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A Novel Phytogenic Solution for Sustainable Poultry Farming: Exploring the Growth-Promoting and Antimicrobial Potential of Sesamum radiatum



.     
.
              . 
                     
	.
..


.

____________________________________________________________________________________________

*Corresponding author: Email: XYZ@ABC.COM


ABSTRACT 

	Aims: This study evaluates the nutritional composition, antioxidant capacity, and antimicrobial potential of Sesamum radiatum extracts, with a focus on its suitability as a functional ingredient in poultry feed.
Study Design: Laboratory-based experimental research.
Place and Duration of Study: Conducted at the Integrated Bio Chemical Laboratory, Agro Bio Tech Research Centre Ltd (ABTEC), Poovanthuruth, Kottayam, Kerala, India, in April 2024.
Methodology: Proximate analysis was performed to determine the macronutrient composition of Sesamum radiatum. The antioxidant activity was assessed using the Ferric Reducing Antioxidant Power (FRAP) assay. Soxhlet extraction was used to obtain plant extracts in hexane, chloroform, and methanol. Antimicrobial activity against Staphylococcus aureus and Pseudomonas aeruginosa was evaluated using the agar well diffusion method. The most effective extract was incorporated into a formulated poultry feed.
Results: Sesamum radiatum exhibited a rich nutritional profile, containing high levels of protein, fiber, and essential micronutrients. The FRAP assay confirmed strong antioxidant capacity. The methanolic extract demonstrated significant antimicrobial activity against Staphylococcus aureus and Pseudomonas aeruginosa. Incorporation into poultry feed enhanced its bioactive potential.
Conclusion: Sesamum radiatum presents promising nutritional, antioxidant, and antimicrobial properties, supporting its use as a natural supplement in poultry feed. Its bioactive potential suggests a sustainable alternative to synthetic additives, warranting further in vivo studies for validation.
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1. INTRODUCTION 






The growing demand for sustainable and high-quality poultry feed has intensified research into plant-based substitutes with bioactive properties (Singh et al., 2023). As a critical contributor to global food security, the poultry sector has long relied on synthetic feed additives to enhance immunity, growth performance, and overall health (Upadhayay & Vishwa, 2014). However, concerns about antibiotic resistance, residual toxicity, and environmental impact have driven a shift toward natural feed supplements (AlSheikh et al., 2020). In this context, Sesamum radiatum a lesser-known but highly nutritious plant has emerged as a promising candidate due to its antibacterial and antioxidant properties. However, despite its known medicinal value, its efficacy in live poultry feeding trials remains underexplored, creating a knowledge gap that this study aims to address (Wacal et al., 2024).
Oxidative stress is a significant problem in poultry production, frequently resulting in slowed growth, decreased feed efficiency, and heightened susceptibility to illness (Oke et al., 2024). In order to stop oxidative damage to cells, antioxidants are essential for neutralizing reactive oxygen species (ROS). Despite their widespread use, synthetic antioxidants like butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA) continue to raise questions about their long-term safety (Yehye et al., 2015) this has increased interest in antioxidants derived from natural plants, which may provide safer and more efficient substitutes. Sesamum radiatum, which is high in flavonoids and phenolic compounds, offers a good way to boost poultry's antioxidant defences (Oduntan, Olaleye, & Akinwande, 2012).
In addition to oxidative stress, bacterial infections are a serious risk to poultry production, requiring the widespread use of antibiotics to prevent and control disease (Mishra & Jha, 2019). Multidrug-resistant bacteria have emerged as a result of an over-reliance on antibiotics, posing a major threat to human and animal health (Fatima et al., 2023). Natural antibacterial substitutes are the subject of more and more research in an effort to lessen this. According to preliminary research, Sesamum radiatum has potent antibacterial action against important poultry pathogens, such as Staphylococcus aureus and Pseudomonas aeruginosa (Shittu et al., 2007). Reliance on synthetic antibiotics can be decreased by adding natural antimicrobial agents to poultry feed, which could lessen worries about antibiotic resistance in the poultry sector.
Although Sesamum radiatum is known for its medicinal and therapeutic properties, its application as a functional ingredient in poultry nutrition remains largely unexplored. This study aims to address that gap by evaluating its proximate composition, antioxidant and antimicrobial activities, and potential benefits when incorporated into poultry feed (Dossou et al., 2023).
Sesamum radiatum has a distinct bioactive content that sets it apart from other sesame species and makes it ideal for use in poultry feed. According to new research, Sesamum radiatum contains a greater profile of phenolic compounds and flavonoids, which play a crucial role in antioxidant defense, while Sesamum indicum is recognized for its abundant oil content and lignans, including sesamin and sesamolin. (Kamal-Eldin, 2010; Kancharla et al., 2020). Additionally, although Sesamum indicum has been associated with enhanced immunity and growth in chicken, its antibacterial qualities pale compared to those of other therapeutic herbs (Wei et al., 2022). Sesamum radiatum, on the other hand, has strong antibacterial properties that make it a potentially better option for preventing poultry diseases.
Other plant-based feed additives with antibacterial and immunomodulatory properties have been investigated, including oregano (Origanum vulgare), garlic (Allium sativum), and turmeric (Curcuma longa) (Ivanova et al., 2024). Curcumin, the active ingredient in turmeric, for instance, has well-established anti-inflammatory and antioxidant properties; nevertheless, its bioavailability in poultry is comparatively poor unless piperine or other boosters are added (Menon & Sudheer, 2007) Similar to this, although extracts of garlic and oregano have been used extensively as antibiotic substitutes, their potent taste and smell frequently make feed less palatable, which restricts their widespread use. However, Sesamum radiatum is a more sensible option for commercial poultry feed since it provides a neutral-tasting substitute with equivalent or even better antimicrobial advantages (Florou-Paneri, Christaki, & Giannenas, 2019)
From both an animal health and sustainable agriculture perspective, this research is of critical importance. The use of natural feed additives aligns with global initiatives promoting eco-friendly and organic farming practices. By providing scientific validation of nutritional and functional properties of Sesamum radiatum's, this study contributes to the development of safer and more sustainable poultry feed solutions. The findings could have significant implications for both commercial and small-scale poultry farming, offering an innovative and practical solution to current industry challenges.

2. materialS and methods 
2.1. Plant Collection & Extraction

Fresh and disease-free Sesamum radiatum leaves were collected from      Poovanthuruth, Kottayam district, Kerala, India in April 2024. The plant species were identified and authenticated by experts at the Department of Biochemistry, IBCL, Poovanthuruth, Kottayam. Fig.1 shows the processing of Sesamum radiatum leaves.
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Processing Stages of Sesamum radiatum Leaves (Fig. 1. Fresh Leaf (A), Dried Leaf (B), Dried Leaf Powder (C), respectively.)


2.1.1 Preparation of Plant Materials and Extraction Process
Fresh leaves of Sesamum radiatum were thoroughly washed under running tap water to remove dirt and other adhering particles. The cleaned leaves were coarsely chopped and air-dried under shade for three days, followed by further drying in a hot air oven at 60°C. Once dried, the plant material was ground into a fine powder using an electric grinder. The powdered material was sieved through a kitchen strainer to enhance solvent interaction during extraction. A total of 92.17 g of fine powder was collected and stored in a plastic container at room temperature with proper labeling.
For extraction, three different solvent systems hexane, chloroform, and methanol were used to target a range of polar and non-polar compounds. Soxhlet extraction was carried out by placing 50 g of powdered leaves in the apparatus with 300 ml of each solvent. The temperature for hexane extraction was maintained between 42–52°C, while chloroform and methanol extractions were conducted at 50°C. After extraction, the solvents were evaporated using a china dish, and the resulting crude extracts were stored at 4°C for future analysis. (Oreopoulou, Tsimogiannis, & Oreopoulou, 2019)

2.2. Phytochemical Screening & Antioxidant Assay
2.2.1 Preliminary Qualitative Screening
The methanol, chloroform, and hexane extracts of Sesamum radiatum leaves were subjected to qualitative phytochemical analyses to identify the presence of various bioactive compounds. The following standard tests were conducted. Table 1 presents the results of the preliminary phytochemical screening of Sesamum radiatum extracts.







Table 1: Preliminary phytochemical screening
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	SL.NO
	Phytochemical
	Test Method
	Observation
	Reference

	1
	Flavonoids
	Alkaline Reagent Test
	Yellow coloration indicates presence

	(Sawant & Godghate, 2013)

	2
	Alkaloids
	Wagner’s Test
	Reddish brown precipitate indicates presence

	(Sawant & Godghate, 2013)

	
	
	Mayer’s Test
	White precipitate indicates presence

	(Sawant & Godghate, 2013)

	
	
	Dragendorff’s Test
	Red precipitate indicates presence

	(Sawant & Godghate, 2013)

	3
	Phenols
	Ferric Chloride Test
	Intense blue color indicates presence

	(Sawant & Godghate, 2013)

	
	
	Lead Acetate Test
	Bulky white precipitate indicates presence
	(Rashid, Wani & Devi, n.d.)

	4
	Tannins
	Ferric Chloride Test
	Dark green color indicates presence

	(Sawant & Godghate, 2013)

	5
	Glycosides
	Anthrone Test
	Dark green coloration indicates presence

	(Rashid, Wani & Devi, n.d.)

	6
	Protein
	Biuret Test
	Bluish-violet color indicates presence

	(Rashid, Wani & Devi, n.d.)

	7
	Saponins
	Frothing Test
	Froth formation indicates presence

	(Sawant & Godghate, 2013)

	8
	Coumarins	         
	 NaOH Test
	No dark yellow colour
absence
	(Sawant & Godghate, 2013)




2.2.2 Quantitative Analysis
2.2.2.1 Estimation of Flavonoids
Flavonoid content was estimated using a colorimetric method. Standard flavonoid solutions (50–250 µg) were prepared by pipetting 0.5–2.5 ml of the standard solution into a series of test tubes. A 0.1 ml aliquot of the sample was added, and the volume was adjusted to 2.5 ml with distilled water. Subsequently, 75 µl of 5% NaNO₂ was added, followed by incubation at room temperature for 5 minutes. Then, 150 µl of 10% AlCl₃ was introduced, and the mixture was incubated for another 6 minutes. Finally, 0.5 ml of 1 M NaOH was added, and the resulting pink color was measured spectrophotometrically at 415 nm. (Agbo et al., 2015)
2.2.2.2 Estimation of Carbohydrates
Carbohydrate content was estimated using the anthrone reagent method. A series of test tubes was prepared containing varying glucose concentrations, with tube 1 serving as the blank and tubes 2–7 used for constructing a standard curve. Each tube received 5 ml of anthrone reagent, and the mixtures were vortexed thoroughly. After cooling, the tubes were covered and incubated in a boiling water bath for 10 minutes. The absorbance was then recorded at 620 nm against the blank. (Patel et al., 2022)
2.2.2.3 Estimation of Crude Fiber
The crude fiber content was determined by hydrolyzing non-fibrous components. A fat-free sample was treated with 200 ml of H₂SO₄, heated under reflux for 30 minutes, filtered, and washed until neutral. The residue was then digested with 200 ml of boiling NaOH, followed by further filtration and washing. The residue was dried at 130°C for 1 hour, and its dry weight was recorded. Ashing was performed by placing the sample in a furnace at 600°C for 2 hours, after which the weight of the remaining residue was recorded. (Madhu et al., 2017)
2.2.2.4 Estimation of Phenols
Total phenolic content was estimated using the Folin-Ciocalteu method. A 1 ml aliquot of the sample or standard gallic acid (10–100 µg/ml) was added to a test tube, followed by 5 ml of distilled water and 0.5 ml of Folin-Ciocalteu reagent. After 5 minutes, 1.5 ml of 20% sodium carbonate was added, and the volume was adjusted to 10 ml with distilled water. The solution was incubated for 2 hours at room temperature, allowing an intense blue color to develop. Absorbance was then measured at 750 nm. (Lamuela‐Raventós, 2018)
2.2.2.5 Estimation of Vitamin C
Vitamin C content was determined using an iodine-based titration method. A 5 g methanolic extract was taken in a 250 ml conical flask, to which 10 ml of 30% potassium iodide (KI) solution was added and mixed thoroughly. 5 ml of 1 M sulfuric acid (H₂SO₄) was then added to maintain an acidic medium. Four drops of 1% starch solution were introduced as an indicator. The mixture was titrated against 0.005 M iodine (I₂) solution until a stable blue-black color appeared, indicating the endpoint. The amount of Vitamin C was calculated based on the volume of iodine consumed in the titration. (Dioha et al., 2011)
2.2.2.6 Estimation of Protein (Kjeldahl Method)
Protein content was determined using the Kjeldahl method. Four Kjeldahl digestion tubes were used two for the samples and two as blanks. Sample 1 contained 0.250 g of the test material, and Sample 2 contained 0.252 g. A catalyst mixture consisting of potassium sulfate and copper sulfate in a 5:1 ratio was added to each tube (approximately one spoonful). Then, 5 ml of concentrated sulfuric acid (H₂SO₄) was added to each tube to facilitate the conversion of organic nitrogen to ammonium sulfate. The tubes were heated to ensure complete digestion of the protein content. For the blank samples, only the catalyst mixture and sulfuric acid were added. After digestion, a mixed indicator was introduced to aid in visual endpoint detection. The digested solution was then titrated against 0.02 N hydrochloric acid (HCl) until a green color endpoint was observed, indicating the completion of the reaction. (Baker & Thompson, 1992)
2.2.3 Bioactivity Assays

2.2.3.1 Antioxidant Assay
Ferric Reducing Antioxidant Power (FRAP) Test
FRAP solution (3.6 ml) add to distilled water (0.4 ml) and incubated at 37˚C for 5 min. Then this solution mixed with certain concentration of the plant extract (80 ml) and incubated at 37˚C for 10 min. The absorbance of the reaction mixture was measured at 593 nm. For construction of the calibration curve, five concentrations of FeSO4, 7H2O (0.1, 0.4, 0.8, 1, 1.12, 1.5 mM) were used and the absorbance values were measured as for sample solutions (Gohari et al., 2011)
2.2.3.2 Antimicrobial Assay
Isolation and Identification of Target Organisms
For the isolation of Staphylococcus aureus, Mannitol Salt Agar (MSA) was prepared by dissolving 2.22 g of MSA medium and 0.52 g of agar in 20 ml of sterile water, followed by sterilization at 21°C for 12–20 minutes. The prepared medium was poured into sterile Petri plates. The bacterial strain was streaked using the quadrant streak method and incubated for 24 hours, after which pure colonies were subcultured for further experiments. (Kateete et al., 2010)
For the isolation of Escherichia coli, MacConkey Agar was prepared by dissolving 2.5 g of MacConkey medium and 1.3 g of agar in 50 ml of distilled water, followed by sterilization at 21°C for 12–21 minutes. The bacterial strain was streaked using the quadrant streak method and incubated. Pure cultures were subcultured for further analysis. (Bozaslan et al., 2016)
Pseudomonas aeruginosa was cultured on Nutrient Agar, as it is an obligate aerobe capable of anaerobic growth in the presence of nitrates. The organism was incubated at 37°C, its optimal growth temperature. Fig. 2 display bacterial strains cultured on selective media: Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa.
2.2.3.3 Agar Disc Diffusion Method for Antimicrobial Susceptibility Testing
The disc diffusion method is based on the diffusion of an antimicrobial agent from an impregnated disc placed on an agar plate pre-inoculated with the test bacterium. The antibiotic diffuses radially, creating a concentration gradient. If the antimicrobial agent is effective, a clear zone of inhibition appears around the disc.
Mueller-Hinton Agar (MHA) was prepared according to the manufacturer’s instructions using distilled or deionized water. The medium was boiled, autoclaved at 121°C for 15 minutes, and cooled to 40–50°C before being poured into sterile Petri plates to a uniform depth of 4 mm. The plates were dried at 30–37°C in an incubator with lids partially open to remove excess moisture, preventing bacterial swarming and ensuring accurate results. (Jorgensen & Turnidge, 2015)
For inoculum preparation, bacterial suspensions were prepared from pure cultures not older than 48 hours. Four to five colonies were transferred using a sterile wire loop into 5 ml of Trypticase soy broth or 0.9% saline.
For plate inoculation, a sterile cotton swab was dipped into the bacterial suspension and used to evenly spread the inoculum over the MHA plate. The plate was rotated 60° and streaking was repeated to ensure uniform bacterial distribution. The inoculated plates were allowed to dry for 3–5 minutes before applying antimicrobial discs. Three different concentrations of the plant extract were introduced as antimicrobial agents, and the plates were incubated under optimal conditions for the test organism. The zones of inhibition were measured to assess antimicrobial efficacy.
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Streak Plate Cultures of Bacterial Strains on Selective Media: (Fig. 2. Escherichia coli on MacConkey Medium (A), Staphylococcus aureus on Nutrient Agar (B), Pseudomonas aeruginosa on MacConkey Medium (C), respectively.)

2.3 Formulation of Nutritional Feed Mix

A nutritional feed mix was formulated using 400 g of wheat, 30 g of starch, 50 g of turmeric and ginger, 10 g of Sesamum radiatum powder, and 10 ml of distilled water. The ingredients were thoroughly mixed and then dried at 50°C for 1 hour before use. Fig. 3 illustrates the formulated poultry feed containing Sesamum radiatum powder.
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                                   Fig .3. Sesamum radiatum Feed for poultry

3. RESULTS
3.1 Phytochemical Screening
3.1.1 Preliminary Phytochemical Tests

Table 2. Preliminary phytochemical screening of Sesamum radiatum extract

	Preliminary analysis of Sesamum radiatum
	Hexane
	Chloroform
	Methanol

	Flavanoid
	+
	-
	+

	Terpenoid
	-
	-
	-

	Phenol
	-
	-
	+

	Tannin
	-
	-
	+

	Resin
	-
	-
	-

	Glycoside
	-
	+
	+

	Protein
	+
	+
	+

	Reducing sugar
	-
	-
	-

	Saponin
	-
	-
	-

	Coumarin
	+
	-
	+

	
	
	
	


(+: Presence, -: Absence)
These results indicate that methanolic extracts contain the highest number of phytochemicals, including flavonoids, phenols, tannins, glycosides, proteins, and coumarin. Table 2 summarizes the presence (+) or absence (–) of key phytochemicals across different solvent extracts.
The presence of individual phytochemicals was further confirmed through qualitative tests. The characteristic color changes were observed



3.2 Quantitative Analysis of Bioactive Compounds
The total carbohydrate, phenol, and flavonoid content of Sesamum radiatum extracts were estimated using spectrophotometric methods. The results are shown in Tables 3–4.
3.2.1 Estimation of Carbohydrates
Carbohydrate content was determined by measuring optical density (OD) at 620 nm.
Table 3. Total carbohydrate estimation.
	
Concentration (µg/ml)
	
OD Values


	
10
	
0.051

	20
	0.103

	40
	0.166

	60
	0.251

	80
	0.351

	100
	0.406

	150
200
	0.654
0.864




Fig .3. Estimation of total carbohydrate
From the calibration curve, the carbohydrate content was estimated as 59.5 µg/ml
3.2.2 Estimation of Phenol Content
Phenol content was determined using OD measurements at 765 nm.
Table 4. Total phenol estimation.
	
Concentration (µg/ml)

	
OD Values

	
10
	
0.241

	20
	0.406

	40
	0.651

	60
	0.924

	80
	1.221

	100
	1.462




Fig .4. Estimation of Phenol content
The estimated phenol content was 28 µg/ml
3.2.3 Estimation of Flavonoid Content
Flavonoid concentration was analyzed using OD readings at 415 nm.

Table 5. Total flavonoid estimation.
	
Concentration (µg/ml)

	
OD Values

	
50
	
0.060

	100
	0.128

	150
	0.182

	200
	0.232

	250
	0.300





Fig .5. Estimation of Flavonoid content
The flavonoid content was estimated to be 449 µg/ml

Table 6. Proximate Composition of Sample
	
Component
	
Percentage (%)

	
Crude Fibre
	
4.6

	
Protein
	
22.4

	
Lipid
	
3.68






3.3 Antioxidant Activity by FRAP Assay
The antioxidant potential of Sesamum radiatum was evaluated using the Ferric Reducing Antioxidant Power (FRAP) assay. Fig: 6 shows the antioxidant activity of Sesamum radiatum extracts using the FRAP assay. The results (Table.7) show a concentration-dependent increase in reducing power.
                
Table 7. Antioxidant activity of Sesamum radiatum extracts.
	
Concentration of standard and test (μg/ml)
	

O.D of standard ascorbic acid
	

Methanol extract of Sesamum radiatum

	
Blank

	
0.021
	
0.039

	0.2

	0.286
	0.224

	0.4
	0.344
	0.265

	0.6
	0.391
	0.323

	0.8
	0.452
	0.331

	1
	0.476
	0.375

	1.2
	0.561
	0.401

	1.4
	0.6
	0.454

	1.6
	0.68
	0.506
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Fig.6. Ferric Reducing Antioxidant Power (FRAP) Assay of Sesamum radiatum Extracts
The methanolic extract exhibited the highest antioxidant activity, correlating with its high phytochemical content.


3.4 Antimicrobial Activity
3.4.1 Isolation and Identification of Target Organisms
The selected bacterial strains were isolated and cultured on respective agar media. 
3.4.2 Agar Disc Diffusion Assay
The antibacterial activity of different extracts was evaluated using the disc diffusion method (Fig. 7 - 9). The results are summarized in Table 8.

       
[image: ]                                       
Fig.7. Antibacterial Activity of Sesamum radiatum Extracts (Methanol (A), Chloroform (B), and Hexane(C)) Against Staphylococcus aureus
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 Fig. 8. Antibacterial Activity of Sesamum radiatum Extracts (Methanol (A), Chloroform (B), and Hexane (C)) Against Escherichia coli
[image: ]
Fig. 9. Antibacterial Activity of Sesamum radiatum Extracts (Methanol (A), Chloroform (B), and Hexane (C)) Against Pseudomonas aeruginosa

                             Table 8. Antimicrobial activity of Sesamum radiatum extracts.
	Plant extract
	Microorganism

	Hexane
	Chloroform
	Methanol
	Staphylococcus aureus
	Escherichia coli
	Pseudomonas aeruginosa

	10 µL
	10 µL
	10 µL
	Resistant
	Resistant
	Resistant

	25 µL
	25 µL
	25 µL
	Resistant
	Resistant
	Resistant

	50 µL
	50 µL
	50 µL
	Resistant
	Resistant
	Resistant





3.5 Evaluation of Poultry Feed
The Sesamum radiatum feed formulation and field trials are shown in Fig. 10 -11 .The test group showed 15.25% weight gain, compared to 10.41% in the control group, indicating its potential as a poultry feed supplement.


Table 9. Field trial for feed in Poultry farm



	Test
	Control

	Initial weight 
	Final weight 
	Initial weight 
	Final weight 

	
590 g
	
680 g
	
480 g
	
530 g
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Fig. 10. Field Trial for Feed in Poultry Farm: Field trial   before feed (Test and control)

   [image: ]        [image: ]; 
Fig. 11. Field Trial For Feed In Poultry Farm: Field trial after feed (Test and control)

4. DISCUSSION

A rich phytochemical profile comprising flavonoids, phenols, tannins, glycosides, proteins, and coumarins was found in the methanolic extract of Sesamum radiatum. These molecules are present in diverse solvent extracts, most likely as a result of variations in the solvent's polarity and capacity to dissolve particular phytochemicals. Hexane extracts, for instance, contained proteins, coumarins, and flavonoids, whereas chloroform extracts produced proteins and glycosides. But the best solvent for extracting a wider variety of bioactive substances was methanol.
The methanolic extract contains flavonoids and tannins, which are known to have antibacterial and anti-inflammatory qualities. Plants produce flavonoids in reaction to microbial infection, which combine with bacterial cell walls and proteins to produce antimicrobial effects (Rice-Evans et al., 1997). Conversely, tannins have the ability to attach to proteins that are high in proline, which can interfere with protein synthesis and have the ability to repair wounds (Jorgensen et al., 1991).
The disc diffusion method was used to assess the antibacterial activity of Sesamum radiatum extracts against Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus. The rich phytochemical makeup indicates potential efficacy at larger dosages, despite the weak antibacterial impact at the studied concentrations.

The extract's ability to neutralize free radicals was further supported by antioxidant activity measured using the Ferric Reducing Antioxidant Power (FRAP) assay, which further supports its usage as a natural medicinal agent.
Results from a field trial with 30-day-old chicks during a 30-day period were encouraging. The methanolic extract-fed chickens showed improved immunological response and increased body weight by 15.25%, suggesting greater metabolic efficiency and food absorption. These results highlight the potential in poultry production of Sesamum radiatum as a natural immune-boosting and growth-promoting agent.

In summary, the findings support the traditional application of Sesamum radiatum and offer a rationale for its inclusion in organic poultry feed. To fully realize its potential as a sustainable substitute for synthetic chemicals, future research should examine the precise mechanisms of action, ideal doses, and long-term safety.


5. Conclusion

This study evaluated the nutritional composition, antioxidant capacity, and antimicrobial activity of Sesamum radiatum leaf extracts for potential application in poultry feed. The methanolic extract, in particular, exhibited a high concentration of bioactive compounds such as flavonoids, phenols, and proteins, contributing to its strong antioxidant performance as evidenced by the FRAP assay.Although no zones of inhibition were observed in the disc diffusion assayindicating resistance of the tested bacterial strains to the crude extracts at the applied concentrations the phytochemical profile suggests that antimicrobial potential may still exist at higher doses or in purified fractions.Notably, the in vivo poultry feed trial demonstrated a significant improvement in weight gain among birds supplemented with Sesamum radiatum-enriched feed, highlighting its promise as a natural growth-promoting additive. These findings support the incorporation of Sesamum radiatum as a functional ingredient in sustainable poultry nutrition, particularly for its nutritional and antioxidant benefits. Further research should focus on optimized extraction protocols, the isolation of active constituents, and expanded in vivo antimicrobial testing to better understand its potential as a phytogenic alternative to synthetic additives.
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