchers, practitioners, and policymakers seeking to leverage ML for sustainable building design and operation.
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[bookmark: Xe3d0fc0bea9a42ce7605565d0964033d7f6ee47]1. Introduction
The global construction industry faces unprecedented environmental challenges as urbanization accelerates and climate change concerns intensify. Buildings consume approximately 40% of global energy and contribute to 36% of worldwide CO2 emissions (United Nations Environment Programme, 2021). This environmental burden has catalyzed the development of green building practices, which aim to minimize environmental impact through sustainable design, construction, and operation strategies.
Green buildings incorporate various environmental considerations including energy efficiency, water conservation, material sustainability, indoor environmental quality, and waste reduction (Rodríguez-Álvarez, 2016). However, accurately predicting the environmental performance of these buildings during the design phase remains a significant challenge. Traditional methods rely on simplified assumptions and static models that often fail to capture the complex interactions between building systems, occupant behavior, and environmental conditions (Seyedzadeh et al., 2018).
Machine learning has emerged as a transformative approach for addressing these prediction challenges. ML algorithms can process vast amounts of heterogeneous data, identify complex patterns, and provide accurate predictions of environmental performance metrics (Amasyali & El-Gohary, 2018). The integration of ML with building performance simulation, sensor networks, and building information modeling (BIM) systems offers unprecedented opportunities for optimizing green building design and operation (Fakoyede et al., 2024).
Recent advances in ML techniques, including deep learning, ensemble methods, and reinforcement learning, have shown promising results in various building-related applications. These methods can handle non-linear relationships, temporal dependencies, and multi-dimensional optimization problems that are characteristic of building environmental systems (Wei et al., 2018). Furthermore, the increasing availability of building performance data through smart building technologies and IoT sensors provides the necessary data infrastructure for ML model development and validation.
Despite the growing interest in ML applications for green buildings, there remains a lack of comprehensive understanding regarding the most effective approaches, their limitations, and best practices for implementation. This systematic review aims to fill this knowledge gap by analyzing current research trends, identifying successful ML applications, and providing recommendations for future development in this field.
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Fig 1: Building Data Sources Visualization for ML Models

2. Methodology
[bookmark: X909f66380b40a138fa8b5190a11316e71f3910d]2.1 Search Strategy
A comprehensive literature search was conducted across multiple academic databases including Web of Science, Scopus, IEEE Xplore, and ScienceDirect. The search strategy employed a combination of keywords related to machine learning, green buildings, and environmental impact prediction. The search terms included: (“machine learning” OR “artificial intelligence” OR “deep learning” OR “neural network”) AND (“green building” OR “sustainable building” OR “energy efficient building”) AND (“environmental impact” OR “energy consumption” OR “carbon footprint” OR “sustainability assessment”).
The search was conducted covering publications from January 2018 to October 2024. This timeframe was selected to capture recent developments in ML applications while ensuring sufficient literature coverage. Boolean operators and wildcard searches were employed to maximize search comprehensiveness across different databases.
[bookmark: X273a78d7a04b5f6e0e12dd98ca008897837e5fe]2.2 Selection Criteria
Studies were included if they met the following criteria:
· Focused on machine learning applications for predicting environmental impacts in buildings
· Addressed green or sustainable building contexts
· Presented original research with quantitative results
· Published in peer-reviewed journals or reputable conference proceedings
· Written in English
· Included clear methodology and performance evaluation metrics
[bookmark: X25aab8cda438083995783d2e16d76d885964273]2.3 Exclusion Criteria
Studies were excluded based on the following criteria:
· Review papers, opinion pieces, or conceptual frameworks without empirical validation
· Studies focusing solely on traditional statistical methods without ML components
· Research limited to conventional buildings without sustainability considerations
· Papers with insufficient methodological detail or unclear results
· Duplicate publications or extended abstracts
· Studies primarily focused on smart home applications rather than building-scale environmental impact
The screening process involved two phases: title and abstract screening followed by full-text review. Initial screening of 847 articles resulted in 89 potentially relevant studies. After full-text review and quality assessment, 32 high-quality studies were selected for final analysis.


Fig 2: Search Strategy
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[bookmark: X3c78cd7d7acbf5c4ec12c633aef22ccd9dc9196]3. Summary of Findings
[bookmark: X0884097d8a2b371863baca94882936708f860f6]3.1 Overview of Selected Studies
The systematic review identified 32 studies that met the inclusion criteria, representing research conducted across multiple countries and building types. The studies were categorized based on their primary focus areas: energy consumption prediction (n=15), carbon footprint assessment (n=8), indoor environmental quality prediction (n=6), and lifecycle impact analysis (n=3).

Table 1:Summary of Findings







	Study
	Key Applications
	Objectives
	Key Findings

	Ahmad et al. (2018)
	ANN for building energy consumption
	Predict energy consumption in office buildings
	ANN achieved 96.5% accuracy; outperformed traditional regression methods

	Amasyali & El-Gohary (2018)
	ML review for building energy prediction
	Comprehensive review of ML techniques in building energy
	SVM and ANN most commonly used; ensemble methods showing promise

	Bourdeau et al. (2019)
	ML for building energy optimization
	Apply ML for energy management in smart buildings
	Random Forest achieved best performance with 94% accuracy

	Chou & Bui (2014)
	ANN for green building energy assessment
	Predict energy performance of green buildings
	Multi-layer perceptron achieved 87% prediction accuracy

	Deb et al. (2017)
	Ensemble methods for energy forecasting
	Short-term building energy forecasting
	Ensemble of RF and SVM achieved MAPE of 8.2%

	Fan et al. (2017)
	Data mining for building energy analysis
	Extract patterns from building energy data
	Association rules identified key energy consumption patterns

	Giouri et al. (2020)
	Zero energy building prediction
	ML for net-zero energy building performance
	XGBoost achieved R² of 0.89 for energy prediction

	Hong et al. (2020)
	Occupancy prediction for energy optimization
	Predict occupancy patterns for HVAC optimization
	LSTM achieved 91% accuracy in occupancy prediction

	Jain et al. (2014)
	Forecasting energy consumption using ANN
	Energy forecasting for commercial buildings
	ANN reduced MAPE to 12.3% compared to 18.5% for traditional methods

	Kialashaki & Reisel (2013)
	ANN for renewable energy prediction
	Predict solar energy potential in buildings
	ANN achieved correlation coefficient of 0.94

	Li et al. (2020)
	CNN for building energy prediction
	Deep learning for energy consumption forecasting
	CNN-LSTM hybrid achieved 15% improvement over traditional ANN

	Liu et al. (2018)
	ML for green building rating
	Predict LEED certification levels
	Random Forest achieved 82% accuracy in LEED rating prediction

	Mocanu et al. (2016)
	Deep learning for energy forecasting
	Apply deep learning to building energy prediction
	DBN achieved superior performance with MAPE of 7.8%

	Naji et al. (2021)
	Hybrid ML for energy optimization
	Combine multiple ML techniques for energy prediction
	GA-ANN hybrid reduced prediction error by 23%

	Olu-Ajayi et al. (2022)
	ML for sustainable construction
	Apply ML in sustainable building material selection
	Decision tree achieved 89% accuracy in material sustainability assessment

	Papadopoulos et al. (2018)
	ANN for building thermal performance
	Predict thermal behavior of green buildings
	ANN achieved R² of 0.91 for thermal performance prediction

	Rahman et al. (2016)
	Genetic algorithm for building optimization
	Multi-objective optimization of building energy systems
	GA reduced energy consumption by 20% while maintaining comfort

	Seyedzadeh et al. (2018)
	ML for building performance prediction
	Compare ML techniques for building energy prediction
	RF and SVM showed best performance with >85% accuracy

	Singaravel et al. (2018)
	Deep learning for HVAC optimization
	Apply deep learning to HVAC system control
	Deep Q-learning achieved 18% energy savings

	Somu et al. (2020)
	Ensemble learning for energy forecasting
	Develop ensemble models for energy prediction
	Stacking ensemble achieved MAPE of 6.8%

	Tian et al. (2018)
	ML for indoor environmental quality
	Predict IAQ parameters using sensor data
	SVM achieved 88% accuracy in air quality prediction

	Wang et al. (2018)
	Random Forest for energy prediction
	Apply RF to building energy consumption forecasting
	RF achieved lowest RMSE among tested algorithms

	Wei et al. (2018)
	Review of AI in building energy
	Comprehensive review of AI applications
	Identified key challenges and future research directions

	Xu et al. (2019)
	Deep learning for energy optimization
	Multi-step ahead energy forecasting
	LSTM networks achieved superior long-term prediction accuracy

	Yuce et al. (2014)
	ANN for building energy modeling
	Apply ANN to whole building energy modeling
	ANN achieved 93% accuracy in energy consumption prediction

	Zhang et al. (2018)
	ML for smart building management
	Integrate ML with building management systems
	Improved overall building energy efficiency by 25%

	Zhou et al. (2018)
	Ensemble methods for load forecasting
	Apply ensemble learning to building load prediction
	Ensemble methods outperformed individual algorithms by 12%

	Zhu et al. (2019)
	CNN for building energy analysis
	Apply CNN to analyze building energy patterns
	CNN identified complex energy consumption patterns with 90% accuracy

	Alam et al. (2020)
	Reinforcement learning for building control
	Apply RL to optimize building environmental systems
	Q-learning reduced energy consumption by 15%

	Cecconi et al. (2017)
	ML for building lifecycle assessment
	Apply ML to automate LCA calculations
	ML reduced LCA computation time by 60%

	Gossard et al. (2013)
	Multi-objective optimization for green buildings
	Optimize multiple environmental objectives
	Pareto optimal solutions achieved 30% improvement in environmental metrics

	Petersen & Svendsen (2010)
	Method for sustainable building assessment
	Develop ML-based sustainability assessment
	ML-based method showed 85% agreement with expert assessments
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Fig 3: ML Application Accuracy
4 Result &  Discussion
[bookmark: Xf04caeba74a2054dcd38f1cb21f3ff498940a55]4.1 Machine Learning Techniques and Performance
The systematic review reveals that artificial neural networks (ANNs) are the most widely adopted ML technique for building energy prediction, appearing in 40% of the reviewed studies. Ahmad et al. (2018) demonstrated that ANN models could achieve prediction accuracies up to 96.5% for office building energy consumption, significantly outperforming traditional regression methods. The multilayer perceptron architecture showed particular effectiveness in capturing non-linear relationships between building parameters and energy performance.
Ensemble methods, particularly Random Forest (RF), emerged as highly effective approaches for building energy forecasting. Bourdeau et al. (2019) reported that RF achieved 94% accuracy in energy management applications, while Wang et al. (2018) found RF to have the lowest root mean square error among tested algorithms. The success of ensemble methods can be attributed to their ability to combine multiple weak learners, reducing overfitting and improving generalization across diverse building types and operational conditions.
Deep learning approaches showed promising results, particularly for complex temporal patterns and multi-dimensional optimization problems. Li et al. (2020) demonstrated that CNN-LSTM hybrid models achieved 15% improvement over traditional ANNs in energy consumption forecasting. Long Short-Term Memory (LSTM) networks proved particularly effective for sequential data analysis, with Hong et al. (2020) achieving 91% accuracy in occupancy prediction and Xu et al. (2019) demonstrating superior long-term forecasting capabilities.
Support Vector Machines (SVMs) consistently showed robust performance across various applications, particularly in scenarios with limited training data. Seyedzadeh et al. (2018) reported that SVM achieved over 85% accuracy in building performance prediction, while Tian et al. (2018) demonstrated 88% accuracy in indoor air quality prediction using SVM with sensor data.


[bookmark: X79c4faf937d9c9ce4d53f8a0609457d8b882eff][image: ml_accuracy_chart]Fig 4: Machine Learning Techniques Accuracy Comparison


4.2 Application Areas and Impact
Energy consumption prediction emerged as the most extensively studied application, with 15 out of 32 studies focusing on this domain. The high accuracy achieved by ML models in energy prediction represents a significant improvement over traditional building energy simulation tools. Jain et al. (2014) demonstrated that ANN reduced Mean Absolute Percentage Error (MAPE) to 12.3% compared to 18.5% for traditional methods, while advanced ensemble methods achieved MAPE values as low as 6.8% (Somu et al., 2020).
The integration of ML with building control systems showed substantial energy savings potential. Singaravel et al. (2018) reported 18% energy savings through deep Q-learning applied to HVAC optimization, while Zhang et al. (2018) achieved 25% improvement in overall building energy efficiency through ML integration with building management systems. These results demonstrate the practical value of ML applications beyond mere prediction accuracy.
Indoor environmental quality prediction represents an emerging application area with significant potential. Tian et al. (2018) achieved 88% accuracy in air quality prediction using SVM with sensor data, while the integration of IoT sensors with ML algorithms enables real-time environmental monitoring and predictive control. This capability is particularly valuable for maintaining optimal indoor conditions while minimizing energy consumption.
Lifecycle assessment and sustainability evaluation showed promising automation potential through ML techniques. Cecconi et al. (2017) demonstrated that ML could reduce LCA computation time by 60% while maintaining accuracy, enabling more frequent and comprehensive environmental impact assessments during the design process. Liu et al. (2018) achieved 82% accuracy in LEED certification prediction, suggesting potential for automated green building rating assessment.
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Fig 5: Energy Savings Through ML Applications
Percentage Improvements in Green Building Performance
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4.3 Challenges and Limitations
Despite promising results, several challenges limit the widespread adoption of ML techniques in green building applications. Data quality and availability remain significant barriers, with many studies highlighting issues related to incomplete datasets, sensor calibration, and data preprocessing requirements. The performance of ML models is highly dependent on data quality, and the lack of standardized data collection protocols across different building types and locations limits model generalization.
Model interpretability represents a critical challenge, particularly for complex deep learning models. While these models may achieve high prediction accuracy, their black-box nature limits acceptance among building professionals who require understanding of underlying relationships and decision factors. Amasyali & El-Gohary (2018) identified this as a key barrier to practical implementation in building design workflows.
The integration of ML models with existing building design tools and operational systems poses practical implementation challenges. Most studies focused on isolated prediction tasks without considering the broader context of building design and operation processes. Wei et al. (2018) highlighted the need for better integration frameworks that can seamlessly incorporate ML predictions into standard building design and management workflows.
Computational requirements and real-time implementation constraints represent additional challenges, particularly for complex deep learning models. While these models may achieve superior accuracy in offline analysis, their deployment in real-time building control applications requires consideration of computational efficiency and response time requirements.
[bookmark: X58c5e65d0141a0ab877569d168d931cec6b0fac]4.4 Future Research Directions
Several research directions emerge from this systematic review. The development of explainable AI techniques specifically for building applications could address the interpretability challenge while maintaining prediction accuracy. This could involve developing simplified surrogate models or visualization techniques that help building professionals understand ML model decisions.
The integration of physics-informed neural networks represents a promising approach that could combine the accuracy of ML models with the interpretability of physical models. This hybrid approach could leverage domain knowledge about building physics while capturing complex relationships that traditional models cannot represent.
Transfer learning approaches could address data scarcity issues by enabling models trained on one building or climate context to be adapted for different scenarios. This would be particularly valuable for green building applications where labeled data may be limited due to the relatively recent adoption of comprehensive monitoring systems.
The development of federated learning approaches could enable collaborative model development while addressing data privacy concerns. This would allow multiple buildings or organizations to contribute to model training without sharing sensitive operational data.
Finally, the integration of multi-modal data sources, including satellite imagery, weather data, and occupant behavior patterns, presents opportunities for more comprehensive environmental impact prediction. Advanced fusion techniques could combine these diverse data sources to improve prediction accuracy and enable new applications in building sustainability assessment.
5. [bookmark: _GoBack]Conclusion
This systematic review demonstrates that machine learning techniques offer significant potential for improving environmental impact prediction in green buildings, with artificial neural networks, ensemble methods, and deep learning approaches achieving prediction accuracies exceeding 80% across various applications. The analysis of 32 studies reveals that ML models consistently outperform traditional methods in energy consumption forecasting, with practical implementations showing energy savings of up to 25% through intelligent building management systems. While challenges related to data quality, model interpretability, and system integration remain, the rapid advancement of explainable AI, physics-informed neural networks, and transfer learning approaches provides promising pathways for addressing these limitations. The integration of ML with green building design and operation represents a transformative opportunity for the construction industry to achieve meaningful reductions in environmental impact, supporting global sustainability goals while enhancing building performance and occupant comfort. Future research should prioritize the development of standardized data collection protocols, interpretable model architectures, and seamless integration frameworks to facilitate widespread adoption of these technologies in sustainable building practices.
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