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Abstract
Bio-fortification, or biological fortification, enhances the nutritional value and bioavailability of food crops through traditional breeding, modern biotechnology, and agronomic practices. With hunger and malnutrition posing significant socio-economic and health challenges, achieving the UN Sustainable Development Goal 2 (UN-SDG2) by 2030 remains a critical global objective. In fruit crops such as mango, banana, guava, citrus, papaya, apple, pear, and strawberry, bio-fortification efforts focus on increasing essential nutrients like beta-carotene, vitamin C, iron, and zinc. These biofortified fruits offer a cost-effective solution to improve nutrition, particularly for vulnerable populations, helping to mitigate the risks of hidden hunger and malnutrition.
While genetic modifications accelerate nutritional improvements, challenges such as regulatory approvals and public acceptance persist. Although food supplements and dietary diversification provide short-term relief, bio-fortification represents a sustainable, long-term strategy to combat malnutrition. Recent advancements in research have demonstrated the potential of bio-fortified crops to address micronutrient deficiencies effectively. Policy initiatives and global expansion efforts are further supporting the adoption of bio-fortification, emphasizing its role in improving food security and nutritional outcomes worldwide.
This review highlights the progress in bio-fortification research, the importance of policy frameworks, and the growing global momentum behind this approach. By integrating bio-fortification into agricultural systems, it is possible to create a resilient and nutritious food supply, contributing significantly to the fight against malnutrition and the achievement of global food security goals.
Keywords: Bio fortification, Fruit crops, Nutrients, Hidden hunger, Malnutrition.	Comment by Igyuve moses: Be consistent in adopting biofortification instead of bio fortification
Introduction
Global issues such as hunger, poor nutrition, and population growth present serious obstacles to the development of many nations. One of the major public health concerns associated with these challenges is the lack of essential vitamins and minerals, with Vvitamin A Ddeficiency (VAD) being the most prevalent (Anonymous 2019). VAD is responsible for over 600,000 fatalities annually in developing countries, particularly affecting children under the age of five (WHO, 2021; Stevens et al., 2015). Malnutrition remains a significant issue in India, where Uttar Pradesh has the highest stunting rate at 46.36%, followed closely by Lakshadweep at 46.31%. Other states with high stunting rates include Maharashtra (44.59%) and Madhya Pradesh (41.61%) (Women and Child Development Ministry, 2024). According to recent reports, approximately 17% of children aged 0-5 years are underweight, 36% are stunted and 6% are wasted leading to various health problems and physical impairments that exacerbate public health concerns (Global Nutrition Report, 2023; Black et al., 2013).	Comment by Igyuve moses: Clarify if the focus is on India or global context, as regional data dominate some parts (e.g., Uttar Pradesh malnutrition rates)
To address this issue, bio fortification has emerged as a promising strategy. It involves the development and cultivation of nutritionally enriched food crops with increased bioavailability, achieved through conventional plant breeding, modern biotechnology techniques, and agronomic methods (Bouis & Saltzman, 2017). Currently, three primary approaches—plant breeding, transgenic techniques and agronomic bio fortification are being employed for enhancing the nutritional value of food crops (Garget al., 2018). These methods have been successfully applied to biofortify fruits, vegetables, legumes, oilseeds and cereals (Harvest Plus, 2020). Among these the transgenic approach stands out as a rapid, efficient and sustainable solution for bio fortification offering a viable means to combat micronutrient deficiencies and improve global nutrition (Qaim et al., 2020).	Comment by Igyuve moses: Change to biofortification	Comment by Igyuve moses: Change to biofortification	Comment by Igyuve moses: Change to biofortification
Methods of Biofortification	Comment by Igyuve moses: This is not a research method section but rather an overview of biofortification approaches, I suggest you caption this as “Approaches to Biofortification” or “Techniques of Biofortification”
1. Agronomic Biofortification
[bookmark: _Hlk195621194]Agronomic bio fortification refers to the practice of adding mineral fertilizers to soil or crops to increase the concentration and bioavailability of specific nutrients in plants. Since vitamins are naturally synthesized in crops agronomic bio fortification primarily focuses on enhancing mineral content rather than vitamins (Çatmak & Kutman, 2018). Traditionally, mineral fertilizers have been used by farmers to improve plant health. However, this approach has certain limitations that must be considered. One major drawback is the high cost of fertilizers and their potential environmental impact due to excessive application (Dhotra et al., 2021).	Comment by Igyuve moses: Change to biofortification	Comment by Igyuve moses: Change to biofortification
To enhance nutrient absorption and improve fruit quality the use of advanced growing media creates optimal conditions for plant growth and development (Sharma et al., 2022). Another effective cultural intervention is the foliar application of plant growth regulators which significantly influence plants physiological and biochemical processes (Maanik & Sharma, 2022). While agronomic bio fortification provides rapid results in the short term it is highly dependent on farmers' consistent application of fertilizers. Since fertilizer use is a routine agricultural activity farmers may neglect it if they do not perceive financial benefits from the process (Umar et al., 2019). Additionally, the high cost of mineral fertilizers increases the price of bio fortified crops, making them less accessible to economically disadvantaged populations. Therefore, while agronomic bio fortification is an effective approach for improving nutrient availability its economic and environmental challenges must be addressed to ensure widespread adoption.	Comment by Igyuve moses: Change to biofortification	Comment by Igyuve moses: Change to biofortification
2. Breeding Method
The process of breeding plants involves producing innovative or genetically unique crop types with higher micronutrient contents. The goal of bio fortification through plant breeding is to use genetic variations across closely related species to enhance the mineral content and bioavailability of crops.	Comment by Igyuve moses: Change to biofortification
Conventional breeding: The genetic variability of the target crop or wild varieties that can cross with the crop currently limits conventional breeding in bio fortification. In order to overcome these restrictions genetic engineering methods such as marker-assisted breeding or molecular breeding have become effective tools in contemporary biotechnology for transmitting desired traits (Dolkar et al. 2014). Another method that is widely used in bio fortification in both developed and developing nations is mutation breeding. It entails the use of chemical or physical mutagens to cause mutations in crops, increasing their genetic variability. This method has worked well for creating grain types that have better quality, increased yields and other desired characteristics. Unlike conventional breeding, genetic variations in crops are generated by inducing mutations through chemical treatments or physical techniques like irradiation. (Sheoran et.al., 2022). 	Comment by Igyuve moses: Change to biofortification	Comment by Igyuve moses: Change to biofortification
Biofortification via molecular breeding involves locating the gene responsible for enhancing nutritional quality and identifying markers closely linked to that gene. Using these markers, the desired traits can be introduced into crops through conventional breeding methods. (Jha AB, 2020; Sheoran et. al., 2022). Molecular breeding allows for the identification of whether a desirable trait is present or absent in a crop during its developmental stages. As a result, it is a faster approach compared to other plant breeding methods. (Singh et al., 2016; Sheoran et.al., 2022).
3. Genetic Engineering
Unlike plant breeding, genetic engineering is not restricted to crops belonging to the same species. It has been demonstrated as an effective approach to enhancing crops that traditional plant breeding cannot improve including apples and bananas (Gómez-Galera et al., 2010). Genetic engineering enables the introduction of new nutritional or agronomic traits into specific crop types by applying principles from plant breeding and biotechnology (Naqvi et al., 2009). This approach allows scientists to identify and characterize genes that can be inserted into crops to enhance their nutritional value when bio fortification is used (Mayer et al., 2008).	Comment by Igyuve moses: Change to biofortification
Genetic engineering incorporates genes from various organisms including fungi and bacteria to enhance crop traits (InabaandNishio). Increasing knowledge of these genetic pathways facilitates the development of strategies to improve the nutritional composition of fruits. Additionally, fruit ripening and growth regulation at the molecular level play a crucial role in biofortification efforts aimed at improving food quality (Osorio et al., 2013). Genes involved in the production of growth hormones such as auxins, cytokinins and gibberellins significantly influence fruit size and quality making them essential targets for genetic enhancement (Tejpal et al., 2018; Seyfferth et al., 2020).
Genome editing, or gene editing, is a technology that enables the precise correction, insertion, or deletion of DNA sequences in a wide variety of cells and organisms. (Khalil et.al.,2020). Gene editing offers the potential to create genetically modified organisms (GMOs) without incorporating transgenes, thereby addressing regulatory concerns linked to transgenic crops. (Mir et.al., 2020; Kumar et.al., 2020). Techniques like Mega-nucleases, Zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9) have been utilized in genome editing to develop β-carotene-enriched biofortified crop varieties. (Jaganathan et .al., 2018). Despite being highly adaptable, cost-efficient, and accurate, CRISPR/Cas9 can occasionally result in unintended mutations when off-target regions of the genome are affected during the editing process. (Kumar et .al., 2020). The transgenic approach has been shown to be sustainable and rapid when introducing desired traits into crops. (Singh et .al., 2016)
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Table 1: Essential micro- and macronutrients required for good human health.

Table 2.  Recommended Dietary Allowances (RDAs) (day/mg) for Minerals / Vitamins according to different fruits	Comment by Igyuve moses: Provide citation for sources of RDAs for Minerals/vitamins
	Sr. No
	Minerals
/Vitamins
	Sources
	Recommended Dietary Allowance (RDA) (day/mg)

	
	Age group (Years)
	1–8
	9–13
	14–18
	19–50
	51–80

	
	
	M
	F
	M
	F
	M
	F
	M
	F
	M
	F

	1
	Calcium

	Litchi, Kiwi, Orange, Papaya, Persimmon
	700 – 1000
	1300
	1300
	1000
	1000- 1200

	2
	Phosphorus
	Raisins, Passion Fruit, Avocado, Raspberries, Nectarine, Strawberries, Apricot, Kiwi , Peach
	
460 – 500
	
1250
	
1250
	
700-800
	
700-800

	3
	Potassium
	Bananas, Papaya, Dates
	2000 - 2300

	2300-2500

	3000
	2300
	3400
	2600
	3400
	2600

	4
	Sodium
	Apples, Guavas, Avocado, Papaya, Mango, Carambola, Pineapple, Banana, Melons, Pears
	
500-600
	
	
	
	2000 - 2300
	
2000 – 2300

	5
	Magnesium
	Bananas, Cherries, Peaches, Apricots, And Blackberries
	80 - 130
	240
	410
	360
	420
	320
	420
	320

	6
	Iron
	Fig , AvacadoAvocado, Strawberry, Dates, Prunes Dried Apricots, And Dried Peaches
	
7 – 10
	
8
	
11 – 15
	
8 – 18

	7
	Zinc
	Pomegranate, Wild Blueberries, Avocado, Pomegranate, Guava, Kiwi
	3 – 5
	8
	9 - 11
	8 – 11

	8
	Chromium
(mcg)
	Grapes, Apple, Oranges, Banana
	11 – 15
	21- 25

	24 - 35
	35
	25
	30
	20

	9
	Copper
(mcg)
	Pears, Mangoes Andand Dried Apricots
	340 - 440
	700
	890
	900

	10
	Selenium
	Fresh Banana
	20 - 30 mcg
	40 mcg
	55 mcg
	55 mcg

	11
	Iodine
	Strawberries, Pineapple
	90 mcg

	120 mcg
	150 mcg
	150 mcg

	12
	Manganese
	Walnut, Bananas, Mango, Pineapple, Passion Fruit, Guava,  JackfruitGuava, Jackfruit
	
1.2 - 1.5
	
1.6-1.9
	
1.6- 2.2

	
1.8-2.3


	13
	Vitamin A
	Mangos, Papaya, Nectarine, Grapefruit, Mandarin Orange
	300 – 400 mcg
RAE
	600 mcg
RAE
	700-900 mcg
RAE
	600-900 mcg
RAE

	14
	Vitamin C
	Barbados Cherry, Aonla, Guava, Banana, Strawberry, Papaya, Mango
	15 -25
	40-45
	65-75
	75 – 90

	15
	Vitamin B2
	Banana, Almond
	0.5 - 0.6
	0.9
	1.0-1.3
	1.1-1.3

	16
	Protein (g)
	Cashewnut, Avocado Jackfruit, Kiwi, Apricot,
	13 - 19
	34
	46 - 52
	46 – 56















Table 3.  Nutritional composition, mineral content, beta-carotene levels, and energy (Kcal) of selected fruits
	Sr. no.
	Fruit
	Nutritional Value per 100 g
	Minerals
	Beta carotene
(μg)
	Energy
(Kcal)

	
	
	CH
(g)
	Protein
(g)
	Fats
(g)
	Fiber
(g)
	Vit C (mg)
	Vit A
(IU)
	Vit E (mg)
	Vit K
(μg)
	Riboflavin
(mg)
	Thiamine
(mg)
	K
(mg)
	P (mg)
	Ca
(mg)
	Mg
(mg)
	Na
(mg)
	Cu
(mg)
	Fe
(mg)
	Zn
(mg)
	Mn
(mg)
	Se
(μg)
	
	

	1
	Mango
	14.9
	0.82
	0.38
	1.6
	36.4
	1080
	0.9
	4.2
	0.038
	0.028
	168
	14
	11
	10
	1
	0.11
	0.16
	0.09
	0.06
	0.6
	640
	60

	2
	Banana
	22.8
	1.09
	0.33
	2.6
	8.7
	64
	0.1
	0.5
	0.073
	0.031
	358
	22
	5
	27
	1
	0.07
	0.26
	0.15
	0.27
	1
	26
	89

	3
	Sapota
	19.9
	0.44
	1.1
	5.3
	14.7
	60
	-
	-
	0.020
	-
	193
	12
	21
	12
	12
	0.08
	0.80
	0.10
	-
	0.6
	-
	83

	4
	Papaya
	10.8
	0.47
	0.26
	1.7
	-
	950
	0.3
	2.6
	0.027
	0.023
	182
	10
	20
	21
	8
	0.04
	0.25
	0.08
	0.04
	0.6
	274
	43

	5
	Grape
	18.1
	0.72
	0.16
	0.9
	-
	66
	-
	14.6
	0.07
	0.069
	191
	20
	10
	7
	2
	0.12
	0.36
	0.07
	0.07
	0.1
	39
	69

	6
	Guava
	14.3
	2.55
	0.95
	5.4
	228
	624
	0.73
	2.6
	0.04
	0.067
	417
	40
	18
	220
	2
	0.23
	0.26
	0.23
	0.15
	0.6
	374
	68

	7
	Sweet orange
	1.8
	0.94
	0.12
	2.4
	-
	225
	0.18
	-
	0.04
	0.087
	181
	14
	40
	10
	-
	0.04
	0.1
	0.07
	0.02
	0.5
	71
	47

	8
	Mandarin 
	13.3
	0.81
	0.31
	1.8
	26.7
	681
	0.2
	-
	0.036
	0.058
	166
	20
	37
	12
	2
	0.04
	0.15
	0.07
	0.03
	0.1
	155
	53

	9
	Acid lime
	10.5
	0.7
	0.2
	2.8
	29.1
	50
	0.22
	0.6
	0.02
	0.03
	102
	18
	33
	6
	2
	0.06
	0.6
	0.11
	0.00
	0.4
	30
	30

	10
	C. Apple
	25.2
	1.7
	0.6
	2.4
	19.2
	33
	-
	-
	0.1
	0.08
	382
	21
	30
	18
	4
	-
	0.71
	-
	-
	-
	-
	101

	11
	Pomegranate
	18.7
	1.67
	1.17
	4
	10.2
	-
	0.6
	16.4
	0.053
	0.067
	236
	36
	10
	12
	3
	0.15
	0.3
	0.35
	0.119
	0.5
	-
	83

	12
	Pineapple
	13.1
	0.54
	0.12
	1.4
	--
	58
	-
	0.7
	0.032
	0.079
	109
	8
	13
	12
	1
	0.11
	0.29
	0.12
	0.92
	0.1
	35
	50

	13
	Ber
	20.2
	1.2
	0.2
	-
	69
	40
	-
	-
	0.04
	0.02
	250
	23
	21
	10
	3
	0.07
	0.48
	0.05
	0.08
	-
	-
	79

	14
	Aonla
	10.2
	0.88
	0.58
	4.3
	27.7
	290
	0.37
	-
	0.03
	0.04
	198
	27
	25
	10
	1
	0.07
	0.31
	0.12
	0.14
	0.6
	-
	44

	15
	Jamun
	15.6
	0.72
	0.23
	-
	14.3
	3
	-
	-
	0.012
	0.006
	79
	17
	19
	15
	14
	-
	0.19
	-
	-
	-
	-
	60

	16
	Date palm
	75
	1.81
	0.15
	6.7
	-
	149
	-
	2.7
	0.06
	0.05
	696
	62
	64
	54
	1
	0.36
	0.9
	0.44
	0.29
	-
	89
	277

	17
	Carambola
	6.73
	1.04
	0.33
	2.8
	34.4
	61
	0.15
	-
	0.016
	0.014
	133
	12
	3
	10
	2
	0.13
	0.08
	0.12
	0.03
	0.6
	-
	31

	18
	Phalasa
	21.1
	1.57
	0.1
	5.53
	4.38
	300
	-
	-
	0.264
	0.02
	372
	24.2
	136
	-
	17.3
	-
	1.08
	-
	-
	-
	-
	-

	19
	Fig
	19.2
	0.75
	0.3
	2.9
	2
	142
	0.11
	4.7
	0.05
	0.06
	232
	14
	35
	17
	1
	0.07
	0.37
	0.15
	0.12
	0.2
	85
	74

	20
	Bael
	32
	1.8
	0.3
	2.9
	8.7
	-
	-
	-
	1.19
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	20

	21
	Jackfruit
	23.2
	1.72
	0.64
	1.5
	13.7
	110
	0.34
	-
	0.055
	0.105
	448
	21
	24
	29
	2
	0.07
	0.23
	0.13
	0.04
	-
	61
	95

	22
	Avacado
	8.53
	2
	14.7
	6.7
	10
	146
	2.07
	-
	0.13
	0.067
	485
	52
	12
	29
	7
	7
	0.55
	0.64
	0.14
	0.4
	62
	160

	23
	Litchi
	16.5
	0.83
	0.44
	1.3
	71.5
	-
	0.07
	0.4
	0.065
	0.011
	171
	31
	5
	10
	1
	0.14
	0.31
	0.07
	0.055
	0.6
	-
	66

	24
	Dragon fruit
	15.2
	0.36
	0.14
	3.1
	4.3
	-
	0.12
	4.4
	0.026
	0.012
	116
	12
	9
	7
	1
	0.08
	0.18
	0.1
	-
	0.1
	14
	57

	25
	Cashewnut
	30.2
	18.2
	43.8
	3.3
	0.5
	-
	0.9
	34.1
	0.058
	0.423
	660
	593
	37
	292
	12
	2.2
	6.68
	5.78
	1.66
	19.9
	-
	553

	26
	Apple
	13.8
	0.26
	0.17
	2.4
	4.6
	54
	0.18
	-
	0.026
	0.017
	107
	11
	6
	5
	1
	0.027
	0.12
	0.04
	0.03
	-
	27
	52

	27
	Pear
	15.2
	0.36
	0.14
	3.1
	4.3
	25
	0.12
	4.4
	0.026
	0.012
	116
	12
	9
	7
	1
	0.08
	0.18
	0.1
	0.04
	0.1
	14
	57

	28
	Peach
	9.54
	0.91
	0.25
	1.5
	6.6
	326
	0.73
	2.6
	0.031
	0.024
	190
	20
	6
	9
	-
	0.06
	0.25
	0.17
	0.06
	0.1
	162
	165

	29
	Plum
	11.4
	0.7
	0.28
	1.4
	9.5
	345
	0.26
	6.4
	0.026
	0.028
	157
	16
	6
	7
	-
	0.05
	0.17
	0.1
	0.05
	-
	190
	46

	30
	Cherry
	16
	1.06
	0.2
	2.1
	7
	64
	0.07
	2.1
	0.033
	0.027
	222
	21
	13
	11
	-
	0.06
	0.36
	0.07
	0.07
	-
	38
	63

	31
	Strawberry
	7.68
	0.67
	0.3
	2
	58.8
	12
	0.29
	2.2
	0.022
	0.024
	153
	24
	16
	13
	1
	0.04
	0.41
	0.14
	0.38
	0.4
	7
	32

	32
	Loquat
	12.1
	0.43
	0.2
	1.7
	1
	1530
	-
	-
	0.024
	0.019
	266
	27
	16
	13
	1
	0.04
	0.05
	0.28
	0.14
	0.6
	-
	47

	33
	Apricot
	11.1
	1.4
	0.39
	2
	10
	1930
	0.89
	3.3
	0.04
	0.03
	259
	23
	13
	10
	1
	0.07
	0.39
	0.2
	0.07
	0.1
	 1090
	48

	34
	Kiwi
	14.7
	1.14
	0.52
	3
	92.7
	87
	1.5
	40.3
	0.025
	0.027
	312
	24
	34
	17
	3
	0.1
	0.31
	0.14
	0.1
	0.2
	52
	61-63

	35
	Almond
	21.6
	21.2
	49.9
	12.5
	-
	2
	25.6
	-
	1.14
	0.205
	733
	481
	269
	270
	1
	1.03
	3.71
	3.12
	2.18
	4.1
	1
	579

	36
	Walnut
	13.7
	15.2
	65.2
	6.7
	1.3
	20
	0.7
	2.7
	0.15
	0.341
	441
	346
	98
	158
	2
	1.59
	2.91
	3.09
	3.41
	4.9
	12
	654

	37
	Quince
	15.3
	0.4
	0.1
	1.9
	15
	40
	-
	-
	0.03
	0.02
	197
	17
	11
	8
	4
	0.13
	0.7
	0.04
	-
	0.6
	-
	57













Bio fortification in fruit crops	Comment by Igyuve moses: Change to Biofortification
Mango (Mangifera indica):
Biofortification in mango crops aims to enhance their nutritional value by increasing the concentrations of essential micronutrients and phytochemicals. Although research on mango biofortification is limited, both conventional breeding techniques and biotechnological approaches have been explored to improve the fruit's nutritional profile. In 2017, Saranya et al., conducted a study focusing on genetically modifying mangoes to elevate their pro-vitamin A carotenoid content, particularly beta-carotene, a precursor to vitamin A. The researchers successfully developed transgenic mango plants with higher beta-carotene levels by introducing a carotenoid biosynthetic gene from another plant species into mango embryogenic callus cells. Similarly, Padmesh et al., (2013) investigated the potential of traditional breeding methods to enhance the nutrient content of mango cultivars. Their study analyzed variations in mineral composition, including calcium, zinc, and iron, across different mango genotypes. The findings revealed significant differences in nutrient content, suggesting the possibility of selecting and breeding mango varieties with higher mineral concentrations. In addition to conventional breeding, biotechnological approaches such as genetic engineering have been explored to improve the nutritional composition of mangoes. For instance, Dhotra et al. (2021) studied the impact of foliar micronutrient sprays on the growth, yield, and quality of Dashehari mango fruits. Another study on the 'Kesar' mango variety demonstrated that foliar applications of zinc sulfate (ZnSO₄) and iron sulfate (FeSO₄) significantly increased micronutrient levels in both the pulp and peel. The highest nutrient concentrations were achieved with a combined application of 0.50% FeSO₄ and 0.50% ZnSO₄ (Mahida et al., 2023). While genetic engineering in mangoes shows promise, it remains an area of ongoing research and development. For example, efforts are being made to enhance beta-carotene levels in mangoes through genetic modifications (Sharma et al., 2023). These advancements highlight the potential of both traditional and modern techniques to improve the nutritional value of mangoes.
Banana (Musa spp.):
The development of biofortified banana cultivars has been achieved through conventional breeding techniques, focusing on selecting and crossbreeding varieties with enhanced nutritional profiles. A notable achievement in this area is the creation of biofortified Golden Bananas, enriched with pro-vitamin A carotenoids such as beta-carotene to combat vitamin A deficiency (Davey et al., 2009; Arango et al., 2010).
Genetic modification has further enhanced pro-Vvitamin A Ccarotenoid (pVAC) levels in bananas. For instance, the introduction of a phytoene synthase gene from a Fe’i banana variety led to a substantial increase in beta-carotene content, with some lines reaching up to 55 µg/g dry weight (Paul et al., 2017). Additionally, efforts have been made to reduce acrylamide, a potential carcinogen formed during cooking, improving the safety of bio fortified bananas.
Beyond nutritional enhancement, red bananas are recognized for their high dietary fiber, potassium, and antioxidant properties, including phenolic compounds (Joshi et al., 2017). Another significant advancement in banana biotechnology is the use of RNA interference (RNAi) for viral resistance. RNA i-mediated suppression of viral components successfully eliminated symptoms of bunchy top virus disease six months after transgenic plants were developed (Shekhawat et al., 2012). These advancements highlight the potential of both conventional breeding and genetic engineering in improving the nutritional quality, safety and disease resistance of bananas contributing to food security and public health.
Guava (Psidium guajava):
The primary objective of guava biofortification is to enhance the fruit’s levels of essential micronutrients and bioactive compounds, thereby improving its nutritional profile. Using conventional breeding techniques, researchers have developed guava varieties with superior nutritional composition. Selective breeding efforts have primarily focused on increasing the concentrations of key micronutrients such as vitamin C, beta-carotene, and essential minerals like iron and zinc (Navarro-Tarazaga et al., 2016). One notable guava cultivar, Paluma, originates from Brazil and is highly valued for its remarkable agronomic performance, delightful taste, high soluble solids content and vibrant red pulp. Biofortified guava varieties not only offer improved nutritional benefits but also exhibit enhanced antioxidant capacity.
In addition to genetic approaches, various cultural practices have been employed to further enrich guava’s nutritional content. Optimizing agricultural techniques including appropriate fertilization and irrigation strategies has been shown to enhance nutrient absorption and accumulation in guava plants (Sathya et al., 2019). Furthermore, research indicates that fermenting guava juice with specific pro biotic strains can significantly increase its vitamin B₁₂ content while also boosting its antioxidant properties and ensuring pro biotic viability. This value-added fermented guava juice presents a promising functional food product that could help address vitamin B₁₂ deficiency (Rastogi et al., 2024).
Citrus (Citrus spp.): 
Traditional breeding techniques have been employed to enhance the nutritional value of citrus fruits by selecting and crossbreeding cultivars with naturally higher nutrient levels. Breeding programs have specifically targeted increasing the vitamin C content in citrus fruits (Salonia et al.,2020). Additionally, biofortification efforts aim to elevate essential micronutrients such as folate and pro-vitamin A carotenoids including beta-carotene. Genetic engineering has also been utilized to enhance the accumulation of pro-vitamin A carotenoids in citrus fruits improving their nutritional value (Pons et al.,2018). Beyond nutritional enhancement, various agronomic interventions have been explored to improve fruit quality. The application of calcium chloride and potassium sulfate (10%) has been shown to enhance the quality of Eureka lemons (Devi et al., 2018). Furthermore, integrated nutrient management (INM) practices such as applying 100% nitrogen as urea in combination with Azotobacter, have been reported to maximize fruit nitrogen content (0.06%) in Kinnow mandarins (Bakshi et al., 2017).
Biofortification strategies have also been investigated for micronutrient enhancement in citrus. A study comparing foliar and soil biofortification of zinc in Citrus reticulata (mandarin orange) demonstrated that both methods effectively increased zinc concentration in the fruit. However, the study emphasized the need to assess existing soil zinc levels before application as excessive zinc can have adverse effects (Bhantana et al., 2022). These efforts collectively contribute to improving the nutritional quality of citrus fruits making them valuable in addressing dietary deficiencies particularly in regions where vitamin A and other micronutrient deficiencies are prevalent.
Papaya (Carica papaya): 
One approach to bio fortifying papaya involves the use of genetic engineering to enhance the levels of pro-vitamin A carotenoids, such as beta-carotene. This has been achieved by introducing specific genes responsible for carotenoid biosynthesis, as reported by Shankar et al. (2010). In regions where papaya is a dietary staple, the development of biofortified varieties with elevated vitamin A content can play a crucial role in addressing vitamin A deficiency (Shankar et al., 2010). Additionally, increasing the concentrations of essential minerals like zinc and iron is a significant aspect of papaya bio fortification. Genetic engineering techniques have been employed to boost the mineral content of papaya fruits, thereby improving their nutritional value (Maxwell et al., 2013). These efforts aim to enhance the dietary benefits of papaya, particularly in populations prone to micronutrient deficiencies.	Comment by Igyuve moses: Change to biofortifying	Comment by Igyuve moses: Change to biofortification
Graps (Vitis vinifera):
Biofortified grape varieties have been developed using conventional breeding techniques to enhance the concentration of beneficial compounds such as polyphenols and anthocyanins. These compounds contribute to the antioxidant properties and overall health benefits of grapes (Di Lorenzo et al., 2019). Studies have shown that foliar application of zinc-based fertilizers, including zinc oxide (ZnO) and zinc sulfate (ZnSO₄), effectively increases zinc concentrations in grape tissues without negatively impacting their physicochemical properties (Daccak et al., 2022). Similarly, the foliar application of organic selenium fertilizers has been identified as a successful approach to enriching grape berries-particularly their skin-with selenium, without significantly affecting vine growth or fruit quality (Zhao et al., 2021).
Additionally, genetic engineering allows for precise regulation of metabolic pathways responsible for the production of desirable compounds, thereby enhancing the nutritional quality of grapes. Agricultural practices also play a crucial role in influencing grape composition. Factors such as irrigation strategies, canopy management techniques, and fertilization schedules can significantly impact the accumulation of phenolic compounds in grape berries (Cortell & Kennedy, 2006).
Pomegranate (Punica granatum): 
The hybrid pomegranate variety Solapur Lal is recognized for its high nutritional value, containing significant amounts of iron (5.6–6.1 mg/100 g), zinc (0.64–0.69 mg/100 g), and vitamin C (19.4–19.8 mg/100 g). This variety was introduced in 2017 for cultivation in semi-arid regions of the country. On average, fruit yields range between 23.0 and 27.0 t/ha. The ICAR-National Research Centre on Pomegranate, based in Pune, Maharashtra, was responsible for developing this bio fortified variety (Anonymous, 2017). Davarpanah et al. (2020) found that applying 2.6 mM FeSO₄ as a foliar fertilizer during the early season significantly improved pomegranate fruit yield and quality. The treatment resulted in a 20–31% increase in yield, enhanced the number of fruits per tree, and improved juice content, total soluble solids, and sugar levels. FeSO₄ also reduced juice acidity and increased the maturity index, although it slightly decreased antioxidant activity and phenolic compounds in the juice. This study demonstrates that FeSO₄ is an effective approach for enhancing pomegranate yield and fruit quality in high pH soils.
A study published in Nature examined the impact of postharvest zinc treatments on pomegranate fruit quality and nutrient content. The findings indicated that postharvest application of zinc not only increased the zinc concentration within the fruit but also enhanced its overall quality during storage. Notably, the treatment inhibited microbial growth, which helped preserve key sensory attributes such as sweetness, aroma, and sourness, ultimately extending the fruit’s shelf life (Aminzade et al., 2024).
Aonla (Phyllanthus emblica)
It is well known for its high vitamin C content and various health benefits. Traditional breeding methods, including cross-breeding and selection, can be employed to further enhance its nutritional profile (Singh et al., 2019). Additionally, genetic engineering offers the possibility of introducing specific genes to improve the fruit’s nutrient composition. However, the adoption of genetically modified crops faces potential challenges related to public acceptance and regulatory constraints (Chaurasia et al., 2009). Research has shown that using black polythene as a mulching material can enhance the quality characteristics of Aonla cv. NA-7, resulting in superior fruit quality (Iqbal et al., 2015). Furthermore, foliar application of micronutrients such as boron, zinc, and iron has been found to significantly enhance fruit retention, yield, and overall quality. The use of these micronutrients has been linked to reduced fruit drop and improved fruit attributes (Abhijith et al., 2018).
Moreover, the incorporation of bio fertilizers has demonstrated positive effects on seed germination rates and seedling vigor in aonla, leading to healthier plant growth. This improved development ultimately contributes to better nutrient content in the fruits (Reddy et al., 2021).
Apple (Malus domestica)
Researchers have discovered apple varieties that contain higher concentrations of antioxidants, including phenolic compounds, flavonoids, and anthocyanins. These compounds are linked to health benefits because of their antioxidant and anti-inflammatory properties. (Strand et al., 2018). Proper nutrient management, such as balanced fertilization, can enhance the nutritional quality of apples by positively affecting their nutrient composition. (Tagliavini et al., 2019). Genetic engineering is being investigated to improve apples through the introduction of specific genes. For instance, adding a stilbene synthase gene from grapevines can boost resveratrol levels, a powerful antioxidant, in apples. (Tian et al., 2017).  This genetic modification seeks to enhance the antioxidant potential of apples. Researchers have also engineered apple plants to generate increased amounts of anthocyanins and flavan-3-ols, which are beneficial compounds that add to the apple's nutritional value. (Flachowsky et al., 2010). Additionally, Arctic® apples have been genetically modified to resist browning by suppressing polyphenol oxidases (PPOs), the enzymes that cause browning. Arctic varieties, such as Fuji, Granny Smith, and Golden Delicious, have been introduced in different types over the years. (Lobato-Gomez et al., 2021) 
Pear ( Pyrus communis)
Biofortification in pears focuses on enhancing their nutritional value and addressing nutrient deficiencies. While research on pears is not as advanced as in other crops, several strategies are being investigated. One approach is conventional breeding, where pear varieties are selectively crossed to elevate their content of vitamins, minerals, and antioxidants. Another approach is genetic modification, which involves introducing or enhancing specific genes to increase nutrient levels. For instance, researchers have explored enhancing genes associated with antioxidants, such as anthocyanins, to improve the antioxidant capacity of pears. (Han et al., 2016). Agronomic biofortification in the Pyrus communis L. variety Rocha has been effectively achieved through the foliar application of 0.6 kg Ca(NO₃)₂ ha⁻¹ or 1.6 kg CaCl₂ ha⁻¹, which enhances calcium biofortification in leaves without causing any symptoms of phytotoxicity. (Cardoso et al., 2018). Successful efforts for zinc fortification were carried out by (Liu et al., 2023) using both chelated and non-chelated zinc. It was noted that chelated ZnEDTA can be safely applied at a higher concentration of 1.5%, compared to 0.1%–0.4% for non-chelated zinc sources. Pear is a widely cultivated fruit crop globally, but its breeding process is time-intensive. 
To support molecular breeding and gene identification, (Zhang et al., 2021) conducted genome-wide association studies (GWAS) on eleven fruit-related traits. They identified 37 loci linked to eight fruit quality traits and five loci associated with three fruit phenological traits. Over time, new beneficial mutations have reduced variation in neutral sites, suggesting that traits such as fruit stone cell content, organic acid levels, and sugar content may have undergone continuous selection during breeding improvements. One candidate gene, PbrSTONE, identified through GWAS, has been functionally validated to play a role in regulating stone cell formation, a key fruit quality trait in pears.

Strawberry (Fragaria × ananassa)
Efforts to enhance strawberries aim to increase their nutritional value and health benefits (Singh et al., 2022). Genetic engineering has been utilized to elevate vitamin C levels and improve the plants' resistance to diseases and environmental stresses (Borowski et al., 2016). For example, researchers modified strawberries to contain up to 47% less starch and 37% more soluble sugar by inhibiting a specific enzyme responsible for converting sugar into starch. (Park et al., 2006). Additionally, using a 900 ppm cycocel spray on strawberries has been found to improve their quality by boosting sweetness, vitamin C levels, juice yield, and reducing acidity (Kumar et al., 2012).

Conclusion	Comment by Igyuve moses: Conclusion does not clearly link back to UN SDGs, long-term sustainability, or policy uptake. Expand and personalize the conclusion
Malnutrition and hidden hunger are pervasive issues that affect both developed and developing countries and have catastrophic effects on the entire world. The pandemic's recent consequences emphasize how rapidly our food systems need to alter in order to address shortages in our food supply. The resolution of socio-political and economic challenges is crucial for the effective promotion, cultivation, and consumption of bio fortification. To effectively address hidden hunger through bio fortification, an integrated strategy including lawmakers, farmers, food developers, genetic engineers, dietitians, and educators is needed. Strategies for bio fortification should be adapted to address regional nutritional concerns while accounting for cultural differences in consumer acceptance. In order to sum up, bio fortification presents a variety of possible approaches to enhance global nutritional health, advancing our goal of reducing hunger and malnutrition. Continued research and development are essential to refine these strategies and ensure their widespread application, ultimately improving global fruit nutrition and health outcomes.	Comment by Igyuve moses: Recast, suggestion: Addressing socio-political and economic challenges is essential for promoting, cultivating, and consuming biofortified crops effectively	Comment by Igyuve moses: Change to biofortification	Comment by Igyuve moses: Change to biofortification	Comment by Igyuve moses: Change to biofortification	Comment by Igyuve moses: Change to biofortification
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